
1 Monday, October 3: Stellar Atmospheres

There exist entire books written about stellar atmospheres; I will only give
a brief sketch of the simplest approximations used in studying stellar at-
mospheres. In particular, I want to discuss that most useful quantity, the
Rosseland mean opacity.1

A photon of frequency ν travels an infinitesimal distance ds inside a star.
In that distance, it can be scattered or absorbed. For simplicity, I will assume
that the scattering is coherent, and that the energy of an absorbed photon re-
emerges as thermal radiation. The radiative transfer equation for scattering
is

dIν

ds
(scattering) = −σνIν + σνJν , (1)

where σν is the scattering coefficient and Jν is the angle-averaged specific
intensity.2 The radiative transfer equation for absorption is

dIν

ds
(absorption) = −ανIν + ανSν , (2)

where αν is the absorption coefficient, and the source function Sν is equal to
the Planck function Bν(T ) if, as we’ve assumed, the energy of the absorbed
photons is converted to thermal radiation.

Combining the effects of absorption and scattering, we find

dIν

ds
= −(αν + σν)Iν + (ανBν + σνJν) . (3)

This equation can be converted to a simpler form

dIν

ds
= −(αν + σν)(Iν − Sν) (4)

if we define a source function

Sν ≡ ανBν + σνJν

αν + σν

, (5)

1A search in astro-ph, for instance, reveals an ongoing conflict between the Rosseland
mean opacity computed by the Opacity Project and that computed by the OPAL group.
Why do these people care so intensely about the Rosseland mean opacity? I hope to
explain in this lecture.

2Note that if the specific intensity Iν is isotropic to begin with, coherent scattering
doesn’t affect it.
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which is just the mean of the Planck function and the angle-averaged specific
intensity, weighted by the absorption coefficient and the scattering coefficient,
respectively.

In general, solving the radiative transfer equation is a tedious chore. How-
ever, in studying stellar atmospheres, some simplifying assumptions can be
made. The outer layers of a star are relatively low in density, so radiation is
the only significant method of transporting energy.3 Moreover, gradients in
temperature and specific intensity are much greater in the radial direction
than in the transverse directions. Thus, a stellar atmosphere can usually
be well approximated as a plane parallel system, in which properties of the
atmosphere, such as T , σν , and αν depend only on the vertical coordinate
z.4

In the plane parallel approximation, the specific intensity Iν depends only
on z and on the angle θ between the direction of the light ray and the z axis:
when the light travels straight upward, in the same direction that z increases,
θ = 0; when the light travels straight down, θ = π. In traversing a thin layer
of the atmosphere, of vertical thickness dz, the distance traveled by light is

ds =
dz

cos θ
, (6)

implying (ds)2 ≥ (dz)2. The radiative transfer equation in a plane parallel
atmosphere thus takes the form

cos θ
∂Iν(z, θ)

∂z
= −[αν(z) + σν(z)][Iν(z, θ) − Sν(z)] . (7)

I have assumed that the emission is thermal, and that the scattering is co-
herent. The above equation can be rewritten as

Iν = Sν −
cos θ

αν + σν

∂Iν

∂z
. (8)

Note that when cos θ = 0, indicating that a light ray is running parallel to
the star’s surface, the specific intensity Iν is equal to the source function Sν .

3In a star’s atmosphere, you don’t have to worry about the messy details of convective
heat transport. Hurray!

4When the Earth’s atmosphere is treated with a plane parallel approximation, it is
sometimes called a “flat Earth” model. Like a spherical cow, a flat planet or star is
sometimes a useful approximation. (And sometimes not.)

