
1 Monday, September 26: Radiative Trans-

fer

As light travels through the universe, things happen to it. By interacting with
charged particles, photons can gain energy; they can lose energy; they can
change their direction of motion. Photons can also be absorbed by opaque
lumps of matter, such as dust particles. The photons can also be joined by
new photons emitted by the medium through which they travel.

It’s very useful to have a shorthand description of what happens to the
specific intensity Iν of light as it propagates through the universe. This de-
scription is given by the equation of radiative transfer. The radiative transfer
equation is a key equation for the study of stellar structure. (How does light
get from the center of the Sun to its photosphere? Gamma rays are emit-
ted by fusion reactions in the Sun’s core, but the photons that escape from
the photosphere are largely at near-infrared, visible, and near-ultraviolet fre-
quencies. Obviously, as photons travel through the Sun, their mean energy
must be decreased.) The radiative transfer equation is also a key equation for
the study of the interstellar medium. (How does the light emitted by a star’s
photosphere differ from the light we observe at our telescope? The difference
in absorption at different wavelengths can tell us about the composition of
the dust and gas of the interstellar medium.)

To derive the equation of radiative transfer, let’s start by setting up two
identical transparent windows, each of area dA, separated by a short distance
ds, as shown in Figure 1. After passing through the first window with spe-
cific intensity Iν , the light passes through the second window with specific
intensity I ′

ν . If the space between the two windows is totally empty, then
specific intensity is conserved:

I ′

ν = Iν . (1)

This result is derived in the textbook; it results in a straightforward way from
Euclidean geometry. Let me just note one of its implications. If you move
further away from an extended light source (like the Sun, for instance), the
power emitted per unit solid angle remains constant. However, the solid angle
subtended by the light source decreases as one over the square of the distance.
Thus, the light source’s flux, integrated over its angular area, decreases as
one over the square of the distance to the light source. The constancy of
specific intensity implies the inverse square law of flux, and vice versa.
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Figure 1: Geometry of radiative transfer

Now, suppose the space between the two windows isn’t empty. It may
contain hot, ionized gas (a bit of the Sun’s interior, or at a much lower density,
the coronal gas of the interstellar medium). It may contain cool molecular gas
(a bit of the Earth’s atmosphere, or at a much lower density, the molecular
clouds of the interstellar medium). For that matter, it may contain a slab
of lead. Each of these materials will scatter and absorb photons in different
ways. They will also produce photons in different ways.

Let’s look first at what happens if the material between the two windows
is spontaneously emitting light. (That is, it’s emitting photons regardless of
the value of Iν .) The gain in specific intensity going from the first window
to the second is

dIν = I ′

ν − Iν = jνds , (2)

where jν is the emission coefficient, which has units of erg s−1 cm−3 ster−1 Hz−1

in cgs units. That is, if you had a cubic centimeter of the material between
the windows, the emission coefficient is the power it would emit into a small
solid angle dΩ in a small frequency interval ν → ν + dν. (Note that the
emission coefficient may be anisotropic.)

Although the spontaneous emission is independent of how much light is
shining through the first window, the amount of absorption depends on Iν .
If 50% of a low-intensity light is absorbed in going through a filter, then 50%
of a high-intensity light will be absorbed as well. for the absorption of light,
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therefore, we may write

dIν = I ′

ν − Iν = −ανIνds , (3)

where αν is the absorption coefficient, which has units of cm−1 in cgs units.
The absorption coefficient represents the fraction of the specific intensity lost
per centimeter traveled. It obviously can differ greatly for different media.
The fact that we can see M31 at a distance of d = 670 kpc ≈ 2 × 1024 cm
means that the average absorption coefficient along the line of sight to M31
must be α < d−1 ≈ 5 × 10−25 cm−1 at visible frequencies. By contrast,
the fact that I can’t see through a piece of aluminum foil 2 × 10−3 cm thick
means that its absorption coefficient must be α > d−1 ≈ 500 cm−1 at visible
frequencies.

The absorption coefficient is also frequency-dependent. Consider lead,
for instance. Its absorption coefficient for gamma-rays with E ≈ 1 MeV is
αν ≈ 0.6 cm−1. For lower-energy X-rays, though, with E ≈ 17 keV, the
absorption coefficient has the much higher value of αν ≈ 1400 cm−1. The
absorption efficient can be either positive or negative in sign. If αν > 0,
then energy is removed from the beam of light as it travels. if αν < 0,
then energy is added to the beam by stimulated emission (as opposed to the
spontaneous emission accounted for by the emission coefficient jν). There
exist astronomical objects that act as masers, and have negative absorption
coefficients at some frequencies. Mostly, though, we’ll be dealing with objects
that have positive absorption coefficients.

