
1) You are given a ticket for running a red traffic light. For an observer
halted at the red light, the light emits a wavelength λ0 = 700 nm. You tell
the traffic cop that because you were approaching the light, the Doppler shift
made it appear green (λ = 500 nm). How fast would you have been going if
this smart-aleck explanation had been true? Please express this speed in units
of miles per hour. [Hint: There are 1.6093 kilometers in a mile.]
First,

∆λ = λ − λ0 = 500 nm − 700 nm = −200 nm.

In words, the wavelength decreased by 200 nm, making it appear green (we
would call this a blueshift). ∆λ < 0 implies that we’re moving toward the
traffic light (as expected). This is a useful consistency check. By convention, if
the relative velocity of two objects is negative (i.e., v < 0), then they are getting
closer together. This is because the distance that separates them is decreasing

as time goes on.

Next we determine the driver’s velocity (v). The wavelength change is related
to velocity by the following formula:

∆λ

λ0

=
v

c
,

where ∆λ is the change in wavelength, λ0 is the wavelength at rest (in the
lab), c is the speed of light, and v is radial velocity (along the line of sight).
Multiplying both sides of the equation by c, we find:

v = c
∆λ

λ0

.

Plugging in the numbers from above and c = 3.0 × 105 km/s, we have:

v = (3.0×105 km/s)

(

−200 nm

700 nm

)

= (3.0×105 km/s)×

(

−2

7

)

= −8.571×104 km/s

Note that the units of wavelength (nm) canceled out. Lastly, we must convert
km/s to miles per hour ( mph). The hint indicates that 1 mi = 1.6093 km and
we know that 1 hr = 3600 s (1 hr = 60 min × 60 s/min = 3600 s). Combining
these two we get:

1 km/s = 1 km/s ×

(

1 mi

1.6093 km

)

×

(

3600 s

1hr

)

≈ 2237 mph

Putting all this together we find:

v =
(

−8.571× 104 km/s
)

×

(

2237 mph

1 km/s

)

≈ −1.92 × 108 mph
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2) Astronomers doing a ”star census” of the solar neighborhood have found
that there are 340 stars within a distance r = 10 pc of the Earth. Compute the
volume of a sphere of radius r = 10 pc centered on the Earth. Compute the
average number of stars per cubic parsec within this sphere.

The first part is quite straightforward. From geometry, recall that the for-
mula for the volume of a sphere is V = 4

3
πr3, where π ≈ 3.14. Plugging

r = 10 pc into this gives us:

V =
4

3
π r3 =

4

3
π (10 pc)3 =

4

3
π (1000 pc3) =

4000 π

3
pc3

≈ 4189 pc3

Next, we have to compute the average number of stars within this volume.
This average is simply the total number of stars inside the volume (340, from
above) divided by the total volume. Putting these together we have:

n =
total stars

total volume
=

340

4189 pc3
≈ 0.081 stars/pc3 = 0.081 pc−3

—————————————————————————

Rounding, significant figures, and all that:

In any quantitative field, it’s important to round your answers to an appro-
priate number of decimal places (a.k.a., “significant figures”). The motivation
here is that the number of decimal places you provide when reporting some
value should (roughly) indicate the accuracy of that value. While this is not
absolutely crucial, it’s good practice and definitely worth understanding.

For example, suppose someone hands you a ruler and asks you to measure
the long side of a sheet of standard 8.5x11” paper. You would probably come
up with a number very close to 11”. Maybe 10.9”, maybe 11.1”. You would
NOT (I hope), however, give an answer to the tune of 11.0823475”.

In the same fashion, you should try to round off your answers to (at least
approximately) match the problem. In practice, this is fairly simple. A good
rule of thumb is: examine all the numbers that entered your calculation, find
the one with the least number of specified decimal places (probably the least
accurate), and round your answer to about that same number of digits. Here,
the “number of digits” is how many you would keep in scientific notation. As
a result, 35, 3.5, and 0.035 all have 2 digits, since they would be written as
3.5 × 10N .

One last point: whenever possible, you should only round your final answer.
In practice, this means leave all the digits in your calculator but only copying
the first few onto paper. For example, in the question above, I’ve kept 4 digits
in the intermediate result V . For the final n, however, I have only reported
2 digits (8.1 × 10−2 / pc3), a compromise between the 1 digit of r = 10 and
the two digits of N = 340 stars. In practice, the exact number of digits is not
important. Understanding that there is a difference and choosing a reasonable
number is just fine.
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3) As shown in the textbook (Figure 3.25), the Milky Way Galaxy can be
approximated as a cylinder whose diameter is d = 100, 000 ly and whose thick-
ness is h = 2000 ly. What are the diameter and thickness in units of parsecs?
What is the volume of the Milky Way Galaxy in units of cubic parsecs? Assume
that the average number of stars per cubic parsec in the Milky Way Galaxy is
the same as the number of stars per cubic parsec in the solar neighborhood:
what, in this case, is the total number of stars in the Milky Way Galaxy?

