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Study the UNIVERSE through RADIATION:
Most Complete 3D Map of the universe (Created: By 2MASS - 2-

Micron All Sky Survey over 3 decades)

• Includes 43,000 galaxies extended over 380 million light years y

• Redshifts, or measurements of galaxy distances, were added

• Missing black band in the middle because of invisibility behind our Milky Way
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The MILKY WAY, Our Galaxy

• Has 200-400 billion stars
Astronomical Objects: Anything beyond our earth
• How do we study them? - Analyzing the light coming from them
• Light is emitted by excited or “HOT” atoms, molecules in them
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The Plasma Universe
PLASMA COVERS VAST REGION (99%) IN T-ρ PHASE SPACE
(AAS, Pradhan & Nahar, 2011)

• BLR-AGN (broad-line regions in active galactic nuclei), where many
spectral features are associated with the central massive black hole
• Laboratory plasmas - tokamaks (magnetic confinement fusion de-
vices), Z-pinch machines (inertial confinement fusion (ICF) devices)
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WARM & HOT DENSE MATTER (HEDLP-FESAC report)

• Hot Dense Matter (HDM): - Sun’s ρ-T track, Supernovae, Stellar
Interiors, Accretion Disks, Blackhole environments
- Lab plasmas in fusion devices: inertial confinement - laser produced
(NIF) & Z pinches (e.g. Sandia), magnetic confinement (tokamaks)
•Warm Dense Matter (WDM): - cores of large gaseous planets
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STUDYING ASTRONOMICAL OBJECTS

• 99% of known matter is plasma
ASTRONOMICAL objects are studied in three ways:

• Imaging:
- Beautiful pictures of astronomical objects, Stars, Nebu-
lae, Active Galactic Nuclei, Blackhole Environments, etc
→ Provides information of size and location of the objects

• Photometry:
- Low resolution spectroscopy - Bands of Electromagnetic
Colors ranging from X-ray to Radio waves
→ macroscopic information

• Spectroscopy:
- Taken by spectrometer - Provides most of the detailed
knowledge: temperature, density, extent, chemical compo-
sition, etc. of astronomical objects

Spectroscopy is underpinned by Atomic & Molecular
Physics
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..ETA CARINAE: Photometric image .

..

...• Consists of 2 massive bright (5M times the sun) stars, heavier one

.went under a near supernova explosion

.• Explosion produced two polar lobes, and a large but thin equatorial

.disk, all moving outward at 670 km/s. Mass indicates future eruptions

..• HST image shows the bipolar Homunculus Nebula surrounds it ..

..........................................................
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Photometry - Low resolution analysis:
Supernova Remnant CASSIOPIA A

• Photometric Observation: Spitzer (Infrared - red),
Hubble (Visible - yellow),
Chandra (X-ray - green & blue)
• Heavier elements - Supernova explosion, Kilonova (recent finding)
• Solar system made from debris of supernova explosions
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SPECTRUM of the Wind of Black hole: GRO J1655-40 Binary Star System

(Miller et al., 2006)

• Materials from the large star is sucked into companion black hole -
form wind as they spiral to it. Spectrum of the wind (BLUE):
• Highly charged Mg, Si, Fe, Ni lines.RED: Elements in natural widths
• Doppler Blue Shift - Wind is blowing toward us
• Information from analysis of light produced from atomic transitions
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ATOMIC STRUCTURE

• Atomic structure - i) Organization of electrons in various
shells and subshells, ii) Determinations of electron energies
and wave functions → transition probabilities
• Fermions, unlike Bosons, e.g. electrons form structured
orbital arrangements, known as configuration, bound by
the attractive nuclear potential. Li configuration: 1s22s
• Electrons move in quantized orbitals with orbital L and
spin S angular momenta. L and S give rise to various
atomic states. Transitions among those states involve pho-
tons which are seen as lines in observed spectra
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SPECTRUM
• The combination of orbital angular momentum L and
spin angular momentum S follow strict coupling rules,
known as selection rules
• Each atom gives out its own set of photons or colors
• Spectrum is the lines of colors,

