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SINGLE & MULTI-ELECTRON ATOMS

• 1-electron: KE + Nuclear Potential
• > 1-electron: KE + Nuclear Potential + Electron-Electron potential
• Complexity starts with Electron-Electron interaction which does not
have a center point.
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MULTI-ELECTRON ATOM
A many-electron system requires to sum over (i) all one-
electron operators, that is KE & attractive nuclear Z/r
potential, (ii) two-electron Coulomb repulsion potentials

HΨ = [H0 +H1]Ψ, (1)

H0 =

N∑
i=1

[
−∇2

i −
2Z

ri

]
, H1 =

∑
j<i

2

rij
(2)

H =
∑
i

fi +
∑
j ̸=i

gij ≡ F +G (3)

• H0: one-body term, stronger, H1: two-body term, weaker,
can be treated perturbatively
• Start with a trial wave function Ψ t in some parametric
form, Slater Type Orbitals

PSTO
nl (r) = rl+1e−ar

• The lowest energy state: most stable - the ground state
• A trial function should satisfy variational principle that
through optimization an upper bound of energy eigenvalue
is obtained in the Schrödinger equation.
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MULTI-ELECTRON SYSTEM CONFIGURATIONS
• Determination of Configuration - Arranging electrons in
to various orbitals - 1s, 2s, 2p, 3s, 3p
• nl orbitals fill up normally up to, 1s - 3p, Ar (3p6)
• No particular rule applies for the ground configurations
or lowest energy state beyond Ar
• For large n all subshells exist, but they become excited
states as higher orbitals may become lower states. Ex. For
elements beyond Ar, e.g. K (Z=19) and Ca (Z=20), 4s fills
up instead of 3d. Two general rules:
- Rule 1‘: A subshell which gives lower (n+ℓ) value is filled
in first [K, Ca: (n + ℓ) = 4 with 4s, but = 5 with 3d]
- Rule 2‘: For the same (n + ℓ), higher ℓ is filled up first.
Ex: Fe-group elements from Sc to Zn (Z = 21−30) - 3d fills
up after 4s instead of 4p as they have (n + ℓ) = 5
• However, for configuration with Z > Fe (Z=26), (n + ℓ)-
first rule deviates, & no particular rule is followed as states
are mixed with overlapped wavefunctions
• Size: H-radius - ao He (2) is the smallest element, and Fr
(87) is the largest - protons reduce the size
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ANGULAR MOMENTA (L, S, J) COUPLINGS

• Total L and S angular momenta may couple differently
for the total angular momentum J - depends on Z
• Multi-electron elements may be divided as, ‘light’ (Z ≤
18) and ‘heavy’ (Z> 18) (although not precise)
• LS coupling (lower Z): Vector summation of orbital and
spin angular momenta is done separately. Ex: 2 electrons
L = |L2 − L1|, ..., |L2 + L1|, L Multiplicity = 2L+1
S = |S2 − S1|, ..., |S2 + S1|, S Multiplicity = 2S+1
Then the total angular momentum quantum numbers:
J = |L− S|, ..., |L + S|, J Multiplicity = 2J+1

• The symmetry of the state: (2S+1)Lπ(LS), (2S+1)LπJ or Jπ
• The J-values → fine structure levels. Each LS term can
have several fine structure J levels (example below)
Ex: Consider configuration: nsn’p - what are the states (2S+1)LπJ ?

ns electron: l=0=L1, s=1/2=S1, n’p electron: l=1=L2, s=1/2=S2

nsn’p: L = |0± 1| = 1, S=|12 ±
1
2| = 0,1, 2S+1 = 1,3,

π = (−1)
∑
i li = (−1)0+1 = -1 odd, LS states are: 1Po,3Po

J= |S±L|: 1P o: J=1, 3P o: J= 0,1,2. (2S+1)LπJ:
1Po

1,
3Po

0,
3Po

1,
3Po

2
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ANGULAR MOMENTA COUPLINGS

Assignment: Find fine structure levels of 5D
• Coulomb force between an electron and nucleus becomes
stronger for large Z and highly charged ions and can in-
crease the velocity of the electron to relativistic level. An-
gular coupling changes to LSJ coupling to JJ coupling
• Intermediate or LSJ coupling (typically 19 ≤ Z ≤ 40):
Consideration of full relativistic effects is not necessary
• Add all li and si, except for the last interacting electron,
separately, then add the last electron as follows:

