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Study the UNIVERSE through RADIATION:
Most Complete 3D Map of the universe (Created: By 2MASS - 2-
Micron All Sky Survey over 3 decades)
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e Includes 43,000 galaxies extended over 380 million light years y
e Redshifts, or measurements of galaxy distances, were added
e Missing black band in the middle because of invisibility behind our Milky Way



The MILKY WAY, Our Galaxy

e Has 200-400 billion stars

Astronomical Objects: Anything beyond our earth

e How do we study them? - Analyzing the light coming from them
e Light is emitted by excited or “HOT” atoms, molecules in them




The Plasma Universe
PLASMA COVERS VAST REGION (99%) IN T-p PHASE SPACE
(AAS, Pradhan & Nahar, 2011)
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¢ BLR-AGN (broad-line regions in active galactic nuclei), where many
spectral features are associated with the central massive black hole

e Laboratory plasmas - tokamaks (magnetic confinement fusion de-
vices), Z-pinch machines (inertial confinement fusion (ICF) devices)



WARM & HOT DENSE MATTER (HEDLP-FESAC report)
Hydrogen phase diagram
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e Hot Dense Matter (HDM): - Sun’s p-T track, Supernovae, Stellar
Interiors, Accretion Disks, Blackhole environments

- Lab plasmas in fusion devices: inertial confinement - laser produced
(NIF) & Z pinches (e.g. Sandia), magnetic confinement (tokamaks)

e Warm Dense Matter (WDM): - cores of large gaseous planets



STUDYING ASTRONOMICAL OBJECTS

e 99% of known matter is plasma
ASTRONOMICAL objects are studied in three ways:

e Imaging:

- Beautiful pictures of astronomical objects, Stars, Nebu-
lae, Active Galactic Nuclei, Blackhole Environments, etc
— Provides information of size and location of the objects

e Photometry:

- Low resolution spectroscopy - Bands of Electromagnetic
Colors ranging from X-ray to Radio waves

— macroscopic information

e Spectroscopy:

- Taken by spectrometer - Provides most of the detailed
knowledge: temperature, density, extent, chemical compo-
sition, etc. of astronomical objects

Spectroscopy is underpinned by Atomic & Molecular
Physics



.ETA CARINAE: Photometric image .

...e Consists of 2 massive bright (5M times the sun) stars, heavier one
.went under a near supernova explosion

.o Exxplosion produced two polar lobes, and a large but thin equatorial
.disk, all moving outward at 670 km/s. Mass indicates future eruptions
..o HST image shows the bipolar Homunculus Nebula surrounds it ..




Photometry - Low resolution analysis:
Supernova Remnant CASSIOPIA A

e Photometric Observation: Spitzer (Infrared - red),

Hubble (Visible - yellow),

Chandra (X-ray - green & blue)

e Heavier elements - Supernova explosion, Kilonova (recent finding)
e Solar system made from debris of supernova explosions



SPECTRUM of the Wind of Black hole: GRO J1655-40 Binary Star System
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e Materials from the large star is sucked into companion black hole -
form wind as they spiral to it. Spectrum of the wind (BLUE):

e Highly charged Mg, Si, Fe, Ni lines. RED: Elements in natural widths
e Doppler Blue Shift - Wind is blowing toward us

e Information from analysis of light produced from atomic transitions



ATOMIC STRUCTURE

e Atomic structure - i) Organization of electrons in various
shells and subshells, ii) Determinations of electron energies
and wave functions — transition probabilities

e Fermions, unlike Bosons, e.g. electrons form structured
orbital arrangements, known as configuration, bound by
the attractive nuclear potential. Li configuration: 1s%2s

e Electrons move in quantized orbitals with orbital L. and
spin S angular momenta. L and S give rise to various
atomic states. Transitions among those states involve pho-
tons which are seen as lines in observed spectra
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SPECTRUM

e¢ The combination of orbital angular momentum L and
spin angular momentum S follow strict coupling rules,
known as selection rules

e Each atom gives out its own set of photons or colors

e Spectrum is the lines of colors,
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Left: Carbon spectrum, Right: Rainbow: Solar spectrum
e Light is a mixture of colors - Spectrum: splitting of colors
e We study the dynamic state of an atom by Schrodinger
equation - quantum equivalence of classical Newton’s eq

e The solution for Schrodinger equation is exact only for
HYDROGEN ATOM

e Approximation begins from 2-electrons systems



SOLAR SPECTRA: ABSORPTION & EMISSION LINES

e Absorption line - forms as an electron absorbs a photon to jump to
a higher energy level

e Emission line - forms as a photon is emitted due to the electron
dropping to a lower energy level

e For the same transition levels, both lines form at the same energy
position
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e Fraunhofer (1815) observed lines in the solar spectrum & used al-
phabet for designation

e Later, following Russel and Saunders (1925) LS coupling designation,
spectroscopy with quantum mechanics identified them: A (7594 A,O),
B (6867 A,0) (air), C (6563 A H), D1 & D2 (5896, 5890 A Na, yellow
sun), E(5270 A, Fe I), F (4861 A, H), G(4300 A, CH), H & K (3968,
3934 A, Ca II)



