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SINGLE & MULTI-ELECTRON ATOMS
Hydrogen atom

Electron
e Proton

VectorStock® VectorStock.com/21316030

e 1-electron: KE + Nuclear Potential

e > l-electron: KE + Nuclear Potential 4+ Electron-Electron potential
e Complexity starts with Electron-Electron interaction which does not
have a center point.



MULTI-ELECTRON ATOM
A many-electron system requires to sum over (i) all one-

electron operators, that is KE & attractive nuclear Z/r
potential, (ii) two-electron Coulomb repulsion potentials

HY = [HQ—I—Hl]Ep (1)
N
B o 24 2
HOZ[—V- 2= = )
j<i
H = Zfz"‘ng—F"‘G (3)
i JF#i

e [{y: one-body term, stronger, H{: two-body term, weaker,
can be treated perturbatively

e Start with a trial wave function ¥' in some parametric
form, Slater Type Orbitals

PSTO( ) _ I,1—|—1e—ar

e The lowest energy state: most stable - the ground state
e A trial function should satisfy variational principle that
through optimization an upper bound of energy eigenvalue
is obtained in the Schrodinger equation.



MULTI-ELECTRON SYSTEM CONFIGURATIONS
e Determination of Configuration - Arranging electrons in

to various orbitals - 1s, 2s, 2p, 3s, 3p

e nl orbitals fill up normally up to, 1s - 3p, Ar (3p")

e No particular rule applies for the ground configurations
or lowest energy state beyond Ar

e For large n all subshells exist, but they become excited
states as higher orbitals may become lower states. Ex. For
elements beyond Ar, e.g. K (Z=19) and Ca (Z=20), 4s fills
up instead of 3d. Two general rules:

- Rule 1¢: A subshell which gives lower (n+/{) value is filled
in first [K, Ca: (n+ () = 4 with 4s, but = 5 with 3d]

- Rule 2¢‘: For the same (n + /), higher /¢ is filled up first.
Ex: Fe-group elements from Sc to Zn (Z = 21 —30) - 3d fills
up after 4s instead of 4p as they have (n+/) = 5

e However, for configuration with Z > Fe (Z=26), (n + ¢)-
first rule deviates, & no particular rule is followed as states
are mixed with overlapped wavefunctions

e Size: H-radius - a, He (2) is the smallest element, and Fr
(87) is the largest - protons reduce the size



ANGULAR MOMENTA (L, S, J) COUPLINGS

e Total L and S angular momenta may couple differently
for the total angular momentum J - depends on Z

e Multi-electron elements may be divided as, ‘light’ (Z <
18) and ‘heavy’ (Z> 18) (although not precise)

e LS coupling (lower Z): Vector summation of orbital and
spin angular momenta is done separately. Ex: 2 electrons

L = |Ly — Lq|, ..., |La + L1|, L Multiplicity = 2L+1

S = |Se — Sq|, ..y |S2 +S1|, S Multiplicity = 2S+1
Then the total angular momentum quantum numbers:
J=|L-S|, ..., [L+S|, J Multiplicity = 2J+1

e The symmetry of the state: (25t1L7(LS), (ZS+1>L§ or Jm
e The .J-values — fine structure levels. Each LS term can
have several fine structure J levels (example below)

Ex: Consider configuration: nsn’p - what are the states <2S+1)L§ 7

ns electron: 1=0=L;, s=1/2=S;, n’p electron: I=1=L,, s=1/2=S,
nsn’p: L = [0+ 1] = 1, S=|5 +}| = 0,1, 28+1 = 1,3,

7= (=1)2ili=(=1)"*! = .1 odd, LS states are: 1P°3P°
J=|S+L: 1P J=1,3P% J=0,1,2. 2STULT: 1pQ 3pg 3pQ 3pg