2



When cos θ 6= 0, there is a correction term proportional to the gradient of Iν

in the z direction.
How can we solve equation (8) for light traveling at an arbitrary angle θ

in a real star’s atmosphere? To begin with, let’s make the assumption that
the atmosphere is homogeneous and isotropic; this will be our zeroth order
approximation. In this approximation, I (0)

ν = J (0)
ν and, from equation (8),

I(0)
ν = S(0)

ν . (9)

However, the definition of the source function Sν (equation 5) tells us that

(αν + σν)Sν = ανBν + σνJν , (10)

so
I(0)
ν = Bν . (11)

Thus, a homogeneous isotropic atmosphere in which the emission is thermal
produces a blackbody spectrum. Now let’s take into account the fact that
the specific intensity isn’t perfectly homogeneous, but has a gradient in the
z direction. By plugging our zeroth order approximation, I (0)

ν = Bν , back
into equation (8), we find that

I(1)
ν = Bν −

cos θ

αν + σν

∂Bν

∂z
. (12)

Note that if the temperature T decreases as you go upward in the atmosphere,
then the upward specific intensity (cos θ = 1) is slightly greater than it
would be in a homogeneous atmosphere, and the downward specific intensity
(cos θ = −1) is slightly less. This means that there is a net upward flux of
light energy in this case.5

The net flux Fν through a thin layer of the atmosphere can be found by
doing the usual integration over angle (see the notes for Friday, September
23):

Fν(z) =
∫

I(1)
ν (z, θ) cos θdΩ = 2π

∫ 1

−1
I(1)
ν (z, θ) cos θd(cos θ) . (13)

The homogeneous component of the specific intensity contributes nothing to
the net flux; the upward flux exactly balances the downward flux. Only the

5In other words, energy flows from regions of higher temperature to regions of lower
temperature. This is reassuringly consistent with the second law of thermodynamics.
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component proportional to the gradient of Bν makes a contribution:

Fν(z) = − 2π

αν + σν

∂Bν

∂z

∫ 1

−1
cos2 θd(cos θ) . (14)

Performing the integral (which has a value of 2/3), we find

Fν(z) = − 4π

3(αν + σν)

∂Bν

∂T

∂T

∂z
. (15)

(This first order approximation for the flux of light energy within a star is
known as the diffusion approximation, since it has the same functional form
as the equation that describes the diffusion of molecules in a gas.)

Since we know the functional form for the Planck function Bν(T ), the
flux Fν can be computed for each value of z if we know T , αν , and βν as
functions of z. For instance, if you’re dealing with low-frequency radiation,
hν ¿ kT , you can use the Rayleigh-Jeans approximation: Bν ≈ (2ν2/c2)kT ,
which yields

Fν(z) ≈ − 8πν2

3c2(αν + σν)
k
∂T

∂z
. (16)

In real stars, it must be admitted, the effective absorption coefficient, αν +σν

can be a complicated function of frequency, showing the effects of various
atomic absorption lines. If you just want to know the total flux integrated
over all frequencies, you may write

F (z) =
∫

∞

0
Fν(z)dν = −4π

3

∂T

∂z

∫

∞

0

1

αν + σν

∂Bν

∂T
dν . (17)

When Svein Rosseland, back in the 1920s, looked at an equation of this sort,
he realized that it could be rewritten in the form

F (z) = −4π

3

∂T

∂z

1

αR

∫

∞

0

∂Bν

∂T
dν , (18)

where
1

αR

≡
∫

∞

0 (αν + σν)
−1(∂Bν/∂T )dν

∫

∞

0 (∂Bν/∂T )dν
. (19)

The quantity αR defined in this manner is called the Rosseland mean absorp-

tion coefficient, in honor of Professor Rosseland. Why on earth would you
bother to define an effective absorption coefficient in this way, by weighting
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the inverse of αν+σν with a weighting function ∂Bν/∂T and then integrating?
Well, note that

∫

∞

0

∂Bν

∂T
dν =

∂

∂T
∂∞

0 Bνdν =
∂

∂T

1

πσT 4
=

4σT 3

π
. (20)

Thus, equation (18) can be written in the (relatively) simple form

F (z) = −16σT 3

3αR

∂T

∂z
. (21)

