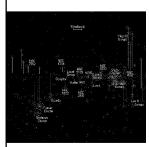

Wednesday, October 14 Put P.S. #3 into "in box", pick up P.S. #4


Thinking locally: stars within **3 parsecs** of the Sun.

Equal numbers of redshifts and blueshifts.

Typical radial velocity v = 20 km/second

Thinking more globally: galaxies within **30 million parsecs** of the Milky Way.

Almost all **redshifts** rather than blueshifts.

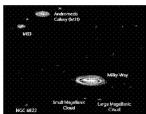
Typical radial velocity v = 1000 km/second

Climbing the "cosmic distance ladder".

We can't use the same technique to find the distance to **every** astronomical object.

Use one technique within Solar System (1st "rung" of ladder); another for nearby stars (2nd "rung"), etc...

1st rung of the distance ladder: distances within the Solar System.


Distances from Earth to nearby planets are found by **radar**.

2nd **rung**: distances to nearby stars within the Milky Way Galaxy.

Distances from Solar System to nearby stars are found by **parallax**.

3rd rung: distances to galaxies beyond our own.

Distances from the Milky Way to nearby galaxies are found with **standard candles**.

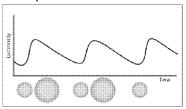
"Standard candle" = a light source of known luminosity.

Know luminosity (L): measure flux (f): compute distance (r).

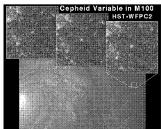
$$f = \frac{L}{4\pi r^2} \quad \Longrightarrow \quad r = \sqrt{\frac{L}{4\pi f}}$$

Climbing the distance ladder.

1) Measure flux of two standard candles: one near, one far.



2) Find distance to near standard candle from its parallax.


- 3) Compute luminosity of near standard candle: $L=4~\pi~r^2~f$.
 - 4) Assume far standard candle has same luminosity as the near.
 - 5) Compute the distance to the far standard candle:

$$r = \sqrt{\frac{L}{4\pi f}}$$

A good standard candle: Cepheid variable stars

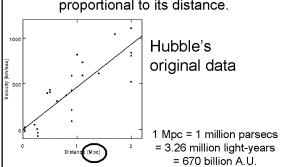
Cepheid stars vary in brightness with a period that depends on their average luminosity.

Observe Cepheid.

Measure period.

Look up luminosity.

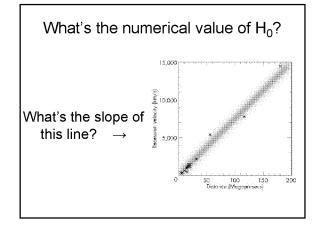
Measure flux.


Compute its distance!

$$r = \sqrt{\frac{L}{4\pi f}}$$

In 1929, **Edwin Hubble** looked at the relation between **radial velocity** and **distance** for galaxies.

Hubble's result:
The radial velocity of a galaxy is linearly
proportional to its distance.


Hubble's law in mathematical form:

$$v = H_0 d$$

v = radial velocity of galaxy

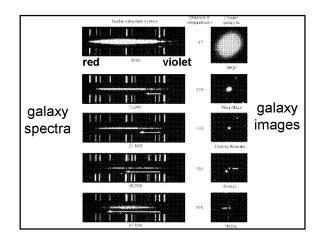
d = distance to galaxy

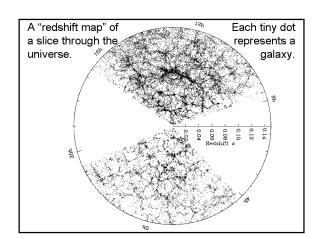
 H_0 = the "Hubble constant" (same for all galaxies in all directions)

H₀ = 71 kilometers per second per megaparsec (million parsecs)

Or, more concisely...

 H_0 = 71 km / sec / Mpc


Why it's **useful** to know the Hubble constant, H₀:


Measure redshift of galaxy: z =(\lambda-\lambda_0)/\lambda_0

Compute radial velocity: $\boldsymbol{v}=\boldsymbol{c}\ \boldsymbol{z}$

Compute distance: $d = v / H_0$

Cheap, fast way to find distance!

Kilometers per second per megaparsec??
What BIZARRE units!
1 megaparsec = 3.1×10^{19} kilometers
$H_0 = \frac{71 \text{ km/sec/Mpc}}{3.1 \times 10^{19} \text{ km/Mpc}} = 2.3 \times 10^{-18} / \text{sec}$
$\mathbf{H}_{0} = \frac{1}{4.4 \times 10^{17} \text{sec}}$

Why it's **intriguing** to know H₀:

d

Two galaxies are separated by a distance d.

They are moving apart from each other with a speed $v = H_0 d$.

How long has it been since the galaxies were touching?

travel time =
$$\frac{\text{distance}}{\text{speed}}$$

$$t = \frac{d}{H_0 d} = \frac{1}{H_0} = 4.4 \times 10^{17} \text{sec}$$

PLEASE NOTE: This length of time (t = 1/H₀) is **independent of** the distance between galaxies!!

If galaxies' speed has been constant, then at a time 1/H₀ in the past, they were **all** scrunched together.

Hubble's law (radial velocity is proportional to distance) led to acceptance of the **Big Bang** model.

Big Bang model: universe started in an extremely dense state, but became less dense as it expanded.

Heart of the "Big Bang" concept:

At a finite time in the past (t \approx 1/H₀), the universe began in a very dense state.

1/H₀, called the "**Hubble time**", is the approximate age of the universe in the Big Bang Model.

$$t = \frac{1}{H_0} = 4.4 \times 10^{17} \text{sec}$$

Since there are 3.2×10^7 seconds per year, the Hubble time is

$$1/H_0 = 14$$
 billion years

The Big Bang model "de-paradoxes"	
Olbers' paradox.	
Hubble time: 1/H ₀ = 14 billion years.	-
1/11 ₀ = 14 billion years.	
Hubble distance:	
c/H ₀ = 14 billion light-years	
= 4300 megaparsecs.	
	1
Friday's Lecture:	
Newton vs. Einstein	
Reminders:	
Have you read chapters 1 – 6? Planetarium shows Oct 27 & 28 .	
Midterm exam Friday, October 30.	
,, , , , , , , , , , , , , , , , , , , ,	