HYDROGEN ATOM
Schrodinger equation of hydrogen, with KE = P?/(2m) and
nuclear potential energy V(r), is
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The solution or wavefunction has independent variables r,
6, ¢, each will correspond to a quantum number,

W(r,d,¢) = R(r) Y(V,¢)



HYDROGEN WAVEFUNCTION WITH QUANTUM NUMBERS
¢ With quantum numbers n, [, m, the complete solution for
the bound states of hydrogen may be written as
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HYDROGEN WAVEFUNCTION WITH QUANTUM NUMBERS
e =(—1)"" for m >0 and ¢ = 1 for m < 0. The solutions are
associated Legendre polynomials of order [ and m,

P (w) = (1 — w2)|m‘/2 dm Py(w) (7)
: a dw/m| A
m=11-1,...—1. m=0 — P;(w) = Legendre polynomial

of order 1.

The energies I are given by,

72 | Z? 2, 2 .
E:—EXRy,:—E X (a.u)E = —(Z“/n“) x Ry; (8)
n is a positive integer & defined as the principal quantum
number. The energy difference between two levels gives

the spectral line and is given by Rydberg formula as.

Ay =Rit |3~ | (0> ) )

n2 /2

where Ry = 109,677.576 /cm = 1/911.76 A is



QUANTUM DESIGNATION OF A STATE
e Atomic Shells: n = 1,2,34 .. = K,L,M,N
- No of electrons = 2n? - Closed shell, < 2n? - Open Shell
e Orbital angular momentum: 1=0,1,2,3,4...(n-1) = s,p,d.f,.
e Total Angular Momentum: L=0,1,2,3.4, ... , = S,P,D.F...
- No of nodes in a wavefunction= n-1-1
e Magnetic angular momentum: m; = 0,+1,+2,4+3.4 ..+l
(214-1) values - angular multiplicity
e Spin angular momentun S was introduced due to electron
spin. It is inherent in Dirac equation. S = integer or 1/2
integer depending on number of electrons with spin s=1/2
e Spin magnetic angular momentum = mg = +S - (2S+1)
values - spin multiplicity
e Spin multiplicity = 1,2,3, .. =singlet, doublet, triplet ..
e Total angular momentum: J = |L+S|, Jy; = 0,+1,+2,+3.4
..x=J, J multiplicity = 2J +1
e Parity (introduced from wavefunction) = 7 = (-1)! = 41
(even) or -1 (odd)
e Symmetry of a state: 2STUL™ (LS), (ZS+1>L7} (LSJ)



MULTI-ELECTRON ATOM
A many-electron system requires to sum over (i) all one-

electron operators, that is KE & attractive nuclear Z/r
potential, (ii) two-electron Coulomb repulsion potentials

HY = [Hy+ H{]Y, (10)
N
B s 27 2
Hy = Z [—v. m] Hy=) o (11)
j<i
H = ZfZ+ZgZ]_F+G (12)
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e [{y: one-body term, stronger, H{: two-body term, weaker,
can be treated perturbatively

e Start with a trial wave function ¥' in some parametric
form, Slater Type Orbitals
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e A trial function should satisfy variational principle that
through optimization an upper bound of energy eigenvalue
is obtained in the Schrodinger equation.



HARTREE-FOCK EQUATION (Book AAS)

e The N-electron wavefunction in the determinantal repre-
sentation

v1(1) 1(2) ... Pi(N)
\P:L ¢2(1) 77b2(2) ¢2(N) (13)

YN (1) YN(2) ... ()
This is called the Slater determinant. W vanishes if co-
ordinates of two electrons are the same. Substitution

in Schrodinger equation results in Hartree-Fock equation.
Simplification gives set of one-electron radial equations,

Z/u1 r;) . (r;)dr;
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1st term= 1-body term, 2nd term= Direct term, 3rd term= Exchange
term. e The total energy is given by

ZI+ ZZ i — K. (14)



