
1 Monday, November 21: Inverse Compton

Scattering

When I did the calculations for the scattering of photons from electrons, I
chose (for the sake of simplicity) the inertial frame of reference in which the
electron was initially at rest. However, as we look at the universe around us,
we see electrons in motion. The electron velocities, in our frame of reference,
range from the highly non-relativistic motions of free electrons in partially
ionized warm gas to the highly relativistic electrons that emit synchrotron
radiation.

When an electron is initially moving relative to a photon, we can redo
the analysis of the electron-photon collision, with the usual assumptions of
the conservation of momentum and energy.1 If the electron has an arbitrary
initial velocity ~vi, the calculations become a bit tedious, and require a few
envelope backs to compute. However, the special case in which the initial
velocities of photon and electron are in opposite directions requires only a
single envelope back.2 Suppose that the photon is initially moving in the
positive x direction, and the electron is initially moving in the negative x
direction with velocity −viêx. The photon is scattered by an angle θ from its
initial direction, and the electron is scattered by an angle ϕ from its initial
direction. The initial momentum of the system will be

~pi = −γimeviêx +
hνi

c
êx (1)

and its initial energy will be

εi = γimec
2 + hνi . (2)

The final momentum of the system will be

~pf = −γfmevf (cos ϕêx + sin ϕêy) +
hνf

c
(cos θêx + sin θêy) (3)

1Equivalently, we can take our calculations with an initially stationary electron, and
transform them to another frame of reference in which the electron initially has a constant
velocity.

2I’ll refer to this case as a “head-on” collision, in analogy with a collision between cars
going in opposite directions; a “head-on” collision, however, doesn’t imply that the photon
and electron are necessarily reflected straight back the way they came.
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and its final energy will be

εf = γfmec
2 + hνf . (4)

Aside from the addition of the electron’s initial momentum, and an acknowl-
edgment that the electron’s initial energy is greater than the rest energy,
this is the same as the problem we solved last week. I will therefore leave it
as an “exercise for the reader” to demonstrate that the final energy, in its
dimensionless form, Xf ≡ hνf/(mec

2), is

Xf = Xi
γi(1 + βi)

γi(1 + βi cos θ) + Xi(1 − cos θ)
, (5)

where θ is the angle through which the photon is scattered, βi = vi/c is the
initial speed of the oncoming electron, in units of the speed of light, and γi

is the initial Lorentz factor for the electron.3

The fractional amount of energy lost or gained by a photon in a “head-on”
collision with an electron is

Xf − Xi

Xi

=
(γiβi − Xi)(1 − cos θ)

γi(1 + βi cos θ) + Xi(1 − cos θ)
. (6)

Thus, there is no energy transfer when Xi = γiβi. If the electron is initially
highly relativistic (γi À 1), photons with energy hνi < γimec

2 will gain
energy by a head-on collision; more energetic photons will lose energy. If the
electron is initially highly non-relativistic (βi ¿ 1), photons with momentum
hνi/c < mev will gain energy through head-on collisions; higher momentum
photons will lose energy.

The highest fractional change in energy, for a given Xi and γi, occurs
when the photon is reflected back the way it came (cos θ = −1). If a low-
frequency photon (Xi ¿ 1) is reflected in this way by a high-energy electron
(γi À 1), the photon’s fractional gain in energy can be large:

Xf − Xi

Xi

≈ 2γiβi

γi(1 − βi)
≈ 4γ2

i . (7)

In an encounter with an electron with a Lorentz factor γ ∼ 1000, a low-
frequency photon can increase its energy by a factor of more than a million.

