Tuesday, October 26 Assembling the Requirements of Life

Requirements of Life Key Concepts

- 1) Life requires a source of energy, complex chemistry, and (probably) a liquid solvent.
- 2) **Sunlight** is the main energy source in the Solar System, but other sources exist.
- 3) A planet's **equilibrium temperature** helps to determine whether it has seas & atmosphere.

Basic Requirements for Life

Source of Energy

Energy fuels chemical reactions.
Warmth permits liquid water (or other liquids?)

Complex Chemistry

Carbon (or other element?) permits the building of complex molecules.

Liquid Solvent

It provides a medium for chemical reactions.

The **Sun** is the main energy source in the Solar System.

The flux of sunlight you receive depends on your distance from the Sun:

$$f = \frac{L}{4 \pi d^2}$$

f = flux of sunlight

L = Sun's luminosity

d = distance from Sun

The surface of a **planet** absorbs solar energy and warms up.

As it warms up, it radiates infrared light.

A planet reaches **equilibrium temperature** when the rate at which it absorbs solar energy equals the rate at which it emits infrared energy.

What is **Temperature?** It's a measure of the typical speed of atoms' random motion.

Random motions stop at **absolute zero** temperature.

Kelvin = Celsius + 273

Water boils: 373 Kelvin (373 K)
Water freezes: 273 Kelvin
Absolute zero: 0 Kelvin

Room temperature: ~300 Kelvin Surface of Sun: ~5800 Kelvin

The equilibrium temperature of a planet in the Solar System depends on:

- 1) The flux of sunlight it receives (& thus its distance from the Sun).
- 2) Its **albedo** (the fraction of light that it reflects).

Dark objects close to Sun are hot: shiny objects far from Sun are cold.

The **equilibrium temperature** of an object heated by the Sun (given without proof):

$$T_{\rm eq} = 278 K \, \frac{(1 \text{-} A)^{1/4}}{\sqrt{d}}$$

d = distance from Sun (in AU)

A = albedo (1 = perfectly shiny, 0 = perfectly black)

Wild card: Extremophiles on Earth remind us that the Sun isn't the only source of energy. Life around deep-sea volcanic vents and in hot springs is powered by geothermal energy. Wild card: Liquid water is a good solvent for life, but there might be other possibilities... Water (H₂O): liquid from 0 to 100°C (100°C range) Ammonia (NH $_3$): liquid from -78 to -33° C (45°C range) Methane (CH₄): liquid from -182 to -164°C (18°C range) Ethane (C_2H_6): liquid from -183 to $-89^{\circ}C$ (94°C range) The ability of a planet to retain an atmosphere depends on its mass and temperature.

Massive planets have a high escape speed; cold planets have slow-moving atmospheric molecules.

An important factor in a planet's habitability is the amount of **atmosphere** it can retain.

Small hot bodies have no atmosphere: bad for life.

Large cool bodies have heavy hydrogen/helium atmospheres. Air pressure is very high: bad for life.

Where should we sea	
a thicker atmosphere in the past.	
Titan (moon of Saturn) may have organic compounds in lakes of methane & ethane.	
Wild cards: Europa (moon of Jupiter) and Enceladus (moon of Saturn) may have liquid water under icy surfaces.	