In practice, if you want to build a model stellar atmosphere, you look up
the appropriate Rosseland mean opacity for the appropriate temperature,
density, and chemical composition. The Rosseland mean opacity, κR, is equal
to

κR = αR/ρ , (22)

where ρ is the mass density. Thus, the opacity κR has units of cm2 g−1.
Figure 1 shows the Rosseland mean opacity as a function of temperature and

Figure 1: Rosseland mean opacity as a function of T and ρ.

density for gas of solar metallicity. The dotted line represents the Rosseland
mean opacity in the Sun, from the hot, high density interior to the cooler,
lower density photosphere.
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2 Wednesday, October 5: Plane Waves

Light can be regarded as waves that propagate in electric and magnetic fields.
The ancient Greeks were vaguely aware of electricity; the story goes that the
philosopher Thales rubbed a piece of amber with fur, and was able to pick
up bits of straw and dead leaves.6 The ancient Greeks were also vaguely
aware of magnetism; the story goes that a shepherd in Magnesia (a region
in Thessaly) became aware that lumps of ore (of the type now known as
magnetite) attracted the iron nails in his boot soles.7 For centuries, electricity
and magnetism were regarded as mysterious properties of a few selected
substances like amber and magnetite; they were also thought to be unrelated
to each other.

In 1820, Oersted demonstrated that an electric current was capable of
deflecting a magnetized compass needle; shortly afterward, Faraday showed
that a moving magnet produced an electric field. Half a century later, James
Clerk Maxwell put forward a mathematically based electromagnetic the-
ory. Despite the intervening upheavals of relativity and quantum mechanics,
Maxwell’s equations are still useful today. At every point ~r, at every time
t, according to Maxwell, there exists a electric field strength ~E(~r, t) and a

magnetic flux density ~B(~r, t). If a small particle (a bit of amber, for instance)
has an electric charge q and is moving with a velocity ~v, it experiences a force

~F = q

(

~E +
~v

c
× ~B

)

. (23)

(Here, I have assumed v ¿ c.) Equation (23) states that the force exerted by
the magnetic field is perpendicular to the velocity vector; the rate at which
work is done on the charged particle is thus

~F · ~v = q ~E · ~v . (24)

We’ll follow Rybicki and Lightman in using Gaussian units for electric charge.
In Gaussian units, the electric field of a point particle with charge q is

~E =
q

r2

~r

r
. (25)

6The word “electricity” comes from the ancient Greek word for amber.
7The word “magnetism” comes from the geographical region of Magnesia.
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Thus, identical particles will repel each other with a force

F =
q2

r2
. (26)

In the Gaussian cgs system, the basic unit of electric charge is called the
“electrostatic unit”, or esu, for short. It is the amount of electric charge
such that two particles, each with a charge of 1 esu, repel each other with a
force of 1 dyne when placed 1 cm apart.8 Thus, equation (26) really should
be more accurately written as

F =

[

1
g cm3 s−2

esu2

]

q2

r2
. (27)

In practice, it is easier to leave out the term in square brackets by stating

1 esu = 1 g1/2 cm3/2 s−1 . (28)

It may feel a bit strange to measure electric charge in these units, but it
makes relations such as equations (23) and (26) look a lot simpler! By defin-
ing the esu in this way, the units in which E and B are measured become
g1/2 cm−1/2 s−1.9

The electric charge is quantized, but any macroscopic bit of material will
contain a very, very large number of electrons and protons. Thus, at any
point ~r, you can estimate a charge density ρq and an electric current ~j by
constructing a box centered on the point ~r large enough to contain many
charged particles, but still small compared to the total system at which you
are looking. If the volume of the box is V , and it contains N À 1 charged
particles, the charge density is

ρq =
1

V

N
∑

i=1

qi (29)

and the electric current is

~j =
1

V

N
∑

i=1

qi~vi . (30)

8The charge of an electron is qe = −4.80 × 10−10 esu; the choice of sign is due to
Benjamin Franklin.