ANGULAR MOMENTA COUPLINGS

Assignment: Find fine structure levels of °D

e Coulomb force between an electron and nucleus becomes
stronger for large Z and highly charged ions and can in-
crease the velocity of the electron to relativistic level. An-
gular coupling changes to LSJ coupling to JJ coupling

e Intermediate or LSJ coupling (typically 19 < Z < 40):
Consideration of full relativistic effects is not necessary

e Add all /; and s;, except for the last interacting electron,
separately, then add the last electron as follows:

le‘Zli—I—ZSi‘a K=Ji+1, J=K+s,
i i

K is a quantum number.

e jj coupling (typically for Z >40): When relativistic ef-
fect is more prominent, the total J is obtained from sum
of individual electron total angular momentum j; from its
angular & spin angular momenta:

Gi=Lts, J=> i (4)
i



ANGULAR MOMENTA COUPLINGS
For any 2 electrons, J ranges from |j; + jo| to |j1 — j2
e States designation= (j;72);
Ex; (pd) configuration- .p : ji(1 £ 1/2)=1/2, 3/2, and
d:jo(2+1/2)=3/2, 5/2. The states are:
(1/2 3/2)21, (1/2 5/2)3.2, .(3/2 3/2)3 21,0, (3/2 5/2)4321

e Hyperfine structure: Form when fine structure levels J split further
via vector addition with nuclear spin I — quantum state J+ 1 =F

Configuration Term Structure Fine Structure |

J=L+S

— B

L S Terms LS Levels

L= 1,+I,
trs L / S=s,+s,

e LS term energy can be calculated from its fine structure components
using
2J +1)E(J
> 5(2J+1)




NON-EQUIVALENT & EQUIVALENT ELECTRON STATES

e¢ Number of valence electrons in the outer orbit: > 1 —
Equivalent electron state
— 1 — Non-equivalent electron state
e Non-equivalent electron states: All possible states the
vectorial sum allows. Ex. States of 3-electron configu-
ration: nsn’pn’d:

ns n’p (1P0) n'd — 2P0, 2D0, 2o

ns n'p (°P%) n'd — Y (P, D, F).

e Equivalent electron state: Less number of LS states.

Ex: configuration, np2. If the configuration is npn’p, 6 pos-
sible states are: 138 13P 13D, However, for n=n’, Pauli
exclusion principle will eliminate some -reducing 6 to 3
states, 1S,3P,1 D, as follows

e p electron: Possible m; and mg values

my = 1,0, -1; mg = 1/2, -1/2 (spin up and down)

p electron: Six possible states or designation:

mymg: 17=11/2, 0"=01/2, —1t= -1 1/2, (spin up)
1™=1-1/2,00=0-1/2, —17= -1 -1/2 (spin down)



Vector addition for two p-electrons: L = |1+1|=0,1,2, S = |1/2+1/2|=0,1
Arrange the p-states, from 1"=1 1/2 to —1 = -1 -1/2, such that no
two electron have the same state (Pauli exclusion principle)

Mp = > m = 0,£1,£2; Mg= > m, = 0,%1

Possible combinations of np?

Mg/ Mp=2 1 0 -1 -2
O 171~ 170~ 1*1~ -170~ -1*-1~
1 170" 1+-1*t -170*
0 10" 1—-1* -170*
-1 /0= 1—-1— -170~
0 070~

e 'D: The highest value of M; = |2| associates only with Mg = 0, &
hence can only be !D. 'D includes all 5 entries of M;= 0,4+1,+2

e °P: Next highest value of M; = |1| associates with 3 Mg = 0,41
belong to *P and takes out the 9 entries

e !S: The single remaining entry with M/;=0 and Ms = 0 corresponds
to 1S

e Following similar method, we can find that for np3: 4S°, 2D°, 2P°



Ahmad’s (Landau and liftshiz) (L+S) EVEN RULE FOR nl?> ATOMIC
STATES According to the rule, the nl? states with even val-
ues of the total (L+S) will survive, that is, will satisfy Pauli
exclusion principle.

e For the last example, np2, the even values are 13,3 P,1 D
e For example, consider two equivalent electrons configu-

ration nd?. For two non-equivalent ndn’d electrons, total

S=|s1+s9 =0,1and total L =|L; £+ Lo| =0,1,2,3,4.