Left: Carbon spectrum, Right: Rainbow: Solar spectrum
• Light is a mixture of colors - Spectrum: splitting of colors
• We study the dynamic state of an atom by Schrodinger
equation - quantum equivalence of classical Newton’s eq
• The solution for Schrodinger equation is exact only for
HYDROGEN ATOM
• Approximation begins from 2-electrons systems
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SOLAR SPECTRA: ABSORPTION & EMISSION LINES
• Absorption line - forms as an electron absorbs a photon to jump to
a higher energy level
• Emission line - forms as a photon is emitted due to the electron
dropping to a lower energy level
• For the same transition levels, both lines form at the same energy
position

• Fraunhofer (1815) observed lines in the solar spectrum & used al-
phabet for designation
• Later, following Russel and Saunders (1925) LS coupling designation,
spectroscopy with quantum mechanics identified them: A (7594 Å,O),
B (6867 Å,O) (air), C (6563 Å H), D1 & D2 (5896, 5890 Å Na, yellow
sun), E(5270 Å, Fe I), F (4861 Å, H), G(4300 Å, CH), H & K (3968,
3934 Å, Ca II)
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HYDROGEN ATOM
Schrodinger equation of hydrogen, with KE = P2/(2m) and
nuclear potential energy V(r), is[
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The solution or wavefunction has independent variables r,
θ, φ, each will correspond to a quantum number,

Ψ (r, ϑ, ϕ) = R(r) Y (ϑ, ϕ)
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HYDROGEN WAVEFUNCTION WITH QUANTUM NUMBERS

• With quantum numbers n, l,m, the complete solution for
the bound states of hydrogen may be written as

〈|nlm〉 ≡ ψnlm(r, ϑ, ϕ) = Rnl(r)Ylm(ϑ, ϕ) =
1

r
Pnl(r)Ylm(ϑ, ϕ)

(3)
The radial function is

Pnl(r) =

√
(n− l− 1)!Z

n2[(n + l)!]3a0

[
2Zr

na0

]l+1

e
−Zr
na0 × L

2l+1
n+l

(2Zr

na0

)
,

where the Laguerre polynomial is

L2l+1
n+l (ρ) =

n−l−1∑
k=0

(−1)k+2l+1[(n + l)!]2ρk

(n− l− 1− k)!(2l + 1 + k)!k!
. (4)

The angular solution of normalized spherical harmonic:

Ylm(ϑ, ϕ) = Nlm Pm
l (cosϑ) eimϕ (5)

where

Nlm = ε

[
2l + 1

4π

(l− |m|)!
(l + |m|)!

]1/2

, (6)
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HYDROGEN WAVEFUNCTION WITH QUANTUM NUMBERS

ε = (−1)m for m > 0 and ε = 1 for m ≤ 0. The solutions are
associated Legendre polynomials of order l and m,

Pm
l (w) = (1−w2)|m|/2

d|m|

dw|m|
Pl(w), (7)

m = l, l − 1, . . . − l. m = 0 → Pl(w) = Legendre polynomial
of order l.

The energies E are given by,

E = −Z2

n2
× Ry ; = − Z2

2n2
× (a.u.)E = −(Z2/n2)× Ry ; (8)

n is a positive integer & defined as the principal quantum
number. The energy difference between two levels gives
the spectral line and is given by Rydberg formula as.

∆En,n′ = RH

[
1

n2
− 1

n′2

]
(n′ > n), (9)

where RH = 109,677.576 /cm = 1/911.76 Å is
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QUANTUM DESIGNATION OF A STATE

• Atomic Shells: n = 1,2,3,4 .. = K,L,M,N
- No of electrons = 2n2 - Closed shell, < 2n2 - Open Shell
• Orbital angular momentum: l=0,1,2,3,4...(n-1) = s,p,d,f,.
• Total Angular Momentum: L=0,1,2,3,4, ... , = S,P,D,F,..
- No of nodes in a wavefunction= n-l-1
• Magnetic angular momentum: ml = 0,±1,±2,±3,4 ..±l
(2l+1) values - angular multiplicity
• Spin angular momentun S was introduced due to electron
spin. It is inherent in Dirac equation. S = integer or 1/2
integer depending on number of electrons with spin s=1/2
• Spin magnetic angular momentum = ms = ±S - (2S+1)
values - spin multiplicity
• Spin multiplicity = 1,2,3, .. =singlet, doublet, triplet ..
• Total angular momentum: J = |L±S|, JM = 0,±1,±2,±3,4
..±J, J multiplicity = 2J + 1
• Parity (introduced from wavefunction) = π = (-1)l = +1
(even) or -1 (odd)