J1 = |
∑
i

li +
∑
i

si|, K = J1 + l, J = K + s ,

K is a quantum number.
• jj coupling (typically for Z >40): When relativistic ef-
fect is more prominent, the total J is obtained from sum
of individual electron total angular momentum ji from its
angular & spin angular momenta:

ji = li + si, J =
∑
i

ji, (4)
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ANGULAR MOMENTA COUPLINGS
For any 2 electrons, J ranges from |j1 + j2| to |j1 − j2|
• States designation= (jij2)J
Ex; (pd) configuration- .p : j1(1 ± 1/2)=1/2, 3/2, and
d : j2(2± 1/2)=3/2, 5/2. The states are:
.(1/2 3/2)2,1, (1/2 5/2)3,2, .(3/2 3/2)3,2,1,0, (3/2 5/2)4,3,2,1

• Hyperfine structure: Form when fine structure levels J split further
via vector addition with nuclear spin I → quantum state J + I = F

• LS term energy can be calculated from its fine structure components
using

E(LS) =

∑
J(2J + 1)E(J)∑

J(2J + 1)
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NON-EQUIVALENT & EQUIVALENT ELECTRON STATES

• Number of valence electrons in the outer orbit: > 1 →
Equivalent electron state
= 1 → Non-equivalent electron state
• Non-equivalent electron states: All possible states the
vectorial sum allows. Ex. States of 3-electron configu-
ration: nsn′pn′′d:

ns n′p (1P o) n′′d −→ 2P o, 2Do, 2F o

ns n′p (3P o) n′′d −→ (2,4)(P,D, F )o .

• Equivalent electron state: Less number of LS states.

Ex: configuration, np2. If the configuration is npn’p, 6 pos-
sible states are: 1,3S,1,3P,1,3D. However, for n=n’, Pauli
exclusion principle will eliminate some -reducing 6 to 3
states, 1S,3P,1D, as follows
• p electron: Possible ml and ms values
ml = 1, 0, -1; ms = 1/2, -1/2 (spin up and down)
p electron: Six possible states or designation:
ml ms: 1+= 1 1/2, 0+= 0 1/2, −1+= -1 1/2, (spin up)
1−= 1 -1/2, 0−= 0 -1/2, −1−= -1 -1/2 (spin down)
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Vector addition for two p-electrons: L = |1±1|=0,1,2, S = |1/2±1/2|=0,1
Arrange the p-states, from 1+= 1 1/2 to −1−= -1 -1/2, such that no
two electron have the same state (Pauli exclusion principle)

ML =
∑

iml = 0,±1,±2; MS=
∑

ims = 0,±1

Possible combinations of np2

MS/ ML= 2 1 0 -1 -2

0 1+1− 1+0− 1+-1− -1+0− -1+-1−

1 1+0+ 1+-1+ -1+0+

0 1−0+ 1−-1+ -1−0+

-1 1−0− 1−-1− -1−0−

0 0+0−

• 1D: The highest value of ML = |2| associates only with MS = 0, &
hence can only be 1D. 1D includes all 5 entries of ML= 0,±1,±2
• 3P : Next highest value of ML = |1| associates with 3 MS = 0,±1
belong to 3P and takes out the 9 entries
• 1S: The single remaining entry with ML=0 and MS = 0 corresponds
to 1S
• Following similar method, we can find that for np3: 4So, 2Do, 2Po
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Ahmad’s (Landau and liftshiz) (L+S) EVEN RULE FOR nl2 ATOMIC

STATESAccording to the rule, the nl2 states with even val-
ues of the total (L+S) will survive, that is, will satisfy Pauli
exclusion principle.
• For the last example, np2, the even values are 1S,3P,1D
• For example, consider two equivalent electrons configu-
ration nd2. For two non-equivalent ndn′d electrons, total
S = |s1 ± s2| = 0, 1 and total L =]L1 ± L2| = 0, 1, 2, 3, 4.
Hence all possible states are 1,3S, 1,3P, 1,3D, 1,3F, 1,3G.
Following the rule for even values of the total (L+S), the
surviving equivalent electron states are 1S, 3P, 1D, 3F, and
1G.
• This rule is simpler than Breit scheme for 2 equivalent
electron sates.
For f2, l = 3, ml=-3,-2,...,3, ms = ±1/2, instead of 14 non-
equivalent states, they will form 7 LS states, 1(S,D,G, I),
3(P, F,H).
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HUND’S RULES FOR ATOMIC STATES