Hence all possible states are 138, 13p, 13p, 13, 13G.

Following the rule for even values of the total (L+S), the

iurviving equivalent electron states are 1S, 3P, 1D, 3F, and
G.

e This rule is simpler than Breit scheme for 2 equivalent

electron sates.

For f%, | = 3, m;=-3,-2,...,3, ms = +1/2, instead of 14 non-

equivalent states, they will form 7 LS states, 1(S,D,G,[>,

(P, F, H).



HUND’S RULES FOR ATOMIC STATES
e It governs the energy positions of states from spin mul-
tiplicity (2S + 1), orbital L, total J angular momenta
e S-rule: An LS term with the highest spin multiplicity
(2S + 1) — lowest in energy - relates to exchange effect
where electrons with like spin spatially avoid one another
Ex: np3 (4S°, 2D°, ?P°) for N I, P I: ground state is 4S°
e L-rule: States of the same (2S+1), larger total L lies
lower, again due to less electron repulsion Ex: np® above,
D > P. ?D° term lies lower than the 2P°
e J-rule: For fine-structure levels L+S =J
- For < half-filled subshells, the lowest J -level lies lowest
- For > half-filled, the highest J -level lies lowest in energy
Ex: Both C with ground configuration 1s22s22p? (< half
filled p-orbital) and O with 1s%2s?2p* (> half-filled) have
the same ground state 3P. 3P has 3 fine structure levels
with J = 0,1,2. Since C has < half filled p-orbital, the or-
der of fine-structure energy levels is: J = 0,1,2 giving the
ground level 3Py. Similarly, for O, the order is J =2, 1,0
and the ground level is 3Ps.



ENERGIES OF MULTI-ELECTRON SYSTEM & QUANTUM DEFECT
e The energy formula of a multi-electron system is similar to that of
H-like ions, but accounts for the screening effect on the valence elec-
tron by the core ion electrons
e The outer electron sees an effective chargez =7 — N +1, N = no of
electrons
e Departure from a pure Coulomb form effectively reduces the princi-
pal quantum numbers n in the energy formula as

' 72

inl) = (n— p)?

where 1 > 0 = quantum defect
e The amount of screening (1) depends on the orbital angular momen-
tum /(. i is a constant for each /. We can write,

Z2

(0 — pe)?

e Excited energy levels described by the Rydberg formula — “Rydberg
levels”

® lig > p > HUd----

E(nl) =



ENERGIES OF MULTI-ELECTRON SYSTEM & QUANTUM DEFECT
e For light elements, such as C, with increasing [ the va-
lence electron sees a constant Coulomb potential. Hence
iy ~ 0 for any ¢ > f, that is, there is no departure from n
an f-electron onwards
e For heavier elements, e.g. Fe, f-orbitals may be occupied
causing screening effect for the f-electron. Hence, the u ~
0 for /> f
e Formula holds for all atoms & ions when the outer elec-
tron is in high-n state, i. e. sufficiently far away from inner
electrons to experience only the residual charge z
e It can be used to obtain energy of any large n-level up to
series limit at n = oo for any given [

e Define v = n — u = effective quantum number

En — __2
%
As n — oo, £ — 0 & the bound electron becomes free

e v increases approximately by unity. However, it is often
a decimal number



HARTREE-FOCK EQUATION
(AAS: Pradhan and Nahar 2011)

Optimize Schrodinger equation, H¥Y = E¥ for minimum E,
(W H|W) =0,

e E is stationary to the variations of the spin-orbitals, ); is subject
to N? orthogonality conditions (N= number of electrons). Introduce
Lagrange multipliers iy such that

0B — Z Z A1 0 (Yk|th) =0
k1

There are N? number of \;j values
e Matrix of Lagrange multiplier )\, is diagonal with elements E,dy ,
that is,

OB — ) Exd(rlt) = 0.
k

e Since each electron moves in a potential created by all other elec-
trons, construct the potential V(r;) for the i'! electron self-consistently
— self-consistent iterative scheme of Hartree-Fock equations

e H;(r;) depends on (ry), implying v (rz) must be known before solv-
ing H;(r;). Hence a trial ¢(rz) is adopted to obtain v (r;) using the
variational criterion