9For magnetic fields, the basic cgs unit of magnetic flux density is called the “gauss”;
the basic unit of electric field strength doesn’t have a special name – it’s just “dyne/esu”.
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The complete set of Maxwell’s equations is

~∇ · ~D = 4πρq (31)

~∇ · ~B = 0 (32)

~∇× ~E = −1

c

∂ ~B

∂t
(33)

~∇× ~H =
4π

c
~j +

1

c

∂ ~D

∂t
. (34)

Here the quantity ~D is the electric displacement, related to the electric field
strength by the relation ~D = ε ~E, where ε is the dielectric constant. The
quantity ~H is the magnetic field strength, related to the magnetic flux density
by the relation ~B = µ ~H, where µ is the magnetic permeability. In general,
the dielectric constant and magnetic permeability of a substance is not equal
to one; however, in a vacuum, ε = µ = 1, and you don’t have to worry about
the distinction between ~D and ~E, or between ~B and ~H.

In a vacuum, Maxwell’s equations take the simpler form

~∇ · ~E = 0 (35)

~∇ · ~B = 0 (36)

~∇× ~E = −1

c

∂ ~B

∂t
(37)

~∇× ~B =
1

c

∂ ~E

∂t
. (38)

The interesting thing about these equations is that they permit a solution
that consists of waves moving through space. If we take the curl of equa-
tion (38), we have

~∇× (~∇× ~B) =
1

c

∂

∂t
(~∇× ~E) . (39)

Substituting for the curl of ~E from equation (37), we find

~∇× (~∇× ~B) = − 1

c2

∂2 ~B

∂t2
. (40)

However, using the vector identity ~∇ × (~∇ × ~B) = ~∇(~∇ · ~B) − ~∇2 ~B, and

taking advantage of the fact that ~∇ · ~B = 0, we find the result is a wave
equation

~∇2 ~B =
1

c2

∂2 ~B

∂t2
, (41)
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Figure 2: Of course, Maxwell’s equations can be written in different forms.

representing wave propagation at a speed c. An identical equation is found
for the electric field strength ~E.

For illustrative purposes, let’s examine the case of sinusoidal plane waves
propagating along the x axis:

~B = êBB0e
i(kx−ωt) (42)

~E = êEE0e
i(kx−ωt) , (43)

where B0 and E0 are real numbers. Substitution back into the wave equation
confirms that the wavenumber k = 2π/λ and the angular frequency ω = 2πν
are linked together by the relation ck = ω, or c/λ = ν. Maxwell’s equations
for these electric and magnetic waves are

ik(êx · êE)E0e
i(kx−ωt) = 0 (44)

ik(êx · êB)B0e
i(kx−ωt) = 0 (45)

ik(êx × êE)E0e
i(kx−ωt) = i

ω

c
êBB0e

i(kx−ωt) (46)

ik(êx × êB)B0e
i(kx−ωt) = i

ω

c
êEE0e

i(kx−ωt) . (47)

Equations (44) and (45) show us that the vectors êB and êE are both perpen-
dicular to the x axis; that is, the axis along which the wave is propagating.
Equation (46) shows us that the vector êB is perpendicular to the plane de-
fined by the vectors êE and êx. That is, the vectors êB, êE, and êx form a
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set of mutually perpendicular cartesian axes. Equations (46) and (47) tell

us that E0 = B0, and also confirm that the frequencies and phases of the ~E
wave and the ~B wave must be identical (see Figure 3).

Figure 3: Electromagnetic wave moving along the x axis (E0 = B0 = 1).

