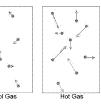
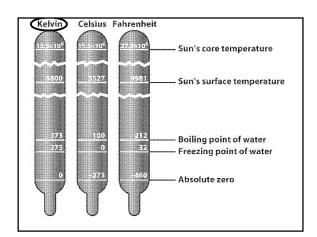
What is a Star? Wednesday, October 7 Next Planetarium Show: Tonight 7 pm

What is a star? Examples of stars: Sun Betelgeuse


What is a star? A large, hot, luminous ball of gas.

"Why do stars shine?"	
Stars are dense (Sun is 40% denser than liquid water).	
Stars are opaque (you can't see to the Sun's center).	
Stars are hot.	
What happens when a dense, opaque object becomes hot?	
It emits light.	
What do I mean by " HOT" ?	
90°F 212°F 9980°F	

At the submicroscopic level: atoms in a gas

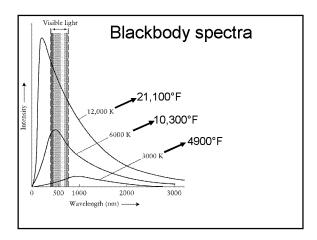


Object is **hot** when the atoms of which it's made are in rapid random motion.

Temperature: measure of typical speed of the atoms.

Random motions stop at **absolute zero** temperature.

Kelvin = Celsius + 273 Water boils: 373 Kelvin (K) Water freezes: 273 K Absolute zero: 0 K Room temperature: ~300 K Surface of Sun: ~5800 K Different elements respond in different ways to changes in temperature. Rejoice! Spectra of stars & interstellar gas reveal they consist mostly of 🖎 hydrogen, the simplest element. At high density & low temperature, hydrogen is a gas of molecules. proton Molecular hydrogen (H₂) = two H atoms bonded together (This assumes there's no oxygen for the hydrogen to bond with.)


At low density & low temperature, hydrogen is a gas of atoms .	
Tryanogornia a gas or atomic.	
Much of the interstellar gas in our Galaxy is atomic hydrogen.	
density ≈ 10 ⁻¹³ milligrams/m ³ T ≈ 100 K	
At high density & high temperature, hydrogen is an ionized gas (a.k.a. plasma)	
Photosphere Corvection Much of the Sun's interior is ionized hydrogen.	
Sun's center: density $\approx 150 \text{ tons/m}^3$ (c) Distance from center (km)	
Electrons in a neutral atom can absorb photons at a few special energies.	
Free electrons in an ionized gas can scatter photons of any energy.	

A star is an approximate blackbody.

A blackbody is an object that absorbs **all** the light that hits it.

Heat a blackbody: it emits light of all wavelengths (a **continuous** spectrum).

Wavelength at which spectrum peaks depends **only on temperature**.

Wavelength of peak emission for a blackbody is **inversely** related to temperature.

$$\lambda_{\text{peak}} = \frac{2,900,000 \, \text{nm} \cdot \text{Kelvin}}{T}$$

 $\lambda_{\text{peak}} = \text{wavelength of maximum emission}$

T = temperature (Kelvin)

Examples:

You:

$$T = 98.6^{\circ} \text{ F} = 37^{\circ} \text{ C} = 310 \text{ K}$$

$$\lambda_{\text{peak}} \, = \frac{2{,}900{,}000\,\text{nm} \cdot \text{K}}{310\,\text{K}} =$$

Sun's surface:

$$T = 5800 \,\mathrm{K}$$

$$\lambda_{\text{peak}} = \frac{2,900,000 \text{ nm} \cdot K}{5800 \text{ K}} =$$

2 am tomorrow, looking east

Another example: taking the temperature of a star!

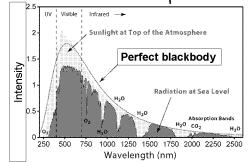
Betelgeuse is **red**.

(Hard to see colors with the naked eye – binoculars help!)

Rigel is blue.

Betelgeuse:

$$\lambda_{\text{peak}} = 1000 \, \text{nm}$$


$$T = \frac{2,900,000 \,\mathrm{nm} \cdot \mathrm{K}}{1000 \,\mathrm{nm}} =$$

Rigel:

$$\lambda_{\text{peak}} = 200 \text{ nm}$$

$$T = \frac{2,900,000 \text{ nm} \cdot \text{K}}{200 \text{ nm}} =$$

The Sun's actual spectrum:

Close to a blackbody, but not perfect.

Friday's Lecture:

What is a galaxy?

Reminders:

Have you read chapters 1-3? Problem Set 2 is due **Wed, Oct 14**. Planetarium show **Tonight**.