By combining the effects of spontaneous emission on the one hand, and
the effects of absorption plus stimulated emission on the other hand, we find
the radiative transfer equation:

dIν

ds
= −ανIν + jν . (4)

Much of astronomy consists of finding appropriate values for the absorption
coefficient αν and the emission coefficient jν , and then solving for Iν as a
function of position s.

Radiative transfer experts (and even some non-experts) frequently talk
about the optical depth of some object. The optical depth is given the symbol
τν and is defined by the relation

dτν ≡ ανds . (5)
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Thus, the optical depth is a dimensionless number. For a path running from
s0 to s, the optical depth is

τν(s) =
∫ s

s0

αν(s
′)ds′ . (6)

A slab of material is called optically thick (or opaque) at a frequency ν when
τν > 1; it is called optically thin (or transparent) when τν < 1. If the material
happens to have an absorption coefficient αν that is constant in the region
of interest, then

τν = αν(s − s0) . (7)

The mean free path `ν is the distance s − s0 for which τν = 1. (That is,
it’s the thickness at which a slab of material goes from being transparent to
opaque.) Again, if αν is constant,

`ν =
1

αν

. (8)

For example, the mean free path of 1 MeV photons in lead is `ν = 1/0.4 cm−1 =
2.5 cm ≈ 1 inch.

When the radiative transfer equation is divided by αν , it becomes

dIν

ανds
= −Iν +

jν

αν

, (9)

or using the definition of optical depth,

dIν

dτν

= −Iν + Sν , (10)

where Sν ≡ jν/αν is called the source function. It has the same units as the
specific intensity ( erg s−1 cm−1 ster−1 Hz−1).

So now we have a simple (deceptively simple!) equation that tells us how
specific intensity varies as light travels through a medium. Our only difficulty
is determining αν and jν , or alternatively Sν and τν , for every point along
the light’s path. Fortunately, there are a few interesting cases for which the
solution is simple. Consider, for instance, the case when Sν = jν = 0; that
is, the medium through which the light travels doesn’t glow spontaneously.
In this case, the radiative transfer equation reduces to

dIν

dτν

= −Iν , (11)
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with solution
Iν(τν) = Iν(0)e

−τν . (12)

The optical depth, we see, is just the dimensionless e-folding factor for ab-
sorption.

Another easy solution comes when the source function Sν is constant in
space. Then the solution of the radiative transfer equation is

Iν(τν) = Sν + e−τν [Iν(0) − Sν ] . (13)

In the limit τν → ∞, Iν → Sν . That is, if you are looking at an opaque slab
of material, it doesn’t really matter what light sources are on the other side
of the slab. The specific intensity you see is dictated by the source function
of the slab on the side facing you. This simplification provides a glimmer of
hope for understanding emission from opaque objects (like stars, for instance,
or lead bricks). We don’t have to know the details of how photons are created
within the region we can’t see; we just need to know the source function Sν

in the region we can see (the photosphere of the star, for instance, or the
surface of a lead brick).

2 Wednesday, September 28: Blackbody Ra-

diation

Talking about the emission of light from opaque objects inevitably leads us
to the topic of blackbody radiation. A blackbody, in the language of physics,
is an object that absorbs every photon that strikes it. You might think it
would be impossible to build an actual blackbody; after all, no material has
an albedo of exactly zero at all wavelengths. However, it is possible to build
a very good approximation of one. Start by making a closed box whose
walls are made of a substance which is opaque at all frequencies of interest
(τν À 1). The interior of the box is empty.1 We regulate the temperature
of the box so that it has a constant temperature T (Figure 2). The walls
of the box create photons, which bounce around inside the box, creating
a photon gas which comes into thermal equilibrium with the walls of the
box. The interior walls of the box now satisfy our definition of a blackbody!

1In practice, you don’t have to pump down the interior to a high grade vacuum – as
long as the gas inside is highly transparent (τν ¿ 1) at the frequencies of interest, that’s
a good enough approximation.
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Figure 2: Creating blackbody radiation.