3I note, with some relief, that in the limit βi = 0, γi = 1, I recover the correct formula
for the case in which the electron is initially at rest (see the previous lecture).
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The case in which the photon gains energy from an encounter with an
electron (Xi < γiβi for head-on collisions) is known as inverse Compton scat-

tering. One example of inverse Compton scattering that I’ve already men-
tioned is the Sunyaev-Zel’dovich effect, in which Cosmic Microwave Back-
ground (CMB) photons gain energy as they scatter from free electrons in
the intracluster gas of rich galaxy clusters. As a general case, consider a gas
with temperature T . As long as T ¿ mec

2/k ∼ 6 × 109 K, we can treat the
free electrons in the gas non-relativistically. That is, we can write down the
typical speed of a free electron in the gas as

vi ≈
√

kT/me ≈ 0.012c
(

T

106 K

)1/2

. (8)

The critical frequency νc at which a photon will neither gain nor lose energy
by an encounter with a typical thermal electron is given by hνc/c ≈ mev, or

hνc ≈ c
√

mekT ≈ mec
2

(

kT

mec2

)1/2

∼ 10 keV
(

T

106 K

)1/2

. (9)

(I confess: this is a extraordinarily crude calculation, which assumes that ev-
ery electron-photon encounter is a head-on collision, and that every electron
has a speed equal to the thermal speed. It yields only a rough estimate of the
“break-even” frequency νc.) The average energy of a CMB photon is hν ≈
6.3 × 10−4 eV, corresponding to an energy of X = hν/(mec

2) ≈ 1.2 × 10−9.
Thus, when CMB photons scatter from the T ∼ 107 K electrons inside a
cluster, they gain energy from the encounter. A head-on encounter yields a
final energy

Xf ≈ Xi
1 + βi

1 + βi cos θ
≈ Xi[1 + βi(1 − cos θ)] , (10)

assuming βi ¿ 1 for the electrons in the cluster. Thus, we expect the
Sunyaev-Zel’dovich effect to give fractional changes in the photon energy
of order

Xf − Xi

Xi

≈ βi ≈
(

kT

mec2

)1/2

. (11)

This will be a few percent for a cluster at a temperature of 10 million Kelvin.
At these low photon energies (Xi ∼ 10−9), the cross-section for scattering is
equal to the Thomson cross-section. As you’ve already calculated in Problem
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Set #2, the probability of a CMB photon being scattered as it passes through
the tenuous intracluster medium is only P ∼ 0.004. Since the probability
of scattering is small, and the energy shift for a scattered photon is small,
the net change to the CMB energy density in passing through a cluster is
(small)2. The effect of the Sunyaev-Zel’dovich effect on the initial Planck
spectrum of the CMB (Figure 1) is to shift it slightly to higher frequencies.

Figure 1: Solid: CMB spectrum without Sunyaev-Zel’dovich effect. Dashed:
Spectrum with Sunyaev-Zel’dovich effect.

The intensity is decreased in the Rayleigh-Jeans portion of the spectrum
(lowering the brightness temperature) and increased on the Wien tail (raising
the brightness temperature).

Another situation where photons encounter hot gas is in the accretion
disk associated with an active galactic nucleus (AGN). In the unified model
of active galactic nuclei, the highly magnetized gas in the vicinity of the
central black hole emits synchrotron radiation with a flux Fν ∝ ν−0.7. Since
the electrons are extremely energetic and the magnetic field is very strong in
the central engine, you would expect the power-law synchrotron spectrum to
extend to extremely high frequencies. When we observe the spectrum of a
typical AGN, however (see Figure 2), we don’t see a perfect power law at high
frequencies. Instead, there is a broad “hump” centered at photon energies
of ∼ 30 keV. This feature is sometimes called the “Compton hump”. This
name has been bestowed because it is thought to result from the scattering of
synchrotron photons by the gas in the AGN accretion disk. If the scattering
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Figure 2: Average spectrum of an AGN (Seyfert 1, for the AGN connoisseurs
in the audience), plotted as νFν versus log ν.

region of the AGN disk has a temperature T , then synchrotron photons with
a frequency ν > νc(T ) will lose energy as they scatter from electrons in the
disk. Synchrotron photons with ν < νc(T ) will gain energy as they scatter
from electrons in the disk. Thus, there will be a pile-up of photons at energies
∼ hνc, resulting in the hump of the spectrum.