HARTREE-FOCK EQUATION
e Since the form of ¥(rq) and ¢ (ro) are identical, the new
(rg) is used again to obtain v (ry). This continues until the
desired accuracy is attained. The scheme is often called
Hartree-Fock Self-Consistent Field method.
e Hartree approx: total atomic wavefunction - product of
one-electron spin orbitals

N
Yo 1y mg (16, 6. m5) = | [ ¥, ,mg mg (5
i=1

e But this lacks anti-symmetrization - manifestation of

Pauli principle that wavefunction changes sign on electron

exchange of position

e Fock introduced anti-symmetrization, through the deter-

minant form, to Hartree method — Hartree-Fock method

Ex: He atom:
W(L.2) = = [0a(1)0a(2) — 1 20al1)

This can be written in determinant form:



HARTREE-FOCK EQUATION

He wavefunction is then:
o L[|t 02
V2 | ¥2(1) ¥a(2)

W vanishes if coordinates of both electrons are the same
e The N-electron wavefunction in the determinant representation

Y1) ¥i(2) ... ()
Wa(1) a(2) ... ¥a(N)

Un(L) YN (2) ... PYn(N)
This is called the Slater determinant. Substitution in Hartree-Fock
equation gives set of one-electron radial equations,

Z/ul r;) . (r;)dr;
L [ / uj (xj) = uk(rj)er] w(ri) = By (r;)

o= (7)

21~

27

[ V2 - —] (1) (1) (8)

1st term= 1-body term or configuration energy, 2nd term= Direct (or
Coulomb) term, 3rd term= Exchange term. e The total energy is

ZH ZZ 5 — K. (9)



Central Field Approximation for a Multi-Electron System

e It was difficult to compute wavefunctions and energies in Hartree-
Fock approximation until powerful computers arrived. Central field
approximation was widely used (in many cases still now) for them.

e H, consists of non-central forces between electrons which contains a
large spherically symmetric component

¢ We assume that each electron is acted upon by the averaged charge
distribution of all the other electrons and construct a potential energy
function V (r;) with one-electron operator. When summed over all elec-
trons, this charge distribution is spherically symmetric and is a good
approximation to actual potential. Neglecting non-radial part,

AR T 5 N 27 N g2
H:HWHF—Z%VFZ?* Zr_ﬁ
i=1 i=1 i

Write V(r) which depends only on r as,

V(I‘)—Zeriz+<zzj>. (10)

A short range exchange potential with spherical charge distribution is
often added to it. e V(r) is the central-field potential with boundary

conditions .
V(ir)=—— ifr—0, — Zifr oo (11)
r r



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

e One most useful procedure:

e Treats electrons as Fermi sea: Electrons, constrained by
Pauli exclusion principle, fill in cells up to a highest Fermi
level of momentum p = prp at T=0

e As T rises, electrons are excited out of the Fermi sea close
to the ‘surface’ levels & approach a Maxwellian distribution
— spatial density of electrons:

 (4/3)mp}
h3/2
e Based on quantum statistics, the TFDA model gives a
continuous function ¢(x) such that the potential is

V(I‘) _ Zeff(i“nla I') _ —%qb(x),

where
p(x) = B2 p N (1 — e ZF/2) x =

)

r

[
2/3

i =0.8853 (7 ) % 2-1/3 — constant.



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION
e The function ¢(z) is a solution of the potential equation

d®p(x) 1

dx?