• It governs the energy positions of states from spin mul-
tiplicity (2S + 1), orbital L, total J angular momenta
• S-rule: An LS term with the highest spin multiplicity
(2S + 1) → lowest in energy - relates to exchange effect
where electrons with like spin spatially avoid one another
Ex: np3 (4So, 2Do, 2Po) for N I, P I: ground state is 4So

• L-rule: States of the same (2S+1), larger total L lies
lower, again due to less electron repulsion Ex: np3 above,
D > P. 2Do term lies lower than the 2Po

• J-rule: For fine-structure levels L+S =J
- For < half-filled subshells, the lowest J -level lies lowest
- For > half-filled, the highest J -level lies lowest in energy
Ex: Both C with ground configuration 1s22s22p2 (< half
filled p-orbital) and O with 1s22s22p4 (> half-filled) have
the same ground state 3P. 3P has 3 fine structure levels
with J = 0,1,2. Since C has < half filled p-orbital, the or-
der of fine-structure energy levels is: J = 0,1,2 giving the
ground level 3P0. Similarly, for O, the order is J =2, 1,0
and the ground level is 3P2.
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ENERGIES OF MULTI-ELECTRON SYSTEM & QUANTUM DEFECT
• The energy formula of a multi-electron system is similar to that of
H-like ions, but accounts for the screening effect on the valence elec-
tron by the core ion electrons
• The outer electron sees an effective charge z = Z−N + 1, N = no of
electrons
• Departure from a pure Coulomb form effectively reduces the princi-
pal quantum numbers n in the energy formula as

E(nl) =
z2

(n− µ)2

where µ ≥ 0 = quantum defect
• The amount of screening (µ) depends on the orbital angular momen-
tum ℓ. µ is a constant for each ℓ. We can write,

E(nl) =
z2

(n− µℓ)2

• Excited energy levels described by the Rydberg formula → “Rydberg
levels”
• µs > µp > µd....

12



ENERGIES OF MULTI-ELECTRON SYSTEM & QUANTUM DEFECT

• For light elements, such as C, with increasing l the va-
lence electron sees a constant Coulomb potential. Hence
µℓ ≈ 0 for any ℓ ≥ f , that is, there is no departure from n
an f-electron onwards
• For heavier elements, e.g. Fe, f-orbitals may be occupied
causing screening effect for the f-electron. Hence, the µ ≈
0 for ℓ > f
• Formula holds for all atoms & ions when the outer elec-
tron is in high-n state, i. e. sufficiently far away from inner
electrons to experience only the residual charge z
• It can be used to obtain energy of any large n-level up to
series limit at n = ∞ for any given l
• Define ν ≡ n− µ = effective quantum number

En = −z2

ν2

As n → ∞, E → 0 & the bound electron becomes free
• ν increases approximately by unity. However, it is often
a decimal number
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HARTREE-FOCK EQUATION
(AAS: Pradhan and Nahar 2011)

Optimize Schrodinger equation, HΨ = EΨ for minimum E,

δ⟨Ψ|H|Ψ⟩ = 0,

• E is stationary to the variations of the spin-orbitals, ψi is subject
to N2 orthogonality conditions (N= number of electrons). Introduce
Lagrange multipliers λIJ such that

δE−
∑
k

∑
l

λkl δ⟨ψk|ψl⟩ = 0

There are N2 number of λIJ values
• Matrix of Lagrange multiplier λkl is diagonal with elements Ekδkl ,
that is,

δE−
∑
k

Ekδ⟨ψk|ψk⟩ = 0.

• Since each electron moves in a potential created by all other elec-
trons, construct the potential V(ri) for the ith electron self-consistently
→ self-consistent iterative scheme of Hartree-Fock equations
• H1(r1) depends on ψ(r2), implying ψ(r2) must be known before solv-
ing H1(r1). Hence a trial ψ(r2) is adopted to obtain ψ(r1) using the
variational criterion
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HARTREE-FOCK EQUATION
• Since the form of ψ(r1) and ψ(r2) are identical, the new
ψ(r2) is used again to obtain ψ(r1). This continues until the
desired accuracy is attained. The scheme is often called
Hartree-Fock Self-Consistent Field method.
• Hartree approx: total atomic wavefunction - product of
one-electron spin orbitals

ψn,l,ml,ms
(r, θ, ϕ,ms) =

N∏
i=1

ψni,ℓi,mℓi
,msi

(5)