Central Field Approximation for a Multi-Electron System
e H; consists of non-central forces between electrons which
contains a large spherically symmetric component

e We assume that each electron is acted upon by the aver-
aged charge distribution of all the other electrons and con-
struct a potential energy function V(r;) with one-electron
operator. When summed over all electrons, this charge
distribution is spherically symmetric and is a good approx-
imation to actual potential. Neglecting non-radial part,
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e V(r) is the central-field potential with boundary condi-
tions
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

e One most useful procedure (implemented in program SS):
e Treats electrons as Fermi sea: Electrons, constrained by
Pauli exclusion principle, fill in cells up to a highest Fermi
level of momentum p = prp at T=0

e As T rises, electrons are excited out of the Fermi sea close
to the ‘surface’ levels & approach a Maxwellian distribution
— spatial density of electrons:

(4/3)7p}
h3/2
e Based on quantum statistics, the TFDA model gives a
continuous function ¢(x) such that the potential is

V(I‘) _ Zeff(i“nla I') _ —%qb(x),
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION
e The function ¢(z) is a solution of the potential equation

s X
ddgffz ) — %qb(X)
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e The boundary conditions on ¢(x) are

¢(0) =1, ¢(o0) =

Z —N+1

Z

e The one-electron orbitals P, (r) can be obtained by solv-

ing the wave equation

d? 11+1)
dr? 12

-+ ZV(I') + €n]

Pnl(r) = 0.

e This is similar to the radial equation for the hydrogenic
case, with the same boundary conditions on P,;(r) as r — 0
and r — oo, and (n — [+ 1) nodes.
e The second order radial is solved numerically since, unlike
the hydrogenic case, there is no general analytic solution.
e It may be solved using an exponentially decaying function
appropriate for a bound state, e.g. Whittaker function



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION
e The solution is normalized Whittaker function

v (22 o 2K
W(r) =e ( ) sz_:lrk N
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where v = z/,/¢ is the effective quantum number and ¢ is
the eigenvalue. The coefficients are

1
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and the normalization factor 1s
U
N = {— I‘(V+l+1) I‘(V— 1)}
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The one-electron spin orbital functions then assume the
familiar hydrogenic form

wn,f,mg,ms(ra 97 ¢7 mS) — ¢(T7 (97 ¢>C’ms



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

- TFDA orbitals are based on a statistical treatment of the
free electron gas, & hence neglect the shell-structure

e However, in practice configuration interaction accounts
for much of the discrepancy that might otherwise result.
e Configuration interaction - when wavefunction includes
more than one configuration

CONFIGURATION INTERACTION
e A multi-electron system is described by its configuration
and a defined spectroscopic state.
e All states of the same SLw, with different configura-
tions, interact with one another - configuration interaction.
Hence the wavefunction of the SLm may be represented by
a linear combination of configurations giving the state.
e Example, the ground state of Boron is 1s°2s2p (°P°).
’PO state can also form from 2s?3p (“P°), 2s2p3d (...,’P°).
2p3(?P°) and so on. These 4 configurations contribute with
different amplitudes or mixing coefficients (a;) to form the
four state vectors P° of a 4 x 4 Hamiltonian matrix.



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION
Hence for the optimized energy and wavefunction for each
2Po state all 4 configurations should be included,

4
U(EP%) = > ai)[Ci(*P°)] = [a13)(25°2p) + azh(2s”3p)
1=1
+ az(2p?) + a3¢(252p3d)}

e The wave function will result in 4 energies. Each enegy
level will be designated by the configuration for which the
mixing coefficients a; has the highest value.

¢ When we calculate the transition matrix for the electron
going from one state to another state, these configurations
interfere and impact on the results.

e Typically the more configurations we have for a mulit-
electron system, the more accurate wave function and en-
ergies we get, and the more accurate transition parameters
are obtained.



RYDBERG FORMULA FOR ENERGIES & QUANTUM DEFECT
e General Rydberg formula is similar to that of H-like ions,
but accounts for the screening effect on the valence electron
by the core electrons

e The outer/interacting electron experiences an effective
charge z =7 — N +1, N = no of electrons

e Departure from a pure Coulomb form effectively reduces
the principal quantum numbers n in Rydberg formula as

72 7.2

E(nl) = mo 2 2
where 1 > 0 = quantum defect, v = n— u = effective quan-
tum number. While n is an integer and changes by 1, v is
a fractional number and changes ~ 1
e The amount of screening (1) depends on the orbital angu-
lar momentum ¢ such that ps > up > pg...& p is a constant

for each /. We can write,

2 2
Z Z

E 1 p— __— —_—

o) (n— )2 1f

e Energy levels from Rydberg formula — “Rydberg levels”



Relativistic Breit-Pauli Approximation (Textbook AAS)