• Symmetry of a state: (2S+1)Lπ (LS), (2S+1)LπJ (LSJ)
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MULTI-ELECTRON ATOM
A many-electron system requires to sum over (i) all one-
electron operators, that is KE & attractive nuclear Z/r
potential, (ii) two-electron Coulomb repulsion potentials

HΨ = [H0 + H1]Ψ, (10)

H0 =

N∑
i=1

[
−∇2

i −
2Z

ri

]
, H1 =

∑
j<i

2

rij
(11)

H =
∑
i

fi +
∑
j 6=i

gij ≡ F + G (12)

• H0: one-body term, stronger, H1: two-body term, weaker,
can be treated perturbatively
• Start with a trial wave function Ψ t in some parametric
form, Slater Type Orbitals

PSTO
nl (r) = rl+1e−ar

• A trial function should satisfy variational principle that
through optimization an upper bound of energy eigenvalue
is obtained in the Schrödinger equation.

17



HARTREE-FOCK EQUATION (Book AAS)
• The N-electron wavefunction in the determinantal repre-
sentation

Ψ =
1√
N

∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) . . . ψ1(N)
ψ2(1) ψ2(2) . . . ψ2(N)
. . . . . . . . . . . .

ψN (1) ψN (2) . . . ψN (N)

∣∣∣∣∣∣∣∣ (13)

This is called the Slater determinant. Ψ vanishes if co-
ordinates of two electrons are the same. Substitution
in Schrodinger equation results in Hartree-Fock equation.
Simplification gives set of one-electron radial equations,[

−∇2
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2Z

ri

]
uk(ri) +

[∑
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∫
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2

rij
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]
ul(ri) = Ekuk(ri) .

1st term= 1-body term, 2nd term= Direct term, 3rd term= Exchange
term. • The total energy is given by

E[Ψ] =
∑

i

Ii +
1

2

∑
i

∑
j

[Jij −Kij]. (14)
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Central Field Approximation for a Multi-Electron System
• H1 consists of non-central forces between electrons which
contains a large spherically symmetric component
• We assume that each electron is acted upon by the aver-
aged charge distribution of all the other electrons and con-
struct a potential energy function V(ri) with one-electron
operator. When summed over all electrons, this charge
distribution is spherically symmetric and is a good approx-
imation to actual potential. Neglecting non-radial part,

H = −
N∑

i=1

h̄2

2m
∇2

i + V(r).

where

V(r) = −
N∑

i=1

e2Z

ri
+

〈
N∑
i6=j

e2

rij

〉
. (15)

• V(r) is the central-field potential with boundary condi-
tions

V(r) = −Z

r
if r → 0, = −z

r
if r→∞ (16)
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

• One most useful procedure (implemented in program SS):
• Treats electrons as Fermi sea: Electrons, constrained by
Pauli exclusion principle, fill in cells up to a highest Fermi
level of momentum p = pF at T=0
• As T rises, electrons are excited out of the Fermi sea close
to the ‘surface’ levels & approach a Maxwellian distribution
→ spatial density of electrons:

ρ =
(4/3)πp3

F

h3/2

• Based on quantum statistics, the TFDA model gives a
continuous function φ(x) such that the potential is

V(r) =
Zeff(λnl, r)

r
= −Z

r
φ(x),

where
φ(x) = e−Zr/2 + λnl(1− e−Zr/2), x =

r

µ
,

µ = 0.8853
(

N
N−1

)2/3
Z−1/3 = constant.
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

• The function φ(x) is a solution of the potential equation

d2φ(x)

dx2
=

1√
x
φ(x)

3
2

• The boundary conditions on φ(x) are

φ(0) = 1, φ(∞) = −Z−N + 1

Z
.

• The one-electron orbitals Pnl(r) can be obtained by solv-
ing the wave equation[

d2

dr2
− l(l + 1)

r2
+ 2V(r) + εnl

]
Pnl(r) = 0.