Although a photon may not be absorbed the first time it encounters the
wall, or the second time, or the third time, eventually it will be absorbed.
(After all, no material has an albedo of exactly one at any wavelength.)
Now we make a tiny hole, no bigger than a pinhole, in the wall of the box.2

When we place our eye (or other measuring instrument) to the hole, the
specific intensity we measure, Iν , will be that of blackbody radiation. The
specific intensity of blackbody radiation is a function only of the temperature
T . It is independent of the shape or size or chemical composition of the
box. (If it weren’t, then energy could flow between two blackbodies of the
same temperature T but different shapes, sizes or chemical compositions.
This would violate the laws of thermodynamics.) The specific intensity of
blackbody radiation can thus be written in the form

Iν = Bν(T ) , (14)

where Bν , known as the Planck function, is a function only of ν and T .
In the mid-nineteenth century, the form of Bν(T ) was poorly known.3

However, experimental physicists began finding clues about the shape of Bν .
For instance, in 1879, Josef Stefan determined that the energy density inside

2If the window is very small, the leakage of photons through the hole won’t significantly
disturb the thermal equilibrium of the system.

3The physicist Gustav Kirchhoff wrote “It is a highly important task to find this uni-
versal function.”
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a blackbody cavity was
u(T ) = aT 4 , (15)

where a = 7.6 × 10−15 erg cm−3 K−4. This law was independently discovered
by Boltzmann, so it is known as the Stefan-Boltzmann law. This implies that
the power emitted per unit area of a blackbody is

F (T ) = σT 4 , (16)

where σ = ac/4 = 5.7 × 10−5 erg s−1 cm−2 K−4.4 In 1893, Wilhelm Wien
noted that the frequency at which the specific intensity of a blackbody is
maximized is directly proportional to the temperature:

νmax = CT , (17)

where C = 5.9 × 1010 Hz K−1.5 By the end of the 19th century, the shape
of Bν(T ) was fairly well determined experimentally. The Planck function
Bν(T ) is shown in Figure 3 for different values of T . At the low-frequency

Figure 3: Planck function Bν(T ) for different values of T .

end (hν ¿ kT ), the Planck function is a powerlaw: Bν ∝ ν2. This part

4You are an approximate blackbody with a temperature of T = 310K. You therefore
radiate P = 5.2 × 105 erg s−1 = 0.052watts from every square centimeter of your surface.

5With a temperature of T = 310K, you therefore emit the most power at a frequency
of νmax = 1.8 × 1013 Hz, in the mid-infrared.
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of the Planck function is called the Rayleigh-Jeans portion. At the high-
frequency end (hν À kT ), the Planck function has an exponential cutoff:
Bν ∝ ν3 exp(−hν/kT ). This part of the Planck function is called the Wien

tail. It seems that some bit of physics is suppressing the formation of high-
frequency photons in a blackbody.

In the year 1900, given the observed properties of blackbody radiation,
Max Planck tried to derive the functional form of Bν(T ). He first pointed
out that a function of the form

Bν(T ) ∝ ν3

exp(hν/kT ) − 1
(18)

provided a smooth interpolation between the Rayleigh-Jeans (powerlaw) por-
tion of Bν and the Wien (exponential) tail. He then tried to find physical
arguments for a function of the form given in equation (18). Planck’s key re-
alization was that light energy comes in quanta, each with energy hν. Thus,
at a given frequency ν, the total photon energy inside a cavity must be
E = nhν, where n is an integer. The probability of having a state of energy
E is P (E) ∝ exp(−E/kT ), so if the energy E is quantized, the probability
of having n quanta is

P (n photons) ∝ exp

(

−n
hν

kT

)

. (19)

Note this means that

P (n = 1)

P (n = 0)
∝ exp(−hν/kT ) , (20)

which is vanishingly small when hν À kT . The exponential cutoff in Bν at
high frequencies occurs because even a single high-frequency photon has an
energy much greater than the characteristic energy kT of the system.

When you go through the complete derivation (as laid out in the text),
the exact value of the Planck function is

Bν(T ) =
2hν3/c2

exp(hν/kT ) − 1
. (21)

Deriving the Stefan-Boltzmann law and Wien’s law from the Planck function
is left as an exercise for the reader.
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An object for which the source function Sν is equal to the Planck func-
tion Bν(T ) is emitting thermal radiation. An object for which the specific
intensity Iν is equal to Bν(T ) is emitting blackbody radiation. To see the dif-
ference between thermal radiation and blackbody radiation, consider looking
at a slab of material with optical depth τν that is producing thermal radia-
tion (Sν = Bν(T )). If no light is falling on the backside of the slab, then the
specific intensity that we measure is (see yesterday’s notes)

Iν = Bν(T )(1 − e−τν ) . (22)

If the slab is optically thick (τν À 1), then

Iν ≈ Bν(T ) (23)

and we observe blackbody radiation. If the slab is optically thin (τν ¿ 1)
then

Iν ≈ τνBν(T ) ¿ Bν(T ) . (24)

Since the optical depth τν is a function of frequency, the spectrum that we
see from an optically thin thermally radiating slab will not be a blackbody
spectrum.