3 Friday, October 7: Polarization

In the previous lecture, I discussed a simple monochromatic plane wave of
light. For such a wave, I can choose a coordinate system such that

~E = êyE0 cos(kx − ωt) (48)

and
~B = êzE0 cos(kx − ωt) . (49)

Such a wave is linearly polarized. A wave is linearly polarized if its electric
field strength ~E always remains in the same plane. Suppose we wanted to
observe the electric field strength in a plane perpendicular to the direction of
motion of the wave; let’s choose the x = 0 plane for mathematical simplicity.
For the wave described in equation (48), the time variation of ~E in the x = 0
plane is

~E = êyE0 cos(−ωt) = êyE0 cos(ωt) . (50)

That is, ~E just oscillates up and down along the y axis; not very thrilling.
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However, a monochromatic wave doesn’t have to display linear polariza-
tion. Consider, for instance, the superposition of two monochromatic plane
waves. One has the electric field strength

~E1 = êyE0 cos(kx − ωt) , (51)

and the other has electric field strength

~E2 = êzE0 cos(kx − ωt + φ) . (52)

(We don’t have to worry our heads about the corresponding magnetic flux
densities; Maxwell’s equations instantly dictate what they must be.) The
two waves have the same wavenumber k and the same amplitude E0, but
have a phase shift of φ relative to each other. In the x = 0 plane, ~E1 varies
along the y axis, with time dependence

Ey = E0 cos(−ωt) = E0 cos ωt . (53)

In the x = 0 plane, ~E2 varies along the z axis, with time dependence

Ez = E0 cos(−ωt + φ) = E0[cos φ cos ωt + sin φ sin ωt] . (54)

How does the vector ~E = Eyêy + Ez êz vary with time in the x = 0 plane?

Well, the angle θ between ~E and the y axis is given by the relation

tan θ =
Ez

Ey

=
cos φ cos ωt + sin φ sin ωt

cos ωt
= cos φ + sin φ tan ωt . (55)

Thus, if sin φ 6= 0, the electric field strength vector ~E will rotate in the x = 0
plane. The length of ~E is given by the relation

| ~E|2 = E2
y + E2

z = (56)

E2
0 [(1 + cos2 φ) cos2 ωt + 2 cos φ sin φ cos ωt sin ωt + sin2 φ sin2 ωt] .

Let’s look at two special cases.
Suppose that the two plane waves are in phase: φ = 0. This implies, from

equation (55),
tan θ = 1 , (57)

or θ = π/4. That is, the ~E vector points at a 45 degree angle, tilted midway

between the y and z axis. The length of the ~E vector, from equation (57), is
given by the relation

| ~E|2 = E2
0 [2 cos2 ωt] . (58)
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Thus, if the two plane waves are in phase with each other, they add to-
gether to create a linearly polarized wave, of amplitude

√
2E0, tilted midway

between the two component plane waves.
Now suppose that the two plane waves are out of phase by φ = π/2. In

this case, the angle of the ~E vector in the x = 0 plane is given by the relation
(equation 55)

tan θ = tan ωt . (59)

That is, θ = ωt, and the ~E vector in the x = 0 plane rotates with a constant
angular frequency ω. The length of the ~E vector is given by the relation
(equation 57)

| ~E|2 = E2
0 [cos

2 ωt + sin2 ωt] = E2
0 . (60)

That is, the electric field strength vector in the x = 0 plane (or in any plane
perpendicular to the wave’s motion) simply goes around and around and
around in a circle at constant angular frequency. A wave that shows this
type of behavior is thus referred to as having circular polarization.10 At a
given time t, the curve traced out by the vector ~E of a circularly polarized
wave is a helix (Figure 4).

If the phase φ has an arbitrary value, it can be shown that ~E traces out an
ellipse in the x = 0 plane, with circular polarization and linear polarization
being the special limiting cases of elliptical polarization. Playing with polar-
ized light in the laboratory is lots of fun, but producing polarized light seems
to require birefringent substances (like calcite crystals), dichroic substances
(like Polaroid filters), or reflection from dielectric substances at the Brewster
angle.11 Under what circumstances is polarization important in the universe
at large?