• This is similar to the radial equation for the hydrogenic
case, with the same boundary conditions on Pnl(r) as r → 0
and r →∞, and (n− l + 1) nodes.
• The second order radial is solved numerically since, unlike
the hydrogenic case, there is no general analytic solution.
• It may be solved using an exponentially decaying function
appropriate for a bound state, e.g. Whittaker function
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

• The solution is normalized Whittaker function

W(r) = e−zr/ν
(

2zr

ν

)1 +

∞∑
k=1

ak

rk

 N
where ν = z/

√
ε is the effective quantum number and ε is

the eigenvalue. The coefficients are

a1 = ν {l(l + 1)− ν(ν − 1)} 1

2z

ak = ak−1 ν {l(l + 1)− (ν − k)(ν − k + 1)} 1

2kz
and the normalization factor is

N =

{
ν2

z
Γ(ν + l + 1) Γ(ν − 1)

}−1/2

The one-electron spin orbital functions then assume the
familiar hydrogenic form

ψn,`,m`,ms
(r, θ, φ,ms) = φ(r, θ, φ)ζms
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

- TFDA orbitals are based on a statistical treatment of the
free electron gas, & hence neglect the shell-structure
• However, in practice configuration interaction accounts
for much of the discrepancy that might otherwise result.
• Configuration interaction - when wavefunction includes
more than one configuration

CONFIGURATION INTERACTION
• A multi-electron system is described by its configuration
and a defined spectroscopic state.
• All states of the same SLπ, with different configura-
tions, interact with one another - configuration interaction.
Hence the wavefunction of the SLπ may be represented by
a linear combination of configurations giving the state.
• Example, the ground state of Boron is 1s22s22p (2Po).
2Po state can also form from 2s23p (2Po), 2s2p3d (. . . ,2Po).
2p3(2Po) and so on. These 4 configurations contribute with
different amplitudes or mixing coefficients (ai) to form the
four state vectors 2Po of a 4× 4 Hamiltonian matrix.
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

Hence for the optimized energy and wavefunction for each
2Po state all 4 configurations should be included,

Ψ(2Po) =

4∑
i=1

aiψ[Ci(
2Po)] =

[
a1ψ(2s22p) + a2ψ(2s23p)

+ a3ψ(2p3) + a3ψ(2s2p3d)
]

• The wave function will result in 4 energies. Each enegy
level will be designated by the configuration for which the
mixing coefficients ai has the highest value.
• When we calculate the transition matrix for the electron
going from one state to another state, these configurations
interfere and impact on the results.
• Typically the more configurations we have for a mulit-
electron system, the more accurate wave function and en-
ergies we get, and the more accurate transition parameters
are obtained.
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RYDBERG FORMULA FOR ENERGIES & QUANTUM DEFECT

• General Rydberg formula is similar to that of H-like ions,
but accounts for the screening effect on the valence electron
by the core electrons
• The outer/interacting electron experiences an effective
charge z = Z−N + 1, N = no of electrons
• Departure from a pure Coulomb form effectively reduces
the principal quantum numbers n in Rydberg formula as

E(nl) =
z2

(n− µ)2
=

z2

ν2

where µ ≥ 0 = quantum defect, ν = n−µ = effective quan-
tum number. While n is an integer and changes by 1, ν is
a fractional number and changes ∼ 1
• The amount of screening (µ) depends on the orbital angu-
lar momentum ` such that µs > µp > µd...& µ is a constant
for each `. We can write,

E(nl) =
z2

(n− µ`)2
=

z2

ν2
l

• Energy levels from Rydberg formula → “Rydberg levels”
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Relativistic Breit-Pauli Approximation (Textbook AAS)
For a multi-electron atom, the relativistic Breit-Pauli Hamiltonian is:

HBP = HNR + Hmass + HDar + Hso+

1

2

N∑
i6=j

[gij(so + so′) + gij(ss
′) + gij(css′) + gij(d) + gij(oo′)]

where the non-relativistic Hamiltonian is

HNR =

 N∑
i=1

−∇2
i −

2Z

ri
+

N∑
j>i

2

rij




and one-body correction terms are

Hmass = −α2

4

∑
i

p4
i , HDar = α2

4

∑
i∇2

(
Z
ri

)
, Hso = Ze2h̄2

2m2c2r3L.S

and the Breit interaction is

HB =
∑
i>j

[gij(so + so′) + gij(ss
′)]

SS includes all these terms and partial contributions from the last 3
terms. Wave functions and energies are obtained solving