For a multi-electron atom, the relativistic Breit-Pauli Hamiltonian is:

HBP — HNR + Hmass + HDar + Hso"‘

N
1
2 Z [gij (so + SO’) + 8ij (SS/) + 8ij (CSS/) + 8ij (d) + gij (OO’)}
7]
where the non-relativistic Hamiltonian is

N N

Hnr = Z —Viz—%JrZE

I'. r..
i=1 ! j>i Y

and one-body correction terms are

2 2 212
Hpass = _%Zp?a Hpar = QZ Zi V? (r%) s Hso = %LS

i
and the Breit interaction is
Hg = Z[gij(so + 80') + gij(ss’)]
i>]
SS includes all these terms and partial contributions from the last 3
terms. Wave functions and energies are obtained solving
HY = EW

e The accuracy is comparable to that of Dirac-Fock approximation for
most ions



ANGULAR MOMENTA COUPLINGS

e Total L and S angular momenta may couple differently
for the total angular momentum J - depends on Z

e Multi-electron elements may be divided as, ‘light’ (Z <
18) and ‘heavy’ (Z> 18) (although not precise)

e LS coupling (typically Z < 18): Vector summation of or-
bital and spin angular momenta is done separately

L = |Lo — Lq|, ..., |La + Lq|, L Multiplicity = 2L+1

S = |So — Sq], ...y |S2+S1|, S Multiplicity = 2S+1
Then the total angular momentum quantum numbers:
J=|L-S|, ..., |[L+S|, J Multiplicity = 2J+1

e The J-values — finestructure levels. Each LS can corre-
spond to several finestructure J levels

e The symmetry of a state is Jr or <2S+1)L§

e Coulomb force between an electron and nucleus becomes
stronger for large Z and highly charged ions and can in-
crease the velocity of the electron to relativistic level. An-
gular coupling changes

e Intermediate or LS.J coupling (typically 19 < Z < 40):
Consideration of full relativistic effects is not necessary



ANGULAR MOMENTA COUPLINGS
e For the total angular momentum J, the angular momenta
| and s = 1/2 of an interacting electron are added to the
total orbital & spin angular momenta, J; of all other elec-
trons, as:

Ji=) L+ s K=J;+1 J=K-+s,
1 1

e jj coupling (typically for Z >40): When relativistic ef-
fect is more prominent, the total J is obtained from sum
of individual electron total angular momentum j; from its
angular & spin angular momenta:

i=Lts, J=) ji (17)
i

For any 2 electrons, J ranges from |j; + jo| to |j1 — j2

e States designation= (j;j2); Ex; (pd) configuration- ji(1 +
1/2)=1/2, 3/2, and j2(2+ 1/2)=3/2, 5/2. The states are:
(1/2 3/2)21, (1/2 5/2)3 2, (3/2 3/2)321.0, (3/2 5/2)4321



NON-EQUIVALENT & EQUIVALENT ELECTRON STATES
e Equivalent electron state — Number of valence electrons
in the outer orbit: > 1
Non-equivalent electron state — 1 valence electron
e Non-equivalent electron states: All possible states al-

lowed by the vectorial sum. Ex. Find <ZS+!>L3T states of

a 3-electron configuration: nsn’pn”’d (different orbitals):
Total S: For nsn’p: |1/2+1/2| = [0,1]. Add 1/2 of n”d to
them — (1/2,3/2,1/2) — 2S5+1 = 2,4,2

Total L: For nsn’p, ]szl\ = 1, Add 2 for n”d: |1+2|=1,2,3
Net parity m: (-1 )Zz i = (- )0+1+2 -1 (odd parity)

Total J: [L+S; Ex: |[14+1/2| =1/2,3/2

ns n'p (1P°) n”d 3 2po, 2Do 2F0 _ 3 gtates

ns n'p (CP%) n'd —s A(P, D, F)° - 6 tates.

Ex: (ZS+!)L7T 2P10/2, 2P30/2,

o Equivalent electron state: Less number of LS states.

Ex: configuration, np?. For different orbitals, npn’p —
138 13p 13D (6 states). For n=n’, Pauli exclusion prin-
ciple eliminates some -reducing 6 to 3 states, 1S3P.1D,



1. "PHOTO-EXCITATION?”
Photo-Excitation & De-excitation:

X2 4 hy « X2

E2

A, pB.; pPB.,
AP
E -

e Atomic quantities

Bjs - Photo-excitation, Oscillator Strength (f)

Asg1- Spontaneous Decay, - Radiative Decay Rate (A-value)
Bs1- Stimulated Decay with a radiation field

e P;;, transition probability,
2
_ C . € . ik.r|. 2
Py = 27Th2yj2i\ <Jl—epe i > ["p(rji). (18)
¥t — 1 +ikr + [ikr]2/2!+ ...,
k.r

e Various terms in e¢"*' — various transitions 1st term E1,
2nd term E2 and M1, ...