3 Friday, September 30: Temperature (and a

Little Scattering)

The Planck function is so tremendously useful that astronomers frequently
apply it in cases where it doesn’t, strictly speaking, apply. The Cosmic Mi-
crowave Background (seen in last week’s notes) is the outstanding example of
a case where the Planck function really does fit the observed specific intensity.
Stars, in many cases, are moderately well fit by a Planck spectrum. Hot gas
clouds are well fit by Planck spectrum at the frequencies for which τν À 1;
usually the low-frequency end of the spectrum, for which Bν ∝ ν2. If every
object in the universe radiated like a perfect blackbody, then knowing the
temperature T would tell you everything you needed to know about its spe-
cific intensity Iν , and vice versa. Since objects are not perfectly blackbodies,
the different methods we use to estimate their temperature yield divergent
results. For a distance glowing object, we can estimate the temperature T
by giving the brightness temperature Tb, the effective temperature Teff , or
the color temperature Tc.
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The brightness temperature Tb is actually an alternative way of stating
the specific intensity Iν of an object at a frequency ν. That is, Tb(ν) is the
temperature for which the observed specific intensity Iν obeys the equality

Iν = Bν(Tb) . (25)

At the Raleigh-Jeans end of the Planck function, where where hν ¿ kTb, the
brightness temperature is given by the relation

Iν =
2ν2

c2
kTb , (26)

or

Tb =
c2

2k

Iν

ν2
. (27)

If the object we’re observing really is a blackbody, then Tb(ν) is the actual
temperature T of the object at all frequencies. More generally, however, the
brightness temperature varies with frequency. Because the formula for Tb

as a function of Iν and ν is particularly simple in the Rayleigh-Jeans limit
(low frequency), the brightness temperature is a quantity frequently used by
radio and microwave astronomers, who deal with the low-frequency end of
the electromagnetic spectrum.

The effective temperature Teff is actually an alternative way of stating the
energy flux from the surface of an object. That is, Teff is the temperature for
which the surface flux F , integrated over all frequencies, obeys the relation

F = σT 4

eff
, (28)

or
Teff = (F/σ)1/4 . (29)

Saying that the Sun’s effective temperature is Teff = 5778 K is equivalent
to saying that the flux through the Sun’s photosphere is F¯ = σT 4

eff
=

6.32 × 1010 erg s−1 cm−2 – that’s 6.32 kilowatts per square centimeter. Here
at the Earth’s location, we are at a distance r = 1 AU = 216 R¯ from the
Sun’s center, so the flux measured by Earthlings is F = F¯(R¯/r)2 = 6.32×
1010 erg s−1 cm−2/(216)2 = 1.36×106 erg s−1 cm−2 – that’s a mere 0.136 watts
per square centimeter. This is the same flux you’d observe for a blackbody
1 AU in radius, and with a temperature of T = 5778 K/(216)1/2 = 393 K.
However, what we observe from Earth is not an (approximate) blackbody
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spectrum with T = 393 K, but a dilution of an (approximate) blackbody
spectrum with T = 5778 K. The effective temperature is a quantity fre-
quently used by stellar astronomers, even when talking about T dwarfs like
Gliese 229B (Figure 4), whose spectra are far from the blackbody ideal.

Figure 4: The flux Fλ of the T dwarf Gliese 229B, along with a blackbody
spectrum of the same Teff (Geballe et al. astro-ph/0102059).

The color temperature Tc of an object is actually an alternative way of
stating the shape of its spectrum. There are different ways of defining the
color temperature of an object. If the shape of the spectrum Iν is close to that
of a blackbody, the color temperature can be defined by finding the frequency
νmax at which Iν has a maximum, then estimating the color temperature from
the Wien law:

Tc =
νmax

5.9 × 1010 Hz K−1
. (30)

For multi-peak spectra like that of Gliese 229B, this definition of the color
temperature is a fairly silly one. Another way of determining the color tem-
perature is the measure the ratio of the specific intensities at two different
frequencies, Iν1

/Iν2
, and find the temperature of a blackbody which has the

same flux ratio. This is essentially what you do when you estimate a star’s
temperature from its B − V color, for instance.6 A warning: determining

6It’s also what a blacksmith does when he estimates the temperature of a piece of hot
iron from its color. For temperatures less than the melting point of iron (1811K), νmax
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the color temperature from the flux ratio Iν1
/Iν2

is impossible when both
frequencies lie in the Rayleigh-Jeans portion of the Planck function, since
then

