
Gravity for Beginners Monday, October 12 Next Planetarium Show: Tue, Oct 27 Flashback: Kepler's 1st Law of Planetary Motion: Orbits of planets around the Sun are ellipses with the Sun at one focus. Kepler could describe orbits, but not provide a motivation. Isaac Newton (1642/3-1727),English Discovered 3 Laws of Motion, Law of Gravity:

explained Kepler.

"Mathematical	
PHILOSOPHIÆ Principles NATURALIS of Natural	
PRINCIPIA Philosophy"	
MATHEMATICA	
Access 7 S. VIEW TO B. Frim Cell Counts Sur. Mathebasel Prohibitor Linespies. & Societae Regula Sodal.	
IMPRIMATUR Newton's laws:	
mathematical in form, universal in scope.	
John Newson Refer to Type Topics Service, Fronte as all three Biologies. Amon MDCLR XXVII.	
First Law of Mation:	
First Law of Motion: An object remains at rest, or moves in	
a straight line at constant speed,	
unless acted on by an outside force.	
_	
Precise mathematical laws require	
precise definitions of terms.	
 SPEED = rate at which an	
object changes its position.	
Example: 65 miles per hour.	
VELOCITY = speed <i>plus</i>	
direction of travel	
Example: 65 miles per hour to the north.	

	•
ACCELERATION = rate at which	
an object changes its <i>velocity.</i>	
Acceleration can involve:	
1) increase in speed	
2) decrease in speed _{\$10P}	
3) change in direction.	
diaments.	
	1
Example of acceleration:	
an apple falls from a tree.	
V	
Acceleration = 9.8 meters/second/second.	
After 1 second, speed = 9.8 meters/second,	
After 2 seconds, speed = 19.6 m/sec, etc	
	1
FORCE = a push or pull acting	
to accelerate an object.	
Examples:	
Gravity = pull	
Electrostatic attraction = pull	
Electrostatic repulsion = push	

Restatement of First Law: In the absence of outside forces, velocity is **constant**.

Second Law of Motion:

The acceleration of an object is directly proportional to the force acting on it, and inversely proportional to its mass.

$$a = F / m$$
or
 $F = m \times a$

Example: a package of cookies has a mass m = 0.454 kilograms.

It experiences the gravitational acceleration a = 9.8 meters/second².

How large is the force acting on the cookies?

H	=	m	X	a

 $F = (0.454 \text{ kg}) (9.8 \text{ m/sec}^2)$

 $F = 4.4 \text{ kg m} / \text{s}^2$

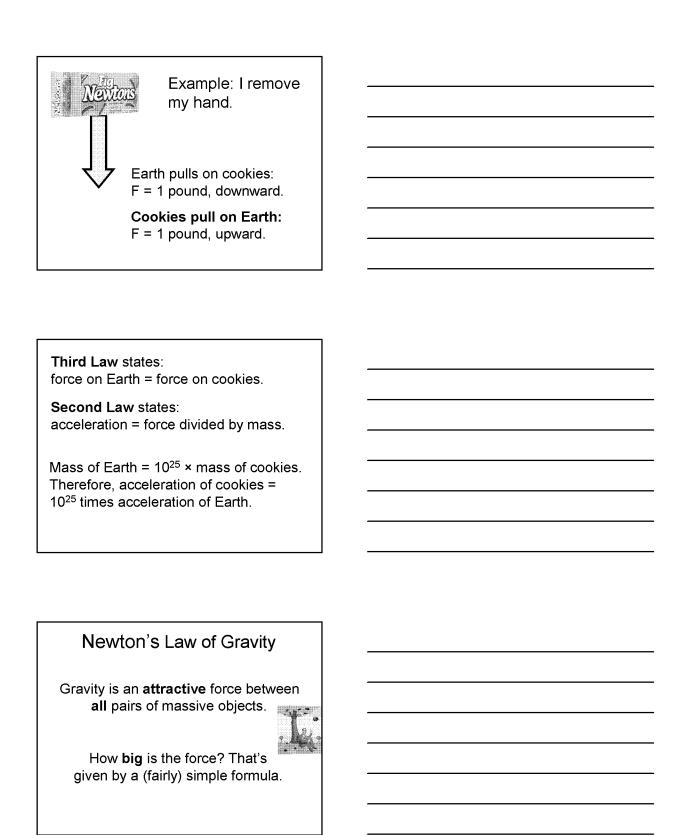
F = 4.4 Newtons

F = 1 pound

Third Law of Motion:

For every action, there is an equal and opposite reaction.

If A exerts a force on B, then B exerts a force on A that's **equal** in magnitude and **opposite** in direction.



Example: I balance a package of cookies on my hand.

Cookies push on hand: F = 1 pound, downward.

Hand pushes on cookies: F = 1 pound, upward.

Newton's Law of Gravity

$$F = G \; \frac{m \; M}{r^2}$$

F = force

m = mass of one object

M = mass of other object

r = distance between centers of objects

G = "universal constant of gravitation"

 $(G = 6.7 \times 10^{-11} \text{ Newton meter}^2 / \text{ kg}^2)$

What is gravitational force between Earth and cookies?

$$F = G \frac{m M}{r^2}$$

M = mass of Earth = 6.0×10^{24} kg

m = mass of cookies = 0.454 kg

 $r = radius of Earth = 6.4 \times 10^6 meters$

 $G = 6.7 \times 10^{-11} \text{ Newton meter}^2 / \text{kg}^2$

F = 4.4 Newtons = 1 pound

What is acceleration of cookies?

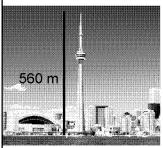
Newton's 2nd law of motion:

$$a = F / m$$

Newton's law of gravity:

$$F = G \frac{m M}{r^2}$$

Combining the two equations:


$$a = \frac{G \text{ m M}}{r^2} \times \frac{1}{m} = \frac{G \text{ M}}{r^2}$$

For the Earth,

$$a = \frac{GM}{r^2} = 9.8 \text{ meters/sec}^2$$

INDEPENDENT OF MASS OF THE COOKIES!

Gravitational acceleration decreases with distance from the Earth's center.

Top of CN Tower: weight = 180 pounds minus ½ ounce.

Base of CN Tower: weight = 180 pounds.

Gravity makes apples fall; it also keeps the Moon on its orbit around the Earth, & the Earth on its orbit around the Sun.

Γ	1
Artificial satellites as envisaged by Newton:	
8	
To put an object into orbit, launch it	
sideways with a large enough speed.	
Nouton: chang of orbit depends on	1
Newton: shape of orbit depends on speed of satellite at launch.	
Provide	
Strayer County	
Low speed = closed orbit (circle, ellipse).	
High speed = open orbit (parabola, hyperbola).	
	1
Wednesday's Lecture:	
Stars & Galaxies in Motion	
Reminders:	
Have you read chapters 1 – 4? Problem Set 2 is due Wednesday.	
Planetarium shows Oct 27 & 28.	
	I .