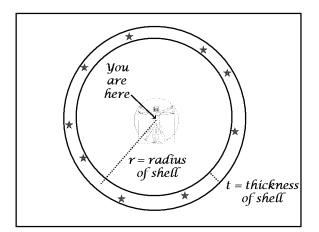


"The night sky is dark." This statement is called Olbers' paradox , after astronomer who discussed the subject in 1823. Why is the darkness of the night sky paradoxical?	
Wilhelm Elkers.	
If stars were stuck on a celestial	
sphere or dome, darkness would	
not be paradoxical.	
Only a finite number of stars	
on the celestial sphere.	
In an infinite universe with an infinite	1
number of stars, the paradox arises.	
TO AND	
How bright do we award the elect	
How bright do we expect the sky to be in such a universe?	


ASSUMPTIONS:

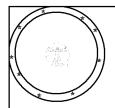
Suppose there are **n** stars per cubic parsec of the universe.

In Sun's neighborhood, $n \approx 0.1/pc^3$

Suppose that an average star has a luminosity L.

For Sun, $L = 4 \times 10^{26}$ watts

What's the **surface area** of the spherical shell?


Area = $4 \pi r^2$

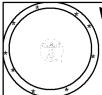
What's the **volume** of the spherical shell?

Volume \approx area \times thickness $\approx 4 \pi r^2 t$

How many stars are in the shell?

Number = volume \times n = 4 π r² t n

What's the flux from a **single** star?

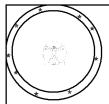

$$Flux = \frac{L}{4 \pi r^2}$$

What's the flux from **all** the shell's stars?

Total flux = Number of stars × flux per star

Total flux = $4 \pi r^2 t n \times \frac{L}{4 \pi r^2}$

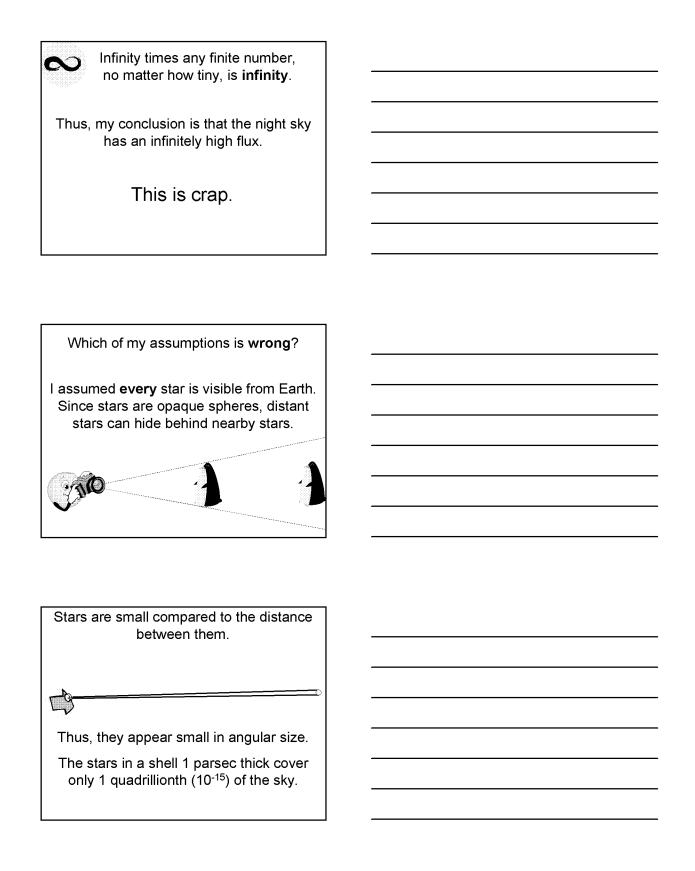
Total flux of shell = $t \times n \times L$


What flux of light do we receive from a single shell of thickness t?

Total flux from shell = $t \times n \times L$

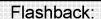
of stars per cubic parsec

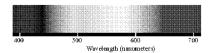
luminosity of single star


Independent of **r**, the radius of the shell!

A **single** shell will produce a tiny flux here at Earth.

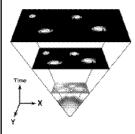
For a shell 1 parsec thick, flux = $t \times n \times L = 40$ nanowatts/meter²


But we've assumed an **infinite** number of shells!


	1
10 ¹⁵ (one quadrillion) shells, each covering a quadrillionth of the sky with stars,	
will completely pave the sky with stars.	
Thus, the entire night sky should be	
as bright as the Sun's surface!	
Olbers' Paradox for Trees:	1
Olbers Paradox for Trees.	
In a large enough forest, every line	
of sight ends at a tree.	
-	
My revised conclusion – that the sky is	
uniformly bright – is still crap.	
The night sky really	
is dark.	
Which of my accumptions is wreen?	
Which of my assumptions is wrong ?	

Dubious assumption #1:	
The universe is infinitely large.	
Dubious assumption #2:	
The universe is eternally old.	
The speed of light (c) is large but finite. c = 300,000 km/sec (186,000 miles/sec).	
If the universe has a finite age, then distant stars haven't had time to send us the message "We're here!"	

Discussing Olbers' paradox,	
we assumed the universe was static (neither expanding nor contracting).	
This was the general assumption until the	
20 th century: but was it correct?	
If the universe is expending distant	
If the universe is expanding , distant galaxies will be moving away from us.	
N A I I I I I I I I I I I I I I I I I I	
If the universe is contracting , distant	
galaxies will be moving toward us.	
	1
Q: How can we tell if a galaxy is moving	
toward us or away from us?	
A: Look for the Doppler shift of light	
from the galaxy.	



If light source is moving **toward** you, wavelength is shorter (called blueshift).

If light source is moving **away** from you, wavelength is longer (called redshift).

In early 20th century, astronomers were surprised to discover that all distant galaxies are **redshifted**!

Galaxies are moving away from each other!

"The Universe is expanding."

Note: Applies only on large scales.

The Solar System is not expanding; it's held together by gravity.

Milky Way Galaxy is not expanding; it's held together by gravity.

Wednesday's Lecture: The Expanding Universe

Reminders:

Have you read chapters 1-6? Problem Set 3 is due **Wednesday**. Planetarium shows **Oct 27 & 28.**