Iν1

Iν2

=
(2ν2

1
/c2)kTc

(2ν2
2/c

2)kTc

=
ν2

1

ν2
2

, (31)

independent of temperature. The B photometric band is centered at a fre-
quency ν1 = 6.8 × 1014 Hz; the V band is at ν2 = 5.5 × 1014 Hz. Thus, at
temperatures T À hν1/k = 33,000 K, all blackbodies have the same B − V
color (which turns out to be B − V = −0.46). To estimate the temperatures
of very hot O stars, you need to use higher frequency photometric bands.7

In summary: the brightness temperature Tb is a measure of the specific
intensity Iν at a given frequency; the effective temperature Teff is a measure
of the surface flux F ; the color temperature is a measure of the shape of the
specific intensity curve Iν .

In discussing the radiative transfer equation, I treated the material through
which the light passed as a mysterious black box. The specific intensity, I
said, decreases by an amount −ανIνds in traveling through a distance ds,
due to something or other that’s sucking up photons. (Conversely, the spe-
cific intensity increases by an amount jνds due to something or other that’s
spewing out photons.) It is enlightening to look a little more closely at the
physical processes by which the specific intensity Iν is decreased while passing
through a thin slab of material. Basically, two things can happen.

• A photon can be totally absorbed by the material, thus ceasing to exist.
The photon energy goes to heat up the matter, which then re-radiates
the energy in the form of thermal emission.

• A photon can be scattered by an encounter with a charged particle,
such as an electron. In the low energy limit of Thomson scattering, the
photon’s energy is unchanged by scattering.

The effects of scattering are easiest to see when the scattering is isotropic –
that is, when the scattered photons are emitted equally at all solid angles.8

lies in the infrared, where the smith can’t observe it; he’s basically comparing the flux at
the red end of the visible spectrum to the flux at the violet end.

7The U − B color is a useful estimator for the temperature of O stars.
8Real scattering processes are not usually isotropic, but since it makes the math much

easier, I’ll assume isotropy for the present.
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Isotropic scattering that leaves photon energy unchanged is called coherent

scattering in the text.
Coherent scattering is characterized by the parameter σν , the scatter-

ing coefficient, which has units of cm−1 in the cgs system. The scattering
coefficient is the probability that a photon will be scattered as it travels a
distance of one centimeter. If the material is homogeneous, the mean free
path between scatterings is ` = 1/σν .

If a photon starts out at the origin in an infinite homogeneous medium
with scattering coefficient σν , it will undergo a random walk (sometimes
called a “drunkard’s walk”) away from the origin.9 At the time the photon
undergoes its N th scattering, it will be at a location

~R = ~r1 + ~r2 + . . . + ~rN , (32)

where ~ri is the displacement of the photon between the (i − 1)th scattering

and the ith scattering. The mean square value of ~R will be

〈R2〉 = 〈r2

1
〉 + 〈r2

2
〉 + . . . 〈r2

N〉 (33)

+ 2〈~r1 · ~r2〉 + 2〈~r1 · ~r3〉 + . . .

The cross terms (involving the dot product of one displacement vector with
another) all vanish for isotropic scattering, since the directions of the different
steps are uncorrelated with each other in that case. Thus, the mean square
of the distance traveled after N steps is

〈R2〉 = 〈r2

1
〉 + 〈r2

2
〉 + . . . 〈r2

N〉 = N〈r2

1
〉 ≈ N`2 . (34)

Thus, the rms distance traveled by a photon that has scattered N times is

〈R2〉1/2 ≈
√

N` . (35)

where ` is the mean free path of the photon.
Suppose you are observing at MDM and a dense cloud bank settles on

the mountain. Even at high noon, you can’t see more than a few meters
away; let’s take ` = 100 cm. If the fog extends upward for 1 kilometer
(R = 105 cm) over head, the number of times a photon from the Sun must

9To see the origin of the term “drunkard’s walk” consider an extremely intoxicated
individual who takes steps of length `, but who chooses a totally random direction each
time he takes a step.
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scatter before reaching you is N ≈ (R/`)2 ≈ 106. It must travel a total
distance of ∼ N` ≈ 108 cm to get through the cloud layer. Thus, the photon
must travel 100 kilometers to penetrate a layer 1 kilometer thick. Since the
fog bank has an optical depth of τ ∼ R/` ∼ 1000, the sunlight you detect is
highly isotropized: it appears to come from all directions (except from the
opaque earth under your feet).
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