Monday, November 8 The Properties of Stars Get Gus. Don't You Feel. Share AND instendir Contrinced to the Vist MRDESTY OF THE STARS.

The Properties of Stars Key Concepts

- 1) The color of a star depends on temperature: cooler stars are redder, hotter stars are bluer.
- 2) The stellar spectral classes (OBAFGKM) form a temperature sequence.
- 3) Hertzsprung-Russell diagrams plot luminosity vs. color, showing a main sequence of stars.

Stars are dense balls of gas that glow with a color					
that depends on their surface temperature.					
Hot stars appear BLUE (T≈50,000 Kelvin)					
Medium-hot stars appear YELLOW (T≈6000 K)					
Cooler stars appear RED (T≈3000 K)					

Colors of stars are hard to see with the naked eye; binoculars help, & big telescopes help more.

Betelgeuse is red

Rigel is blue

The luminosity (L) of a star depends on its surface temperature and surface area.

Luminosity can be measured in watts, or in units of the Sun's (present-day) luminosity:

1 "solar luminosity" = 1 L_{sun} = 3.8 imes 10²⁶ watts

Hotter stars produce more watts per square meter. Larger stars have more square meters of surface area.

The spectrum of a star consists of absorption lines superimposed on a continuum spectrum.

Absorption Lines

violet

4000

5000

Wavelength

6000

7000

In 1901, Annie Jump Cannon noticed that a star's spectrum depends on its temperature.

She re-ordered an earlier A-B-C spectral classification scheme, throwing away redundant classes.

She ended with the classes:

OBAFGKM

The Stellar Spectral Sequence is a temperature sequence, from the hottest (O) to the coolest (M).						
0	() B	-	F	-	K	M
Hottest 50,000k	t < ←					Coolest 2000K
Bluest ∢	(→ Reddest

Huge range of stellar luminosities: 10⁻⁴ to 10⁶ L_{sun}

Moderate range of stellar temperatures: 2000 to 50,000 Kelvin

Large range of stellar radii: 0.01 to 1000 R_{sun}

Fairly large range of stellar masses: 0.08 to 50 M_{sun}

A Hertzsprung-Russell (H-R) diagram plots the luminosity of stars versus their color (or equivalently, their spectral class).

Henry Norris Russell

Russell's original diagram (1914)

The H-R diagram yields interesting information about the physics of stars.

