Light

Monday, October 5
Next Planetarium Shows: Tonight, Tue, Wed 7 pm

Universe contains electrically charged particles: protons (+) and electrons (-).

Charged particles are surrounded by electric fields and magnetic fields.

Fluctuations in those fields produce **electromagnetic waves**.

Visible light is a form of electromagnetic wave...

... but so are radio waves, microwaves, infrared light, ultraviolet light, X rays, and gamma rays.

Light is a wave.

Wave = a periodic fluctuation traveling through a medium.

Ocean wave = fluctuation in height of water.

Sound wave = fluctuation in pressure.

Electromagnetic wave = fluctuation in electric and magnetic fields.

Describing a wave:

Wavelength (λ) = distance between wave crests.

Amplitude (a) = height of crests above troughs.

Frequency (f) = number of crests passing per second

The speed of a wave equals wavelength times frequency.

$$c = \lambda \times f$$

(c for "celeritas", the Latin word for "speed")

	wavelength	frequency	speed
ocean wave	100 meters	0.1 /sec	
sound wave (middle C)	1.2 m	262 /sec	
light wave (red)	6.6×10 ⁻⁷ m	4.5×10 ¹⁴ /sec	

The speed of light in a vacuum is **always** c = 300,000 km/sec (186,000 miles/sec).

Light is made of particles .	
Light shows some properties of particles, such as the photoelectric effect .	
UV light	
Particles of light, called photons , kick	-
electrons out of atoms.	
The energy of a photon is related	
to the frequency of a wave.	
$E = h \times f$	
E = energy of photon	-
f = frequency of light wave h = Planck's constant	
(a very small number indeed)	
Mayo or partialo?	
Wave or particle?	-
Both.	
Light has properties of both a wave and a	
stream of particles. Light follows the laws of	
quantum mechanics.	
1	

Light forms a spectrum from short to long wavelength. 700 nm 600 nm 500 nm 400 nm

Visible light has wavelengths from 400 to 700 **nanometers**. [1 nanometer (nm) = 10⁻⁹ meters]

The **COMPLETE** spectrum of light

Gamma rays (λ < 0.01 nanometers)

 $X \; rays \; (0.01 \rightarrow 10 \; nm)$

Ultraviolet (10 → 400 nm)

Visible (400 \rightarrow 700 nm)

Infrared (700 nm \rightarrow 1 mm)

Microwave (1 \rightarrow 100 mm)

Radio (> 100 mm)

High energy photons

Low energy photons

Consider an atom: (highly schematic drawing)

A nucleus, consisting of protons and (usually) neutrons, is surrounded by a cloud of electrons.

Hydrogen: one proton, one electron.

Behavior on subatomic scales is governed by **quantum mechanics**.

Rule: electrons can only exist in orbits of particular energy. (Small orbit = low energy, big orbit = high energy).

Electron falls from high- to low-energy orbit: energy is carried away by a photon.

Photon has a fixed **energy**, corresponding to fixed **wavelength**.

Consider a hot, low density glob of hydrogen gas.

Light emitted **only** at wavelengths corresponding to energy jumps between electron orbits.

	•
Hot, low density gas produces an emission line spectrum.	
-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Spectrum of hydrogen at visible wavelengths.	
Carina Nebula: a cloud of hot, low density	
gas about 7000 light-years away.	-
	-
Its reddish color comes from the	
656.3 nm emission line of hydrogen.	
A cool, low density glob of hydrogen	
gas in front of a light source.	-
100 →	
Light shoothed only at way also after	
Light absorbed only at wavelengths corresponding to energy jumps	
between electron orbits.	

The **radial velocity** of an object is found from its **Doppler shift**.

Radial velocity = how fast an object is moving toward you or away from you.

Christian Doppler (1803-1853)

Doppler shift:

If a wave source moves toward you or away from you, the wavelength changes.

If a light source is moving **toward** you, wavelength is shorter (called "blueshift").

(should be "violetshift", more logically)

If a light source is moving **away** from you, wavelength is longer (called "redshift").

Doppler shifts are easily detected in emission or absorption line spectra.

Size of Doppler shift is proportional to radial velocity:

$$\frac{\Delta \lambda}{\lambda_0} = \frac{V}{c}$$

 $\Delta \lambda$ = observed wavelength shift = $\lambda - \lambda_0$

 λ_0 = wavelength if source isn't moving

V = radial velocity of moving source

c = speed of light = 300,000 km/sec

Wednesday's Lecture:

What is a star?

Reminders:

Have you read chapters 1 – 3?
Problem Set 1 is due Wednesday.
Planetarium shows Tonight, Tue, Wed.