_\/E(X>

(VY

¢ The boundary conditions on ¢(x) are

¢(0) =1, ¢(o0) =

Z —N+1

Z

e The one-electron orbitals P, (r) can be obtained by solv-

ing the wave equation

d? 11+1)
dr? r2

-+ ZV(I') + €n1

Pnl(r) = 0.

e This is similar to the radial equation for the hydrogenic
case, with the same boundary conditions on P,;(r) as r — 0
and r — oo, and (n — [+ 1) nodes.
e The second order radial is solved numerically since, unlike
the hydrogenic case, there is no general analytic solution.
e It may be solved using an exponentially decaying function
appropriate for a bound state, e.g. Whittaker function



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION
e The solution is normalized Whittaker function

o (22 S 2K
W(r) =e ( ) szrk N

vV
=1

where v = z/,/¢ is the effective quantum number and ¢ is
the eigenvalue. The coefficients are

ag = v {I1+1)— vy —1)} %

a —ap 1 v {01+1)— (v — Ky —k+1) i

and the normalization factor is

Z

0 ~1/2
N = {V— Fv+1+1) I'(v - 1)}

The one-electron spin orbital functions then assume the
familiar hydrogenic form

wn,f,mg,ms(ra 97 ¢7 mS) — ¢(T7 (97 ¢>C’ms



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

- TFDA orbitals are based on a statistical treatment of the
free electron gas, & hence neglect the shell-structure

e However, in practice configuration interaction accounts
for much of the discrepancy that might otherwise result.



CONFIGURATION INTERACTION

e A multi-electron system is described by its configuration
and a defined spectroscopic state.

e All states of the same SLw, with different configura-
tions, interact with one another - configuration interaction.
Hence the wavefunction of the SLm may be represented by
a linear combination of configurations giving the state.

e Example, the ground state of Al is [1s°2s%2pY]3s%3p (*PY).
’P° state can also be formed from 3s?4p (*P°), 3s3p3d
(...,°P°). 3p3(*P°) and so on. These 4 configurations con-
tribute with different amplitudes or mixing coefficients («q;)
to form the four state vectors “P° of a 4 x 4 Hamiltonian
matrix. Hence for the optimized energy and wavefunction
for each 2P° state all 4 configurations should be included,

4
U(EP°) = > " ai[Ci(*PY)] = [a1¢(3s°3p) + ax)(3s°4p)
1=1
+ azy(3p”) + azy(3s3p3d)]



RELATIVISTIC BREIT-PAULI APPROXIMATION

Hamiltonian: For a multi-electron system, the relativistic Breit-Pauli
Hamiltonian is:

HBP — HNR + Hmass + HDar + Hso"_

N
1
5 Z [gij(SO -+ SO/) + 8ij (SS/) + 8ij (CSS/) + 8ij (d) + 8ij <OO/)}
i#j
where the non-relativistic Hamiltonian is

N N

Hyp = | Vz—zr—_z+2%
i=1 R =

the Breit interaction is
Hp = Z[gij(so + s0') + gij(ss’)]
i>]
and one- body correction terms are

2 212
2 (7Z _ Ze*h
mass— E plaHDar_4Ziv (r_l)v 2m2232181

Spin-orbit mteractlon energy: Eso = 2Ah’[J(J+1) —L(L+1) — S(S +1)]

where A is the fine structure splitting constant which is proportional
4
to z as A x Z; and separation between two fine structure levels is given

by $AR%j



ATOMIC PROCESSES PRODUCING ASTROPHYSICAL
SPECTRA and Relevant Atomic Parameters

RADIATIVE PROCESSES:
1. Photoexcitation & De-excitation (bound-bound transition):

X2 { hy = X2

e Oscillator Strength (f), Radiative Decay Rate (A-value)
e Examples: Seen as lines in astrophysical spectra
e Determines opacities in astrophysical plasmas

2. Photoionization (PI) & Radiative Recombination (RR):
X +hy = X2 4 e
3. Autoionization (AI) & Dielectronic recombination (DR):

{€—|—X+Z Al

+7Z _ . FZ—1\*x%x __\
e+ X7 = (XS x+2 4 1 DR

The doubly excited state - ”autoionizing state” - introduces resonances

e 2 & 3. Photoionization Cross Sections (op;), Recombination Cross
Sections (opc) and Rate Coefficients (apc)