HΨ = EΨ
• The accuracy is comparable to that of Dirac-Fock approximation for
most ions
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ANGULAR MOMENTA COUPLINGS

• Total L and S angular momenta may couple differently
for the total angular momentum J - depends on Z
• Multi-electron elements may be divided as, ‘light’ (Z ≤
18) and ‘heavy’ (Z> 18) (although not precise)
• LS coupling (typically Z ≤ 18): Vector summation of or-
bital and spin angular momenta is done separately
L = |L2 − L1|, ..., |L2 + L1|, L Multiplicity = 2L+1
S = |S2 − S1|, ..., |S2 + S1|, S Multiplicity = 2S+1
Then the total angular momentum quantum numbers:
J = |L− S|, ..., |L + S|, J Multiplicity = 2J+1
• The J-values → finestructure levels. Each LS can corre-
spond to several finestructure J levels
• The symmetry of a state is Jπ or (2S+1)LπJ
• Coulomb force between an electron and nucleus becomes
stronger for large Z and highly charged ions and can in-
crease the velocity of the electron to relativistic level. An-
gular coupling changes
• Intermediate or LSJ coupling (typically 19 ≤ Z ≤ 40):
Consideration of full relativistic effects is not necessary
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ANGULAR MOMENTA COUPLINGS
• For the total angular momentum J, the angular momenta
l and s = 1/2 of an interacting electron are added to the
total orbital & spin angular momenta, J1 of all other elec-
trons, as:

J1 =
∑

i

li +
∑

i

si, K = J1 + l, J = K + s ,

• jj coupling (typically for Z >40): When relativistic ef-
fect is more prominent, the total J is obtained from sum
of individual electron total angular momentum ji from its
angular & spin angular momenta:

ji = li + si, J =
∑

i

ji, (17)

For any 2 electrons, J ranges from |j1 + j2| to |j1 − j2|
• States designation= (jij2)J Ex; (pd) configuration- j1(1 ±
1/2)=1/2, 3/2, and j2(2± 1/2)=3/2, 5/2. The states are:
(1/2 3/2)2,1, (1/2 5/2)3,2, (3/2 3/2)3,2,1,0, (3/2 5/2)4,3,2,1
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NON-EQUIVALENT & EQUIVALENT ELECTRON STATES

• Equivalent electron state → Number of valence electrons
in the outer orbit: > 1
Non-equivalent electron state → 1 valence electron
• Non-equivalent electron states: All possible states al-

lowed by the vectorial sum. Ex. Find (2S+!)Lπj states of

a 3-electron configuration: nsn′pn′′d (different orbitals):
Total S: For nsn’p: |1/2 ± 1/2| = [0,1]. Add 1/2 of n”d to
them → (1/2,3/2,1/2) → 2S+1 = 2,4,2
Total L: For nsn’p, |0±1| = 1, Add 2 for n”d: |1±2|=1,2,3

Net parity π: (-1)
∑
i li = (-1)0+1+2 = -1 (odd parity)

Total J: |L± S; Ex: |1± 1/2| = 1/2,3/2
ns n′p (1P o) n′′d −→ 2P o, 2Do, 2F o - 3 states

ns n′p (3P o) n′′d −→ (2,4)(P,D, F )o - 6 tates .

Ex: (2S+!)Lπj = 2P o
1/2

, 2P o
3/2

,

• Equivalent electron state: Less number of LS states.

Ex: configuration, np2. For different orbitals, npn’p →
1,3S,1,3 P,1,3 D (6 states). For n=n’, Pauli exclusion prin-
ciple eliminates some -reducing 6 to 3 states, 1S,3 P,1 D,
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1. ”PHOTO-EXCITATION”
Photo-Excitation & De-excitation:

X+Z + hν ⇀↽ X+Z∗

• Atomic quantities
B12 - Photo-excitation, Oscillator Strength (f)
A21- Spontaneous Decay, - Radiative Decay Rate (A-value)
B21- Stimulated Decay with a radiation field
• Pij, transition probability,

Pij = 2π
c2

h2ν2
ji

| < j| e

mc
ê.peik.r|i > |2ρ(νji). (18)

eik.r = 1 + ik.r + [ik.r]2/2! + . . . ,

• Various terms in eik.r → various transitions 1st term E1,
2nd term E2 and M1, ...
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ALLOWED & FORBIDDEN TRANSITIONS