• But this lacks anti-symmetrization - manifestation of
Pauli principle that wavefunction changes sign on electron
exchange of position
• Fock introduced anti-symmetrization, through the deter-
minant form, to Hartree method → Hartree-Fock method
Ex: He atom:

Ψ(1,2) =
1√
2
[ψ1(1)ψ2(2)− ψ1(2)ψ2(1)]

This can be written in determinant form:
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HARTREE-FOCK EQUATION
He wavefunction is then:

Ψ =
1√
2

∣∣∣∣ ψ1(1) ψ1(2)
ψ2(1) ψ2(2)

∣∣∣∣ (6)

Ψ vanishes if coordinates of both electrons are the same
• The N-electron wavefunction in the determinant representation

Ψ =
1√
N

∣∣∣∣∣∣∣∣
ψ1(1) ψ1(2) . . . ψ1(N)
ψ2(1) ψ2(2) . . . ψ2(N)
. . . . . . . . . . . .

ψN(1) ψN(2) . . . ψN(N)

∣∣∣∣∣∣∣∣ (7)

This is called the Slater determinant. Substitution in Hartree-Fock
equation gives set of one-electron radial equations,[

−∇2
i −

2Z

ri

]
uk(ri) +

[∑
l

∫
u∗
l (rj)

2

rij
ul(rj)drj

]
uk(ri) (8)

−
∑
l

δmk
L,m

l
L

[∫
u∗
l (rj)

2

rij
uk(rj)drj

]
ul(ri) = Ekuk(ri) .

1st term= 1-body term or configuration energy, 2nd term= Direct (or
Coulomb) term, 3rd term= Exchange term. • The total energy is

E[Ψ] =
∑
i

Ii +
1

2

∑
i

∑
j

[Jij −Kij]. (9)
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Central Field Approximation for a Multi-Electron System
• It was difficult to compute wavefunctions and energies in Hartree-
Fock approximation until powerful computers arrived. Central field
approximation was widely used (in many cases still now) for them.
• H1 consists of non-central forces between electrons which contains a
large spherically symmetric component
• We assume that each electron is acted upon by the averaged charge
distribution of all the other electrons and construct a potential energy
function V(ri) with one-electron operator. When summed over all elec-
trons, this charge distribution is spherically symmetric and is a good
approximation to actual potential. Neglecting non-radial part,

H = H0 +H1 = −
N∑
i=1

h̄2

2m
∇2

i −
N∑
i=1

e2Z

ri
+

〈
N∑
i̸=j

e2

rij

〉
Write V (r) which depends only on r as,

V(r) = −
N∑
i=1

e2Z

ri
+

〈
N∑
i̸=j

e2

rij

〉
. (10)

A short range exchange potential with spherical charge distribution is
often added to it. • V(r) is the central-field potential with boundary
conditions

V(r) = −Z

r
if r → 0, = −z

r
if r → ∞ (11)
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

• One most useful procedure:
• Treats electrons as Fermi sea: Electrons, constrained by
Pauli exclusion principle, fill in cells up to a highest Fermi
level of momentum p = pF at T=0
• As T rises, electrons are excited out of the Fermi sea close
to the ‘surface’ levels & approach a Maxwellian distribution
→ spatial density of electrons:

ρ =
(4/3)πp3F
h3/2

• Based on quantum statistics, the TFDA model gives a
continuous function ϕ(x) such that the potential is

V(r) =
Zeff(λnl, r)

r
= −Z

r
ϕ(x),

where
ϕ(x) = e−Zr/2 + λnl(1− e−Zr/2), x =

r

µ
,

µ = 0.8853
(

N
N−1

)2/3
Z−1/3 = constant.
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

• The function ϕ(x) is a solution of the potential equation

d2ϕ(x)

dx2
=

1√
x
ϕ(x)

3
2

• The boundary conditions on ϕ(x) are

ϕ(0) = 1, ϕ(∞) = −Z−N + 1

Z
.

• The one-electron orbitals Pnl(r) can be obtained by solv-
ing the wave equation[

d2

dr2
− l(l + 1)

r2
+ 2V(r) + ϵnl

]
Pnl(r) = 0.