ALLOWED & FORBIDDEN TRANSITIONS
Determined by angular momentum selection rules

i) Allowed: Electric Dipole (E1) transitions - same-spin &
intercombination (different spin) transition
(AJ =0,£1, A L = 0,£1,+2; parity changes)

Forbidden:
ii) Electric quadrupole (E2) transitions
(A J = 0,£1,+2, parity does not change)

iii) Magnetic dipole (M1) transitions
(A J = 0,41, parity does not change)

iv) Electric octupole (E3) transitions
(A J= £2, 43, parity changes)

v) Magnetic quadrupole (M2) transitions
(A J = £2, parity changes)

Allowed transitions are much strongher than Forbidden
transitions



Transition Matrix elements with a Photon
e 1st term: Dipole operator: D =) . r;:
e Transition matrix for Photo-excitation & Deexcitation:

< ¥yg|D||¥g >

Matrix element is reduced to generalized line strength

(length form):
2

N+1
S = <£’7f > I‘j¢i> (19)
=1

e There are also ” Velocity” & ” Acceleration” forms
Allowed electric dipole (E1) transitions

The oscillator strength (f;;) and radiative decay rate (A4;;)
for the bound-bound transition are

E..
- J1
fij = [@] >

Aji(sec™!) = {0.8032 x 10192 S
ng




FORBIDDEN TRANSITIONS
i) Electric quadrupole (E2) transitions (A J = 0,+1,+2, 7 - same)

E5
Af? =2.6733 x 10°—S%(i, ) 71, (20)
8j
ii) Magnetic dipole (M1) transitions (A J = 0,41, 7 - same)
ES
A =3.5644 x 10*2SM(i, j) s~ (21)
8j
iii) Electric octupole (E3) transitions (A J= +2, 43, 7 changes)
E7
A’ =1.2050 x 10 *—2S™(i, ) s, (22)
8j
iv) Magnetic quadrupole (M2) transitions (A J = +2, 7 changes)
E5
AP =2.3727 x 107 % 2SYA(1, j) . (23)
8j

LIFETIME:

1
kls) = > i Aki(s™1)

(24)



EX: ALLOWED & FORBIDDEN TRANSITIONS
Diagnostic Lines of He-like Ions: w,x,y,z
w(E1) : 1s2p(1P9) — 1s%(1Sg) (Allowed Resonant)
x(M2) : 1s2p(°P9) — 1s%(1Sq) (Forbidden)
y(E1): 1s2p(®*P?) — 1s(1Sg) (Intercombination)
z(M1) : 1s2s(3S1) — 1s%(1Sg) (Forbidden)
NOTE: 1s-2p are the K, transitions

2'P° =73 1
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PROCYON: w,x,y,z DIAGNOSTIC LINES
Procyon, a star similar to the Sun, is a binary with a
white dwarf companion. Figure shows w, i(x,y), z lines of
He-like oxyge O VII in the spectrum of Procyon corona.
‘(Triplet’ for 3 observed lines nor spin multiplicity). Here
i’ corresponds to overlapped x,y lines. All these lines
are the primary diagnostics for density, temperature, and

ionization balance in high temperature.
Procyon: Oy Iriplet
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Atomic transitions in PLASMA OPACITY
I,(v) plasma

opacity I(v) Transmission
i @ NN T=I0 1) = exp {o(v)

AVAVAVA [cm?/g] Optical depth
AVAVAVASS VWS> t(v) = k(v)pX

- s

X
e Opacity is a fundamental quantity for radiation transfer in plasmas.

It is caused by repeated absorption and emission of the propagating
radiation by the constituent plasma elements.
1. Photoexcitation: Atomic parameter - Oscillator Strength (fj;)

2

. me
’fy(l — J) = —Nifijgby
mc
N; = ion density in state i, ¢, = profile factor (Gaussian, Lorentzian,

or combination of both)
e Total monochromatic «, is obtained from summed contributions of
all possible transitions



Monochromatic Opacities k;,, of Fe II on Sun’s Surface
e Monochromatic opacity (x,) depends on f;;

7'('62

’%I/<i — j) — m—Clel']¢l/

e Increased opacity over 30004 explains missing radiation from solar

surface TOP: k, of Fe Il (Nahar & Pradhan 1993). BOTTOM: solar
black body radiation in 2 - 3.5 x103A.
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