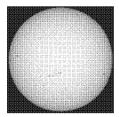

Wednesday, November 10 "Life" and "Death" of Stars


Problem set #3 will be due on Monday.

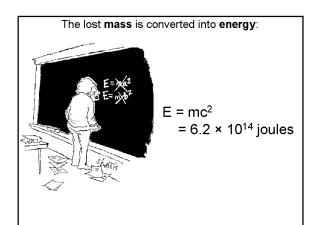
"Life" and "Death" of Stars Key Concepts

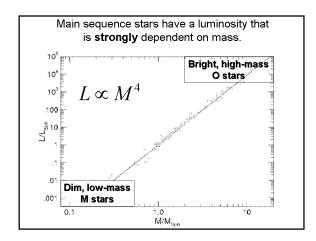
- 1) Main sequence stars are powered by the fusion of hydrogen into helium in their cores.
- 2) Low-mass stars spend some time as red giants, then leave a white dwarf behind.
- 3) Very high-mass stars spend a short time as red supergiants, then explode as a supernova.

Stars shine because they are hot.

Starlight can be thought of as internal heat "leaking" through the star's surface.

To stay hot, stars must replace the leakage; otherwise, they'll cool & fade.


Stars generate energy by nuclear fusion.


Main sequence stars fuse hydrogen into helium in their cores.

 $4~H \rightarrow 1~He$

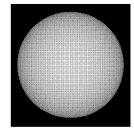
1 kilogram of hydrogen is converted into 0.993 kilograms of helium.

What happens to the lost 7 grams?

A main sequence star shines steadily only until the hydrogen in its core is used up.

The Sun will run out of fuel after a 10 Gyr "lifetime" on the main sequence.

Dim **M stars** are "subcompacts"; they stay on the main sequence for a long time.

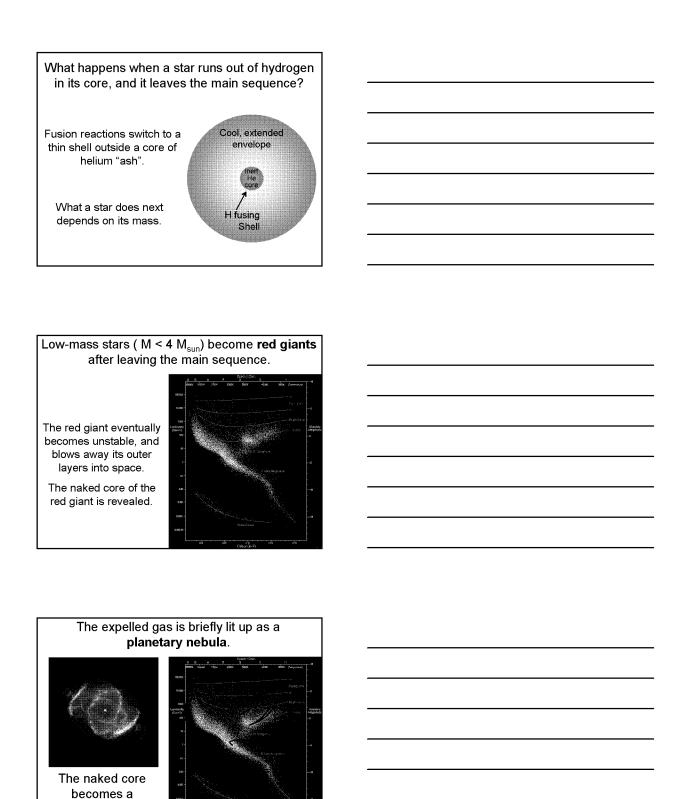


Bright O stars are "gas guzzlers"; they run out of fuel in a relatively short time.

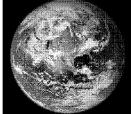
Massive stars live fast & die young. Lower-mass stars live long at a low flame.

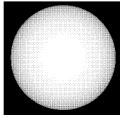
Sun: M = 1 M_{sun} $t_{MS} \approx 10 Gyr$

B Star: M = 10 M_{sun} $t_{MS} \approx$ 10 Myr


 $\begin{tabular}{l} \hline \mbox{M Star: M = 0.1 M}_{sun} \\ \mbox{t}_{MS} \approx \mbox{10,000 Gyr} \\ \end{tabular}$

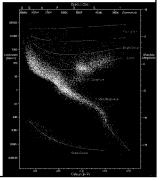
Life began on Earth about 500 Myr after the formation of the Sun.


To give life a chance, a star must shine stably for at least 500 Myr; this implies a stellar mass M < 3 $\rm M_{sun}$.

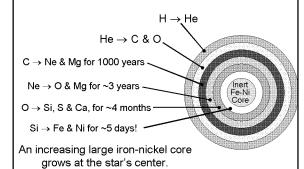

O & B stars are ruled out by this criterion: their "lifetimes" are < 500 Myr.

white dwarf.

White dwarfs are the remnants of relatively low-mass stars.



White dwarfs have **no nuclear fusion** (& thus aren't stars by the strictest definition); they cool slowly over billions of years.


Higher-mass stars (M > 4 M_{sun}) become **red supergiants** after leaving the main sequence.

Intermediate mass stars ($4~{\rm M_{sun}}$ < ${\rm M}$ < $8~{\rm M_{sun}}$) shed enough mass to settle down as white dwarfs.

Very high mass stars (M > 8 M_{sun}) have a more spectacular fate!

Very high mass stars run through a succession of fusion reactions.

Fusing to form elements heavier than iron and nickel takes energy; it doesn't release it. When the iron/nickel core grows to 1.4 M _{sun} , it collapses catastrophically. The core bounces back and triggers a supernova explosion.	
The remnant core of the massive star becomes either a neutron star or a black hole.	
Neutron Star M=1.5 M _{sun} R=10 km Black Hole M=1.5 M _{sun} R _S =4.5 km	
Friday's Lecture: Habitable Zones of Other Stars	
This Week's Reading:	
Chapter 11	