• This is similar to the radial equation for the hydrogenic
case, with the same boundary conditions on Pnl(r) as r → 0
and r → ∞, and (n− l + 1) nodes.
• The second order radial is solved numerically since, unlike
the hydrogenic case, there is no general analytic solution.
• It may be solved using an exponentially decaying function
appropriate for a bound state, e.g. Whittaker function

19



THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

• The solution is normalized Whittaker function

W(r) = e−zr/ν
(
2zr

ν

)1 +

∞∑
k=1

ak
rk

 N

where ν = z/
√
ϵ is the effective quantum number and ϵ is

the eigenvalue. The coefficients are

a1 = ν {l(l + 1)− ν(ν − 1)} 1

2z

ak = ak−1 ν {l(l + 1)− (ν − k)(ν − k + 1)} 1

2kz
and the normalization factor is

N =

{
ν2

z
Γ(ν + l + 1) Γ(ν − 1)

}−1/2

The one-electron spin orbital functions then assume the
familiar hydrogenic form

ψn,ℓ,mℓ,ms
(r, θ, ϕ,ms) = ϕ(r, θ, ϕ)ζms
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THOMAS-FERMI-DIRAC-AMALDI (TFDA) APPROXIMATION

- TFDA orbitals are based on a statistical treatment of the
free electron gas, & hence neglect the shell-structure
• However, in practice configuration interaction accounts
for much of the discrepancy that might otherwise result.
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CONFIGURATION INTERACTION
• A multi-electron system is described by its configuration
and a defined spectroscopic state.
• All states of the same SLπ, with different configura-
tions, interact with one another - configuration interaction.
Hence the wavefunction of the SLπ may be represented by
a linear combination of configurations giving the state.
• Example, the ground state of Al I is [1s22s22p6]3s23p (2Po).
2Po state can also be formed from 3s24p (2Po), 3s3p3d
(. . . ,2Po). 3p3(2Po) and so on. These 4 configurations con-
tribute with different amplitudes or mixing coefficients (ai)
to form the four state vectors 2Po of a 4 × 4 Hamiltonian
matrix. Hence for the optimized energy and wavefunction
for each 2Po state all 4 configurations should be included,

Ψ(2Po) =

4∑
i=1

aiψ[Ci(
2Po)] =

[
a1ψ(3s

23p) + a2ψ(3s
24p)

+ a3ψ(3p
3) + a3ψ(3s3p3d)

]
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RELATIVISTIC BREIT-PAULI APPROXIMATION
Hamiltonian: For a multi-electron system, the relativistic Breit-Pauli
Hamiltonian is:

HBP = HNR +Hmass +HDar +Hso+

1

2

N∑
i̸=j

[gij(so + so′) + gij(ss
′) + gij(css

′) + gij(d) + gij(oo
′)]

where the non-relativistic Hamiltonian is

HNR =

 N∑
i=1

−∇2
i −

2Z

ri
+

N∑
j>i

2

rij




the Breit interaction is

HB =
∑
i>j

[gij(so + so′) + gij(ss
′)]

and one-body correction terms are

Hmass = −α2

4

∑
i

p4
i , HDar =

α2

4

∑
i∇2

(
Z
ri

)
, Hso =

Ze2h̄2

2m2c2r3

∑
i li.si

Spin-orbit interaction energy: ESO = 1
2Ah̄2[J(J + 1)− L(L + 1)− S(S + 1)]

where A is the fine structure splitting constant which is proportional

to z as A ∝ z4

n3
and separation between two fine structure levels is given

by 1
2Ah̄

2j
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ATOMIC PROCESSES PRODUCING ASTROPHYSICAL
SPECTRA and Relevant Atomic Parameters

RADIATIVE PROCESSES:
1. Photoexcitation & De-excitation (bound-bound transition):

X+Z + hν ⇀↽ X+Z∗

• Oscillator Strength (f), Radiative Decay Rate (A-value)
• Examples: Seen as lines in astrophysical spectra
• Determines opacities in astrophysical plasmas

2. Photoionization (PI) & Radiative Recombination (RR):

X+Z + hν ⇀↽ X+Z+1 + e

3. Autoionization (AI) & Dielectronic recombination (DR):

e +X+Z ⇀↽ (X+Z−1)∗∗ ⇀↽

{
e +X+Z AI
X+Z−1 + hν DR

The doubly excited state - ”autoionizing state” - introduces resonances

• 2 & 3. Photoionization Cross Sections (σPI), Recombination Cross
Sections (σRC) and Rate Coefficients (αRC)
Examples:
• Photoionization resonances - seen in absorption spectra,
• Recombination resonances - seen in emission spectra
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ATOMIC PROCESSES PRODUCING ASTROPHYSICAL SPECTRA
and Relevant Atomic Parameters