Examples:

e Photoionization resonances - seen in absorption spectra,

e Recombination resonances - seen in emission spectra




ATOMIC PROCESSES PRODUCING ASTROPHYSICAL SPECTRA

and Relevant Atomic Parameters

e Determine ionization fractions in astrophysical plasmas

COLLISIONAL PROCESSES:

4. Electron-impact excitation (EIE):
e+ X" e+ X" e + X" + hy

e Collision Strength ({2)

e (i) Can go through an intermediate autoionizing state, (ii) gives out
a photon as the ion de-excites. Ex. seen as forbidden lines in emission
spectra

.5. Electron-impact Ionization:

e -+ X—i—Z N e/ + I~ + X+Z+1

e Ionization cross section and strength

- It does not involve any photon and hence can not be produce lines.
However, it is needed for modeling to determine level populations,
ionization fractions etc

6. Hydrogen-impact excitation:

H+ X2 s H + X2

e Excitation rate coefficient and transition rate



1. "PHOTO-EXCITATION?”
Photo-Excitation & De-excitation:

X2 4 hy « X2

Tl E = j

L_;@__h--%?“' : 2 =
/= &
i e - 1
('f f"/ & \ \"| A, pB., pPB,, :

........................................................................................

Spontaneous Emission

e Atomic quantities

Bis - Photo-excitation, Oscillator Strength (f)

As1- Spontaneous Decay, - Radiative Decay Rate (A-value)
By~ Stimulated Decay with a radiation field

e P, transition probability, P; ~ | < jH'|i > |* ~ | < j|A.p|i > |?

C2

Pij = 27Th21/.2.
Jl

. € 4 ik.r|:
| <J\m—ce-Pek i > [*p(vs). (12)



TRANSITION MATRIX ELEMENTS WITH A PHOTON
e 1st term: Dipole operator: D =) r;:
e Transition matrix for Photo-excitation & Deexcitation:

< Ug||D|| Ty >

Matrix element is reduced to generalized line strength (length form):
2

S <wf| Zw> (13)

e There are also ”Velocity” & ” Acceleration” forms

Allowed electric dipole (E1) transitions

The oscillator strength (f;;) and radiative decay rate (A;) for the
bound-bound transition are

St [Mb], ,,
3g;

E..
f; = [é] S, opi(v) = 8.064

E3
Ai(sec™) = [0.8032 x 10" 2| S
3g;



Selection Rules: Allowed & Forbidden Transitions

Angular momentum integrals introduce the selection rules

General rules: x=type of transtion: For total J,

o ANJ=J—J 0,£1, ...... Ix s i+ >x, AM = 0,41, ...... ,ExX
For the parity

AP = (=1)" for E, and — (=1)" for M, transitions

Allowed: i) Electric Dipole (E1) transitions - a) same-spin (stronger)
& intercombination (different spin, relatively weaker) transitions
(AJ =0,+1, A L = 0,4+1,4+2; parity changes)

Forbidden:

ii) Electric quadrupole (E2) transitions

(A J = 0,+1,+2, parity does not change)

iii) Magnetic dipole (M1) transitions

(A J = 0,41, parity does not change)

iv) Electric octupole (E3) transitions
(A J= +2, £3, parity changes)

v) Magnetic quadrupole (M2) transitions
(A J = 42, parity changes)
Allowed transitions are much stronger than Forbidden transitions



FORBIDDEN TRANSITIONS
i) Electric quadrupole (E2) transitions (A J = 0,+1,+2, 7 - same)

E5
Af? =2.6733 x 10°—S"(i, ) s, (14)
8]
ii) Magnetic dipole (M1) transitions (A J = 0,+1, 7 - same)
ES
A =3.5644 x 10*2SM(i, j) s~ (15)
8j
iii) Electric octupole (E3) transitions (A J= +2, +3, © changes)
E7
A’ =1.2050 x 10 *—2S™ (i, j) s 71, (16)
8]
iv) Magnetic quadrupole (M2) transitions (A J = +2, 7 changes)
E5
AP =2.3727 x 107 % T 2SYA(1, j) . (17)
8]
LIFETIME:
1

kls) = > i Aki(s™1)

Monochromatic Opacity (x,): x, (i —j) = We e Nifison




Selection Rules: ALLOWED & FORBIDDEN TRANSI-
TIONS

e E1 transitions are strong and are given the name allowed while
E2, E3, ..., M1, M2, ... are much weaker and are referred to as
forbidden. However, with higher charges, E2 which varies as 2% and
M1 as 2° increases faster that E1 which varies as 2°.

e E2 and M1 can become comparable to each other with highly charged
ions, as seen in tunsten case.