Determined by angular momentum selection rules

i) Allowed: Electric Dipole (E1) transitions - same-spin &
intercombination (different spin) transition
(∆ J = 0,±1, ∆ L = 0,±1,±2; parity changes)

Forbidden:
ii) Electric quadrupole (E2) transitions
(∆ J = 0,±1,±2, parity does not change)

iii) Magnetic dipole (M1) transitions
(∆ J = 0,±1, parity does not change)

iv) Electric octupole (E3) transitions
(∆ J= ±2, ±3, parity changes)

v) Magnetic quadrupole (M2) transitions
(∆ J = ±2, parity changes)

Allowed transitions are much strongher than Forbidden
transitions
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Transition Matrix elements with a Photon
• 1st term: Dipole operator: D =

∑
i ri:

• Transition matrix for Photo-excitation & Deexcitation:

< ΨB||D||ΨB′ >

Matrix element is reduced to generalized line strength
(length form):

S =

∣∣∣∣∣∣
〈
Ψf |

N+1∑
j=1

rj|Ψi

〉∣∣∣∣∣∣
2

(19)

• There are also ”Velocity” & ”Acceleration” forms
Allowed electric dipole (E1) transitions
The oscillator strength (fij) and radiative decay rate (Aji)
for the bound-bound transition are

fij =

[
Eji

3gi

]
S,

Aji(sec−1) =

[
0.8032× 1010

E3
ji

3gj

]
S
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FORBIDDEN TRANSITIONS
i) Electric quadrupole (E2) transitions (∆ J = 0,±1,±2, π - same)

AE2
ji = 2.6733× 103

E5
ij

gj
SE2(i, j) s−1, (20)

ii) Magnetic dipole (M1) transitions (∆ J = 0,±1, π - same)

AM1
ji = 3.5644× 104

E3
ij

gj
SM1(i, j) s−1, (21)

iii) Electric octupole (E3) transitions (∆ J= ±2, ±3, π changes)

AE3
ji = 1.2050× 10−3

E7
ij

gj
SE3(i, j) s−1, (22)

iv) Magnetic quadrupole (M2) transitions (∆ J = ±2, π changes)

AM2
ji = 2.3727× 10−2s−1

E5
ij

gj
SM2(i, j) . (23)

LIFETIME:

τk(s) =
1∑

i Aki(s
−1)

. (24)
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EX: ALLOWED & FORBIDDEN TRANSITIONS

Diagnostic Lines of He-like Ions: w,x,y,z

w(E1) : 1s2p(1Po
1)− 1s2(1S0) (Allowed Resonant)

x(M2) : 1s2p(3Po
2)− 1s2(1S0) (Forbidden)

y(E1) : 1s2p(3Po
1)− 1s2(1S0) (Intercombination)

z(M1) : 1s2s(3S1)− 1s2(1S0) (Forbidden)
NOTE: 1s-2p are the Kα transitions
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PROCYON: w,x,y,z DIAGNOSTIC LINES

Procyon, a star similar to the Sun, is a binary with a
white dwarf companion. Figure shows w, i(x,y), z lines of
He-like oxyge O VII in the spectrum of Procyon corona.
‘(’Triplet’ for 3 observed lines nor spin multiplicity). Here
’i’ corresponds to overlapped x,y lines. All these lines
are the primary diagnostics for density, temperature, and
ionization balance in high temperature.
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Atomic transitions in PLASMA OPACITY

• Opacity is a fundamental quantity for radiation transfer in plasmas.
It is caused by repeated absorption and emission of the propagating
radiation by the constituent plasma elements.
1. Photoexcitation: Atomic parameter - Oscillator Strength (fij)

κν(i→ j) =
πe2

mc
Nifijφν

Ni = ion density in state i, φν = profile factor (Gaussian, Lorentzian,
or combination of both)
• Total monochromatic κν is obtained from summed contributions of
all possible transitions
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Monochromatic Opacities κν of Fe II on Sun’s Surface
• Monochromatic opacity (κν) depends on fij

κν(i→ j) =
πe2

mc
Nifijφν

• Increased opacity over 3000Å explains missing radiation from solar
surface TOP: κν of Fe II (Nahar & Pradhan 1993). BOTTOM: solar
black body radiation in 2 - 3.5 ×103Å.
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