• Determine ionization fractions in astrophysical plasmas

COLLISIONAL PROCESSES:

4. Electron-impact excitation (EIE):

e +X+Z → e′ +X+Z∗ → e′ +X+Z + hν

• Collision Strength (Ω)
• (i) Can go through an intermediate autoionizing state, (ii) gives out
a photon as the ion de-excites. Ex. seen as forbidden lines in emission
spectra
.5. Electron-impact Ionization:

e +X+Z → e′ + e” +X+Z+1

• Ionization cross section and strength
- It does not involve any photon and hence can not be produce lines.
However, it is needed for modeling to determine level populations,
ionization fractions etc
6. Hydrogen-impact excitation:

H +X+Z → H′ +X+Z∗

• Excitation rate coefficient and transition rate
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1. ”PHOTO-EXCITATION”
Photo-Excitation & De-excitation:

X+Z + hν ⇀↽ X+Z∗

• Atomic quantities
B12 - Photo-excitation, Oscillator Strength (f)
A21- Spontaneous Decay, - Radiative Decay Rate (A-value)
B21- Stimulated Decay with a radiation field
• Pij, transition probability, Pji ∼ | < j|H′|i > |2 ∼ | < j|A.p|i > |2

Pij = 2π
c2

h2ν2ji
| < j| e

mc
ê.peik.r|i > |2ρ(νji). (12)

eik.r = 1 + ik.r + [ik.r]2/2! + . . . ,

• Various terms in eik.r → various transitions 1st term E1, 2nd term

E2 and M1, ... • The angular integrals determine the allowed and

forbidden transitions - selection rules
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TRANSITION MATRIX ELEMENTS WITH A PHOTON
• 1st term: Dipole operator: D =

∑
i ri:

• Transition matrix for Photo-excitation & Deexcitation:

< ΨB||D||ΨB′ >

Matrix element is reduced to generalized line strength (length form):

S =

∣∣∣∣∣∣
〈
Ψf |

N+1∑
j=1

rj|Ψi

〉∣∣∣∣∣∣
2

(13)

• There are also ”Velocity” & ”Acceleration” forms
Allowed electric dipole (E1) transitions
The oscillator strength (fij) and radiative decay rate (Aji) for the
bound-bound transition are

fij =

[
Eji

3gi

]
S, σPI(ν) = 8.064

Eij

3gi
SE1 [Mb], ,,

Aji(sec
−1) =

[
0.8032× 1010

E3
ji

3gj

]
S
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Selection Rules: Allowed & Forbidden Transitions
Angular momentum integrals introduce the selection rules

General rules: x=type of transtion: For total J,
• ∆ J = J2 − J1 0,±1, ......,±x ; J1 + J2 ≥ x , ∆M = 0,±1, ......,±x
For the parity
∆P = (−1)x for Ex and − (−1)x for Mx transitions
Allowed: i) Electric Dipole (E1) transitions - a) same-spin (stronger)
& intercombination (different spin, relatively weaker) transitions
(∆ J = 0,±1, ∆ L = 0,±1,±2; parity changes)

Forbidden:
ii) Electric quadrupole (E2) transitions
(∆ J = 0,±1,±2, parity does not change)

iii) Magnetic dipole (M1) transitions
(∆ J = 0,±1, parity does not change)

iv) Electric octupole (E3) transitions
(∆ J= ±2, ±3, parity changes)

v) Magnetic quadrupole (M2) transitions
(∆ J = ±2, parity changes)

Allowed transitions are much stronger than Forbidden transitions
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FORBIDDEN TRANSITIONS
i) Electric quadrupole (E2) transitions (∆ J = 0,±1,±2, π - same)

AE2
ji = 2.6733× 103

E5
ij

gj
SE2(i, j) s−1, (14)

ii) Magnetic dipole (M1) transitions (∆ J = 0,±1, π - same)

AM1
ji = 3.5644× 104

E3
ij

gj
SM1(i, j) s−1, (15)

iii) Electric octupole (E3) transitions (∆ J= ±2, ±3, π changes)

AE3
ji = 1.2050× 10−3

E7
ij

gj
SE3(i, j) s−1, (16)

iv) Magnetic quadrupole (M2) transitions (∆ J = ±2, π changes)

AM2
ji = 2.3727× 10−2s−1

E5
ij

gj
SM2(i, j) . (17)

LIFETIME:

τk(s) =
1∑

iAki(s
−1)

.