- The forbidden transitions within the ground °P state of highly
charged Fe XIV was strong to be observed in solar flare by Edlen. He
calculated and found that the flare temperature over million degrees
compared to the assumed value of a few thousand degrees. Solar
surfact temperature is 5770 K.

- Forbidden lines are denoted by square brackets, e.g. [O III] lines can
be transitions among “Py; > levels of the ground configuration.

- Forbidden lines disappear above a certain critical density (typically
about 10° atoms/cm’), and so their existence is an indicator of density
in interstellar gas.

- Although an intercombination line where the spin changes during
transition is a dipole allowed (E1) transition, it is often treated in
Astronomy as semi-forbidden line because of the lower transition
probability (A-value) compared to same-spin transition. A forbidden
line is often denoated by a ket notation, e.g. C III] means an inter-



He-LIKE ION: ALLOWED & FORBIDDEN TRANSITIONS
Diagnostic Lines of He-like Ions: w,x,y,z
w(E1) : 1s2p(1P9) — 1s%(1Sg) (Allowed Resonant)
x(M2) : 1s2p(3P9) — 1s%(1Sg) (Forbidden), [He]
y(E1): 1s2p(®*P?) — 1s%(1Sy) (Intercombination), He]
z(M1) : 1s2s(3S7) — 1s%(1Sg) (Forbidden), [He]
NOTE: 1s-2p are the K, transitions
2'P° =3 1
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e These lines are detected in the X-ray spectra of AB DOR (AB Do-
radus is a quadruple star system in the constellation Dorado), and of
Mrk 421 galaxy by XMM-Newton observatory (Rasmussen et al 2007)
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K- RESONANCES IN Fe PHOTOIONIZATION
(Pradhan, Nahar, Montenegro et al 2009)
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e Possible K, lines: Energy (MeV)

1s? — 2p°, 2p*, 2p3, 2p?, 2p, 2p~

1s — 2p°, 2p?, 2p°?, 2p?, 2p. 2p~

e There are 112 narrow resonances in the energy range of 6.457 - 7
keV formed due to 1s-2p (K,) transitions



X-RAYS FROM A BLACK HOLE - CENTAURUS A GALAXY (Chandra)

e Photometric image: red - low, green - intermediate, blue - high energy
X-rays. Dark green & blue bands - dust lanes that absorb X-rays
e Blasting from the black hole a jet of a billion solar-masses extending
to 13,000 light years




SIGNATURE OF A BLACK HOLE: Seyfertl Gy MCG-6-30-15 6
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e The energy range for 1s-2p transitions in Fe = 6.4 - 7
keV. However, the large extension of the lines toward low
energy, 3 - 7 keV, indicate that the escaped photons have
lost energies in the gravitational force of the black hole.
(Illustrated in AAS, Pradhan and Nahar 2011)




First ever black hole image released, Apr 10, 2019

e The first ever image of a black hole, located in a distant galaxy,
measures 40 Bkm across - 3M times the size of the Earth - and has
been described as ”a monster”. It was composed from photographs by
a network of eight ”Event Horizon” telescopes across the world.

e The monster black hole in the center of our Milky Way galaxy: 4M
time heavier than our Sun, tracked by the movement of 28 stars circling
around it - Nobel prize in 2020




OBSERVATION OF Til LINES:
e LMC (Cloud around our Milky Way) 157 ly away, but is a prime
target to probe the chemical evolution of stars. e Ti I in LMC Spectra:
PHOENIX, Gemini South. e Ti line at 15544 A.