The first step is conversion of the galaxy dimensions from lightyears (ly) to
parsecs (pc). To do this, recall that 1 pc = 3.26 ly. Using this, we convert units
as follows:

d = 100, 000 ly× ( 1 pc / 3.26 ly) = 30, 675 pc ≈ 30, 700 pc

h = 2, 000 ly× ( 1 pc / 3.26 ly) = 613.5 pc ≈ 613 pc

Next we compute the volume of the galaxy. The volume of a cylinder can
be calculated with V = π r2 h, where r is the cylinder radius. Please note that
since π r2 is the area of a circle, this formula is effectively just base × height).
If you want a formula that involves the cylinder diameter, just plug in d = 2r
(so r = d/2) to find:

V = π r2 h = π h

(

d

2

)2

=
π

4
h d2.

To find volume, plug in the diameter (d) and height (h) from above:

V =
π

4
h d2 =

π

4
× (613.5 pc) × (30, 675 pc)2 ≈ 4.53 × 1011 pc3

Alternatively (possibly a shortcut), you could do the volume calculation in
lightyears using the nice round numbers and then convert your answer appro-
priately. I did this using r = d/2 = 50, 000 ly = 5 · 104 ly and h = 6, 000 ly =
6 · 103 ly. Plugging these values in in, I get:

V = π r2 h = π · (5 ·104 ly)2 · (2 ·103 ly) = π · (2 ·103) · (25 ·108) ly3 = 50π ·1011 ly3

You could then convert this using 1 pc = 3.26 ly (don’t forget to cube it) as
follows (3.263

≈ 34.65):

V = 50π · 1011 ly3
×

(

1 pc

3.26 ly

)3

=
50π

34.65
· 1011 pc3 = 4.53 × 1011 pc3

Lastly, the number of stars is found with Nstars = n × volume, where n
is the number of stars / pc3. We calculated this in question 2 and found that
n = 0.081 stars/pc3. You could also use n = 0.1 pc−3 from the class notes.
Plugging in, find:

Nstars = n×Vol = ( 0.81 stars/pc3 )·(4.53·1011 pc3) = 3.67·1010 stars for n = 0.081 pc−3

Nstars = n×Vol = ( 0.1 stars/pc3 )·(4.53·1011 pc3) = 4.53·1010 stars for n = 0.1 pc−3
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4) Suppose you have a friend, “Flat-Earth Fred,” who believes that the
Earth is flat rather than spherical. (He believes that all the NASA photographs
showing a spherical Earth are faked; he wants evidence that he can see directly
with his own eyes.)

First, describe what evidence you could provide, without having to leave
Columbus, that the Earth is spherical. [Hint: On June 29, 2010, there will be a
lunar eclipse visible from Columbus.]

Second, suppose that you have a private jet and can fly anywhere in the
world where there’s an airport. With this added mobility, what additional evi-
dence could you provide to convince Fred that the Earth is spherical?

From Columbus, you would show Fred the lunar eclipse. Your response
should more or less include all the following pieces:
– Lunar eclipses help demonstrate that the Earth is spherical.
– Lunar eclipses occur when the (full) Moon passes through the Earth’s shadow.
By looking, we deduce that the Earth’s shadow is roughly *circular* in shape.
Importantly, during lunar eclipses, Earth’s shadow always appears circular.
– The only object that always casts a circular shadow is a sphere.

Separately, you might reason with him about the effects of gravity, pointing
out that the sphere is the preferred shape to minimize energy. Although this
isn’t something Fred can see directly, it might bolster your argument.

With a private jet at your disposal, your options are wide open. In a jet,
you could:
– Keep flying in a straight line (provided enough fuel) and arrive back where
you started. You would point out to Fred that you did this without passing any
“corners” along the way.
– With a decent camera and enough altitude, you could possibly observe the
Earth’s curvature, though this is apparently quite difficult.

A variety of other options exist (not all of which are covered here). You could
select a destination with a beach so that you can show that ships disappear hull-
first over the horizon. This cannot be observed unless the surface of the planet
is curved.

With the right measurements (e.g., diffraction of starlight or Doppler veloc-
ity), you could possibly measure the rotation speed of the Earth and demon-
strate that it decreases as you get farther from the Equator. Assuming that
the Earth is a solid body, this would quickly lead you to the conclusion that we
inhabit a sphere.
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