Monochromatic Opacity (κν): κν(i → j) = πe2
mcNifijϕν
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Selection Rules: ALLOWED & FORBIDDEN TRANSI-
TIONS

• E1 transitions are strong and are given the name allowed while
E2, E3, ..., M1, M2, ... are much weaker and are referred to as
forbidden. However, with higher charges, E2 which varies as z6 and
M1 as z8 increases faster that E1 which varies as z2.
• E2 and M1 can become comparable to each other with highly charged
ions, as seen in tunsten case.
- The forbidden transitions within the ground 3P state of highly
charged Fe XIV was strong to be observed in solar flare by Edlen. He
calculated and found that the flare temperature over million degrees
compared to the assumed value of a few thousand degrees. Solar
surfact temperature is 5770 K.
- Forbidden lines are denoted by square brackets, e.g. [O III] lines can
be transitions among 3P0,1,2 levels of the ground configuration.
- Forbidden lines disappear above a certain critical density (typically
about 108 atoms/cm3), and so their existence is an indicator of density
in interstellar gas.
- Although an intercombination line where the spin changes during
transition is a dipole allowed (E1) transition, it is often treated in
Astronomy as semi-forbidden line because of the lower transition
probability (A-value) compared to same-spin transition. A forbidden
line is often denoated by a ket notation, e.g. C III] means an inter-
combination like of C III. X III] 1909 Åis transition 2s2(1S0)− 2s2p(3P o

1 )
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He-LIKE ION: ALLOWED & FORBIDDEN TRANSITIONS
Diagnostic Lines of He-like Ions: w,x,y,z

w(E1) : 1s2p(1Po
1)− 1s2(1S0) (Allowed Resonant)

x(M2) : 1s2p(3Po
2)− 1s2(1S0) (Forbidden), [He]

y(E1) : 1s2p(3Po
1)− 1s2(1S0) (Intercombination), He]

z(M1) : 1s2s(3S1)− 1s2(1S0) (Forbidden), [He]
NOTE: 1s-2p are the Kα transitions
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O VII w,x,y,z LINES IN ASTROPHYSICAL SPECTRA

• These lines are detected in the X-ray spectra of AB DOR (AB Do-
radus is a quadruple star system in the constellation Dorado), and of
Mrk 421 galaxy by XMM-Newton observatory (Rasmussen et al 2007)
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K-α RESONANCES IN Fe PHOTOIONIZATION
(Pradhan, Nahar, Montenegro et al 2009)

Photo-Absorption Coefficient of Iron

Energy (MeV)

κ (c
m2 /gm

)

.002 .004 .006 .008 .01
1000

10000

105

106

107

Resonances

K-Shell Edge

Fe I + hν -> Fe II + e

• Possible Kα lines:
1s2 → 2p5,2p4,2p3,2p2,2p,2p−

1s → 2p5,2p4,2p3,2p2,2p,2p−

• There are 112 narrow resonances in the energy range of 6.457 - 7
keV formed due to 1s-2p (Kα) transitions
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X-RAYS FROM A BLACK HOLE - CENTAURUS A GALAXY (Chandra)

• Photometric image: red - low, green - intermediate, blue - high energy
X-rays. Dark green & blue bands - dust lanes that absorb X-rays
• Blasting from the black hole a jet of a billion solar-masses extending
to 13,000 light years
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SIGNATURE OF A BLACK HOLE: SeyfertI Gy MCG-6-30-15 6

• The energy range for 1s-2p transitions in Fe = 6.4 - 7
keV. However, the large extension of the lines toward low
energy, 3 - 7 keV, indicate that the escaped photons have
lost energies in the gravitational force of the black hole.
(Illustrated in AAS, Pradhan and Nahar 2011)
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First ever black hole image released, Apr 10, 2019

• The first ever image of a black hole, located in a distant galaxy,
measures 40 Bkm across - 3M times the size of the Earth - and has
been described as ”a monster”. It was composed from photographs by
a network of eight ”Event Horizon” telescopes across the world.
• The monster black hole in the center of our Milky Way galaxy: 4M
time heavier than our Sun, tracked by the movement of 28 stars circling
around it - Nobel prize in 2020
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OBSERVATION OF Ti I LINES:
• LMC (Cloud around our Milky Way) 157 ly away, but is a prime
target to probe the chemical evolution of stars. • Ti I in LMC Spectra:
PHOENIX, Gemini South. • Ti line at 15544 Å.
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PREDICTED SPECTRUM OF Ti I: IDENTIFY LINE