To begin with, thermal radiation is not polarized. In the random mo-
tions that characterize a hot substance, there are no preferred orientations.
A blackbody, then, emits light of all wavelengths, all directions of motion,
and all phases. As a result, light from a blackbody is unpolarized. However,

10Parenthetical comment: if φ = π/2, then θ = ωt, and ~E rotates counterclockwise
as seen from the positive x axis; this is conventionally called “right-handed” circular
polarization. If φ = −π/2, then θ = −ωt, and ~E rotates clockwise; this is called “right-
handed” circular polarization.

11I am just throwing in terms like “birefringent”, “dichroic”, and “Brewster angle” to
add artistic verisimilitude; discussing them in detail would take us far astray from the
subject of the course.
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Figure 4: Circular polarization as the result of superimposed linearly polar-
ized waves.

when electrons are accelerated by a magnetic field, there is a preferred di-
rection, dictated by the magnetic flux density ~B. Cyclotron and synchrotron
radiation, therefore, can be polarized under some conditions. Later in the
course, when we discuss synchrotron emission in some detail, we’ll examine
the possible polarization of synchrotron radiation.

In view of the fact that thermal emission is unpolarized, it is remarkable
to note that the light from stars near the plane of our galaxy is observed
to be polarized (Figure 5) at a level of a few percent. So what’s happening
here? Even if light is unpolarized when it is created in a star’s photosphere,
it can achieve polarization by its scattering interactions. It is found that
the most highly polarized starlight is also the most reddened starlight; this
indicates that the polarization is due to interactions with interstellar dust
grains, which also redden the starlight.

Dust grains, in general, are not spherical (Figure 6). Consider a single
dust grain, which we may approximate as a triaxial ellipsoid with semimajor
axes of length a ≥ b ≥ c. The scattering of a linearly polarized light wave by
the grain is most efficient when ~E lies along the longest axis of the grain. It is
least efficient when ~E is aligned with the shortest axis. Thus, if the long axes
of the interstellar dust grains are preferentially perpendicular to the plane of
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Figure 5: Polarization of starlight: sample of 5500 stars in our galaxy. Each
line indicates the direction of ~E; its length is proportional to the percentage
polarization.

the Milky Way, waves with ~E running north-south will be suppressed relative
to waves with ~E running east-west, along the Milky Way. This would produce
the preferential polarization shown in Figure 5.

However, what causes dust particles to be preferentially oriented with
their long axes perpendicular to the plane of our galaxy? After all, they are
constantly being bombarded by gas molecules and photons. Each collision
imparts a torque to the grain. The estimated spin angular frequency for the
tiny grains in the interstellar medium is typically ωgrain ∼ 105 s−1, or even
greater. Various means for orienting these rapidly spinning dust grains have
been proposed. They all make use of the interstellar magnetic field ~B, which
is thought to have a typical value, in cgs units, of B ∼ 10−6 gauss. Dust
grains are made largely of paramagnetic materials; that means if you place
them in an external magnetic field ~B, they develop an internal magnetic field
~Bint that is parallel to ~B. However, the alignment of the internal field with
the external field is not instantaneous; thus, for a grain rotating about an
axis that is not parallel to the external field ~B, ~Bint will be slightly misaligned
with ~B. The interaction of the internal and external field causes a torque
which acts to slow the rotation of the grain. The end state of the grain is
rotation about its short axis, with this axis pointing in the direction of ~B; in
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Figure 6: Typical elongated interstellar dust grain.

this state, ~Bint remains aligned with ~B. The long axis, as the grain continues
to spin, stays in the plane perpendicular to ~B.

Our picture, therefore, is of a galactic magnetic field ~B that lies in the
plane of the Milky Way; dust grains spin around with their long axes perpen-
dicular to the magnetic field ~B, and the linear polarization of light scattering
from the dust grains tends to lies parallel to ~B.
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