2 Wednesday, November 23: Inverse Comp-

ton Cooling

As an relativistic electron (εe = γmec
2 À mec

2) travels through a region con-
taining low-energy photons (εγ = hν ¿ mec

2), the electron loses energy with
each inverse Compton scattering. It is useful to know the rate PCompt, in ergs
per second, at which an electron of Lorentz factor γ loses energy as it moves
through a region of photon energy density Uph. In certain limiting cases, the
computation is simple. Let us assume, to begin with, that the electron has
γ > 1 in the observer’s frame of reference. The electron has a head-on en-
counter with a photon that has a dimensionless energy/momentum/frequency
X ≡ hν/(mec

2) in the observer’s frame. In the electron’s rest frame, the en-
ergy of the photon will be blueshifted to X ′ = Xγ(1 + β) ∼ γX. If X ′ ¿ 1,
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or equivalently, X ¿ 1/γ, the electron-photon scattering will be a simple
Thomson scattering in the electron’s rest frame. Thomson scattering is very
pleasant to work with, since it has a cross-section σT = 6.65×10−25 cm2 that
is independent of photon energy. Thus, for today, I’ll not only assume that
X ¿ 1, which produces inverse Compton scattering, but I’ll also make the
more restrictive assumption that X ¿ 1/γ, which reduces to simple Thom-
son scattering in the electron’s initial rest frame. For visible light, which
has νvis ∼ 5 × 1014 Hz, the dimensionless photon energy is Xvis ∼ 4 × 10−6.
Thus, electrons with γ ¿ 1/Xvis ∼ 2 × 105 will satisfy the criterion that
Xvis ¿ 1/γ.

In the limit X ¿ 1/γ, the computation of PCompt is fairly straightforward.
(I refer you to section 7.2 of the textbook for details.) The result, integrated
over all collision angles, is

PCompt =
4

3
σT cγ2β2Uph . (12)

This equation may be giving you a feeling of déja vu. Back on November 7,
we computed the power radiated by an electron in the form of synchrotron

radiation. When averaged over all possible pitch angles, the result was

Psynch =
4

9
r2
0cγ

2β2B2 =
4

3
σT cγ2β2UB , (13)

where UB = B2/(8π) is the energy density of the magnetic field in which
the electron is spiraling along.4 Thus (as long as X ¿ 1/γ) the ratio of an
electron’s inverse Compton scattering to its synchrotron emission is simple:

PCompt

Psynch

=
Uph

UB

. (14)

Suppose a high-energy electron is moving through the universe; you want
to know whether it’s losing energy primarily through inverse Compton scat-
tering or synchrotron emission. All you need to do is compute the energy
density of photons and of the magnetic field in its vicinity.

There exists a ubiquitous supply of low-energy photons in the universe:
the Cosmic Microwave Background. The energy density of CMB photons is

UCMB = aT 4
CMB = 4.2 × 10−13 erg cm−3(1 + z)4 , (15)

4The similarity of the inverse Compton and synchrotron equations shouldn’t be too
astonishing; they both describe the interaction of an electron with an electromagnetic
field.
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where z is the cosmological redshift. Inverse Compton scattering from the
CMB will be more effective than synchrotron emission when UCMB > UB, or

B <
√

8πaT 2
CMB ≈ 3.2 × 10−6 gauss(1 + z)2 . (16)

High energy electrons will always lose energy. Even if you’re in a region where
the magnetic field is less than a microgauss, inverse Compton scattering from
the CMB will always act to cool the electrons.

Suppose you have a power-law distribution of highly relativistic electrons
(β ≈ 1) with Lorentz factors ranging from γmin to γmax À γmin. If the
power-law index is p > 1, we may write the number density of electrons with
Lorentz factor in the range γ to γ + dγ as

N(γ)dγ = (p − 1)ne(γ/γmin)
−p dγ

γmin

, (17)

where ne is the total number density of relativistic electrons. Integrating the
Compton power per electron over the entire range of electron energies, we
find

dP

dV
=

∫ γmax

γmin

PComptN(γ)dγ (18)

≈ 4

3
σT cUphneγ

2
min

p − 1

3 − p

[

(γmax/γmin)
3−p − 1

]

. (19)