E (Angstrom)

σ 
(M

b)
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Photo-Absorption Cross Section: Ti I
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Full spectrum

• TOP: lines in 15535 - 15560 indicating the observed line of LMC •
Bottom: Total spectrum, number of lines / transitions = 270,423
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SPECTROSCOPY OF LINES IN PLASMAS USING OS-
CILLATOR STRENGTHS
• For a plasma condition dependent spectrum, the theoretical spectrum
can be run through the popularly used astrophysical SME spectra pro-
gram (a python based program) with temperature and abundances of
elements. (check website: https://www.stsci.edu/ valenti/sme.html -
valenti and piskunov)
• When two lines, 1 and 2. in an LTE plasma (follow Boltzman-Saha
equation) are observed which are originating from the same level but
going to different levels, temperature and density dependence for the
lines are the same and hence do not enter in the diagnostics. Only
ratio of A-values can be used to predict the observed ratio.
level 1 of energy E1 (in eV) emits a photon of wavelength λ1 with tran-
sition probability A1 and decaying to the level with statistical weight
factor g1, and level 2 has the similar parameters denoted by subscript
2. The line intensity I ratio of the two lines are given by

R =
I1
I2

=
λ2A1g1
λ1A2g2

exp

[
−E1 − E2

KT

]
(18)

where K is the Boltzmann constant, T is the plasma temperature is
K, E is the transition energy in eV. The overall number of electron
collisions must be high to achieve LTE.
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SPECTROSCOPY OF LINES IN PLASMAS
The McWhirter criterion establishes the minimal or limiting value of
electron density ne in cm−3 for this purpose.

ne ≥ 1.6× 1012
√
T (∆E)3 (19)

where T is plasma temperature in Kelvin, and ∆E = (E1 − E2) in eV.
The other plasma parameters such as plasma frequency, skin depth
and coupling parameter can be related with electron density as
ne = 0.124× 10−9ω2

e

ne = 28.1961× 1010δ−2

Γ = q2e
4πϵ0k

[4π3 ]
1/3n

1/3
e
Te

In the above equations ωe, δ, Γ are the plasma frequency, skin depth,
and coupling parameter, respectively. Skin depth, δ, is defined as the
depth where the current density is just 1/e (about 37%) of the value
at the surface; it depends on the frequency of the current and the
electrical and magnetic properties of the conductor.
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SUPERSTRUCTURE (SS)

The program SUPERSTRUCTURE (SS) calculates number of quantities for atomic

structure and atomic processes. The useful ones are the energies of atomic states

and transition parameters, such as, oscillator strengths, line strengths, and radiative

decay rates or Einstein’s A-coefficients. There are a few references for the atomic

structure program SUPERSTRUCTURE (SS). The main references are:

1. Eissner, W., Jones, M., Nussbaumer, H. Comput. Phys. Commun. 8, 270 (1974)

2. Eissner, W., Jones, M., Storey P., Nussbaumer, H. Comput. Phys. Commun.

(draft 1994)

3. Nahar S.N., Eissner, W., Chen, G.X., Pradhan, A.K., A&A 408, 789 (2003)

(transitions of types E2, M1, E3 and M2 by Werner Eissner)

4. Eissner W, in The Effects of Relativity on Atoms, Molecules, and the Solid State (Edited

by S. Wilson et al., Plenum Press, New York), p.55 (1991)

SUPERSTRUCTURE files:

• For your own use, copy files from Sultana’s OSC account or download them from

her website:

https://www.astronomy.ohio-state.edu/nahar.1/teaching.html#program

• Download files to your laptop: ”struct.f”, ssinar17, ssout.bp.ar17, sspnl.ar17, runss,

rss, and the document. You will upload these files to your workshop or w account

• Check that you can login to you account from a terminal, follow as:

1. Download ”putty” from internet to your computer & click on it to open the login

window - Or, open a ”terminal” on your laptop or from OSC onDemand page

- From the terminal window, log in to your OSC account

2. Type: ssh YourID@owens.osc.edu → to login (Omit ”ssh ” if you are using putty)

and hit the return button

- Please note that after typing each command, you will hit the <return> key
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