elative Flux



PREDICTED SPECTRUM OF Ti I: IDENTIFY LINE
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e TOP: lines in 15535 - 15560 indicating the observed line of LMC e
Bottom: Total spectrum, number of lines / transitions = 270,423



SPECTROSCOPY OF LINES IN PLASMAS USING OS-
CILLATOR STRENGTHS

e For a plasma condition dependent spectrum, the theoretical spectrum
can be run through the popularly used astrophysical SME spectra pro-
gram (a python based program) with temperature and abundances of
elements. (check website: https://www.stsci.edu/ valenti/sme.html -
valenti and piskunov)

e When two lines, 1 and 2. in an LTE plasma (follow Boltzman-Saha
equation) are observed which are originating from the same level but
going to different levels, temperature and density dependence for the
lines are the same and hence do not enter in the diagnostics. Only
ratio of A-values can be used to predict the observed ratio.

level 1 of energy F; (in eV) emits a photon of wavelength \; with tran-
sition probability A; and decaying to the level with statistical weight
factor ¢;, and level 2 has the similar parameters denoted by subscript
2. The line intensity [ ratio of the two lines are given by

I Mo A1 g1 [_ By — E2]

R=—= KT (18)

L >\1A2926xp

where K is the Boltzmann constant, 7' is the plasma temperature is
K, I/ is the transition energy in eV. The overall number of electron
collisions must be high to achieve LTE.



SPECTROSCOPY OF LINES IN PLASMAS

The McWhirter criterion establishes the minimal or limiting value of
electron density n. in cm™ for this purpose.

ne > 1.6 x 10>VT(AE)? (19)

where T is plasma temperature in Kelvin, and AF = (F; — F5) in eV.
The other plasma parameters such as plasma frequency, skin depth
and coupling parameter can be related with electron density as

ne = 0.124 x 10~ %w?

ne = 28.1961 x 10*§2

1/3
_ & rami/and

N 47T€0]€[ 3 ] Te
In the above equations w,., 0, I' are the plasma frequency, skin depth,

and coupling parameter, respectively. Skin depth, J, is defined as the
depth where the current density is just 1/e (about 37%) of the value
at the surface; it depends on the frequency of the current and the
electrical and magnetic properties of the conductor.



SUPERSTRUCTURE (SS)

The program SUPERSTRUCTURE (SS) calculates number of quantities for atomic
structure and atomic processes. The useful ones are the energies of atomic states
and transition parameters, such as, oscillator strengths, line strengths, and radiative
decay rates or Einstein’s A-coeflicients. There are a few references for the atomic
structure program SUPERSTRUCTURE (SS). The main references are:

1. Eissner, W., Jones, M., Nussbaumer, H. Comput. Phys. Commun. 8, 270 (1974)
2. Eissner, W., Jones, M., Storey P., Nussbaumer, H. Comput. Phys. Commun.
(draft 1994)

3. Nahar S.N., Eissner, W., Chen, G.X., Pradhan, A.K., A&A 408, 789 (2003)
(transitions of types E2, M1, E3 and M2 by Werner Eissner)

4. Eissner W, in The Effects of Relativity on Atoms, Molecules, and the Solid State (Edited
by S. Wilson et al., Plenum Press, New York), p.55 (1991)

SUPERSTRUCTURE files:
e For your own use, copy files from Sultana’s OSC account or download them from

her website:
https://www.astronomy.ohio-state.edu/nahar.1/teaching.html#program

e Download files to your laptop: ”struct.f’, ssinarl?7, ssout.bp.arl7, sspnl.ar17, runss,
rss, and the document. You will upload these files to your workshop or w account
e Check that you can login to you account from a terminal, follow as:

1. Download ”putty” from internet to your computer & click on it to open the login
window - Or, open a ”terminal” on your laptop or from OSC onDemand page

- From the terminal window, log in to your OSC account

2. Type: ssh YourID@owens.osc.edu — to login (Omit ”ssh ” if you are using putty)
and hit the return button

- Please note that after typing each command, you will hit the <return> key