If p ≈ 2.5, typical for observed distributions of relativistic charged particles,
then the Compton power per unit volume is

dP

dV

∣

∣

∣

rel
≈ 4σT cUphneγ

2
min

(

γmax

γmin

)1/2

. (20)

Since the total energy density of the electrons, in the case p ≈ 2.5, is

Ue = mec
2
∫ γmax

γmin

n(γ)γdγ ≈ 3neγminmec
2 , (21)

the inverse Compton cooling time for the relativistic electrons is

tCompt ≈ Ue/
dP

dV
≈ 3

4

mec

σT
√

γminγmax

1

Uph

. (22)
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Scaled to the present energy density of the CMB, this is

tCompt ≈
2300 Gyr√
γminγmax

(

4.2 × 10−13 erg cm−3

Uph

)

. (23)

For inverse Compton cooling from the CMB to be significant today (tCompt <
H−1

0 ), the relativistic electrons must have a characteristic Lorentz factor
(γminγmax)

1/2 > 160.
We can compare the result for relativistic electrons to the Compton power

per unit volume from a distribution of non-relativistic thermal electrons. In
this case, we expect γ ≈ 1, 〈β2〉 ≈ 3kT/(mec

2), and

dP

dV

∣

∣

∣

therm
≈ 4σT cUphne

(

kT

mec2

)

. (24)

Since the energy density of the nonrelativistic thermal electrons is Ue =
ne(3kT/2), the inverse Compton cooling time for the electrons is

tCompt = Ue(dP/dV )−1 =
3

8

mec

σT

1

Uph

, (25)

independent of the electron temperature T (as long as the electrons are non-
relativistic, and the typical photon energy is much less than kT ). Scaled to
the energy density of the CMB, the inverse Compton cooling time is

tCompt = 1200 Gyr

(

4.2 × 10−13 erg cm−3

Uph

)

. (26)

Thus, inverse Compton cooling of non-relativistic electrons by the CMB is
negligible today. However, the cosmological fans among you may want to
show that the inverse Compton cooling time from the CMB was equal to the
age of the universe at a redshift

1 + z =
(

3

2

√

Ωmatter,0H0tCompt,0

)2/5

≈ 5.5 , (27)

assuming that Ω in matter today is Ωmatter,0 = 0.3. A redshift of z ≈ 4.5
corresponds to an age for the universe of t ≈ 1.3 Gyr. For the first gigayear
or so, inverse Compton scattering was an important cooling mechanism for
hot gas.
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So far, in looking at the interaction of high-energy electrons with low-
energy photons, I have focused on the cooling of the electrons. However, the
loss of energy by electrons is necessarily accompanied by a gain in energy by
the photons which scatter from them. Suppose, for instance, that photons
with a blackbody spectrum, characterized by a temperature Trad, interact
with highly relativistic electrons, with the usual power-law energy spectrum
N(γ) ∝ γ−p. The typical dimensionless photon energy, prior to scattering,
will be Xi ∼ kTrad/(mec

2). If Xi ¿ 1/γmax, then each electron-photon scat-
tering will be a Thomson scattering in the electron’s rest frame, boosting the
energy of the photon from Xi to Xf ∼ γ2Xi. With a power-law distribution
of γ, we expect a power-law distribution of scattered photons. It can be
shown that the power per unit volume per unit energy of scattered photons
will be

dP

dV dXf

∝ ne(kTrad)
(p+5)/2X

−(p−1)/2
f . (28)

Since the dimensionless energy Xf is proportional to the frequency ν of the
photon, this implies a power per unit volume per unit frequency for scattered
photons of

dP

dV dν
∝ ne(kTrad)

(p+5)/2ν−(p−1)/2 . (29)

Once again, we see the similarity between inverse Compton scattering and
synchrotron radiation. The photons scattered by relativistic electrons have
the same power-law spectrum as the photons produced by synchrotron radia-
tion. Even the power-law index, s = (p−1)/2, is the same. (Notice also that
the shape of the spectrum in equation (29) is dictated by the distribution of
electron energies, not by the shape of the blackbody spectrum. If the scat-
tered photons had been initially monochromatic, the spectrum of scattered
light would have been the same.)
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