
1 Monday, October 31: Relativistic Charged

Particles

As I was saying, before the midterm exam intervened, in an inertial frame of
reference K there exists an electric field ~E and a magnetic field ~B at a space-
time location (~r, t). Another inertial frame of reference K ′ is moving relative

to the first at a constant velocity ~v = ~βc. In the K ′ frame of reference, the
spacetime location (~r, t) transforms to (~r′, t′) by the Lorentz transformation.

In the K ′ frame of reference,

~E ′
‖ = ~E‖ (1)

and
~B′
‖ = ~B‖ , (2)

where ~E‖ and ~B‖ are the components of the E and B fields parallel to the

relative velocity vector ~β. The transformations for the components perpen-
dicular to β are more complicated, and thus more interesting.

~E ′
⊥ = γ( ~E⊥ + ~β × ~B) (3)

and
~B′
⊥ = γ( ~B⊥ − ~β × ~E) , (4)

where γ is the usually relativistic “gamma factor”, γ ≡ (1−β2)−1/2. We can,
of course, also the transformations from the primed frame K ′ to the unprimed
frame K, by switching primed and unprimed quantities and changing the sign
of ~β:

~E⊥ = γ( ~E ′
⊥ − ~β × ~B′) (5)

and
~B⊥ = γ( ~B′

⊥ + ~β × ~E ′) . (6)

If there exists a single charged particle that moves with a constant velocity
(as seen from an inertial frame of reference), transforming its electromagnetic
field between one inertial frame and another is a fairly straightforward task,
outlined in section 4.6 of the textbook. One interesting application is a
charged particle which is moving past you (an inertial observer) on a straight
line at a constant speed. The relative speed of you and the charged particle
is v = βc. The distance of closest approach between you and the particle
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(the impact parameter) is b. Choose a coordinate system so that you, in the
K frame of reference, are at ~r = bêy, and the particle is moving along the
x axis, with ~r = vtêx. (Thus, I am choosing the moment t = 0 to be the
moment of closest approach between you and the charged particle.) In the

K ′ frame of reference, in which the particle is at rest, the ~B′ field is zero,
and the ~E ′ field is a simple inverse square relation:

~E ′ =
q~r′

(r′)3
. (7)

In the K frame of reference, in which you are at rest, the ~B field is no longer
zero and the vecE field is no longer isotropic around the particle. In the
limit of highly relativistic motion (β ≈ 1, γ À 1), the nonzero components
of the electromagnetic field are

Ex ≈ − qγct

(γ2c2t2 + b2)3/2
(8)

Ey ≈ qγb

(γ2c2t2 + b2)3/2
(9)

Bz ≈ Ey . (10)

The E field is maximized when t = 0, and the point charge is at its closest
approach. At this instant,

Ey ≈ Bz ≈ γ
q

b2
, (11)

larger by a factor of γ than the value of Ey you would measure in the non-
relativistic case. On the other hand, Ey only has a high value when γc|t| ¿ b,
or

|t| ¿ 1

γ

b

c
. (12)

In the more leisurely non-relativistic case, Ey has a high value when v|t| ¿ b,
or

|t| ¿ b

v
∼ 1

β

b

c
. (13)

In the highly relativistic case, γ À 1, and the encounter time is brief. In
the non-relativistic case, β ¿ 1, and the encounter time is long. A highly
relativistic charged particle moving past you will cause a much higher electric
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force in your vicinity than a slowly moving particle would, but the high
electric force will last for a much shorter period of time.

Suppose, though, that the charged particle q is not moving at a constant
velocity ~v with respect to the observer, but has an arbitrary trajectory ~rq(t)
in the frame of reference K of an inertial observer. In general, a frame of
reference attached to the moving charged particle is not inertial – the particle
may be speeding up, or slowing down, or changing its direction of motion.
However, at any instant t (as measured by the inertial observer), there exists
an inertial frame of reference K ′ in which the particle is instantaneously at
rest. That is, at the exact instant t, it’s at rest in that frame. It won’t
remain at rest if it’s being accelerated, but for shortly before and after the
moment t, its motion in the K ′ frame will be non-relativistic, and we can
use the classical formulas that we’ve derived earlier. (For example, we can
apply the extremely useful Larmor formula in the K ′ frame.) In any other
inertial frame K, moving at a velocity −~v relative to K ′, we can compute
the properties of the charged particle, and the radiation it emits, by doing
the appropriate transformations.

Let P ′ be the power radiated by the charged particle, as measured in
its instantaneous rest frame K ′. Let P be the power radiated, as measured
in the other inertial frame K. As long as the radiation emitted has no net
momentum in the K ′ frame,1 it can be shown that

P = P ′ . (14)

That is, if a charged particle radiates with a power P ′, as measured in an
inertial frame where it is non-relativistic, it will radiate with the same power
P = P ′, in an inertial frame where it is highly relativistic. (However, the
angular distribution of the power radiated may be very different in the two
frames.)

In the K ′ frame, we can compute the power radiated by using the non-
relativistic formula for an accelerated point charge:

P ′ =
2q2

3c3
|~a′|2 , (15)

where ~a′ is the acceleration of the particle as measured in the K ′ frame. In

1The symmetric radiation produced by a non-relativistic accelerated particle satisfies
the ‘no net momentum’ criterion.
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making the transformation to the K frame, it is useful to write

P ′ =
2q2

3c3

[

(a′
‖)

2 + (a′
⊥)2

]

, (16)

since (as you can probably guess), the component of ~a′ parallel to the ~v
vector, which we call a′

‖, transforms differently from the component of ~a′

perpendicular to ~v; we call this component a′
⊥. Rybicki and Lightman state

that
a′
‖ = γ3a‖ (17)

and
a′
⊥ = γ2a⊥ , (18)

but leave the proof of their statement to problem 4.3 (a classic “exercise left
for the reader”). Note that the acceleration measured in the instantaneous
rest frame K ′ is always larger than the acceleration measured in an iner-
tial frame K that’s in motion relative to K ′. With the transformation of
accelerations between frames, we may write

P = P ′ =
2q2

3c3

[

(a′
‖)

2 + (a′
⊥)2

]

(19)

=
2q2γ4

3c3
(γ2a2

‖ + a2

⊥) . (20)

Doing the transformation of the angular power distribution is a bit more
complicated. Remember, in the instantaneous rest frame K ′, we can use the
non-relativistic formula

dP ′

dΩ′
=

q2(a′)2

4πc3
sin2 Θ′ , (21)

where Θ′ is the angle between ~a′ and the direction of radiation, as measured
in the K ′ frame. But what will the angular power distribution dP/dΩ be
in an inertial frame K, moving at a velocity −~v relative to the particle’s
instantaneous rest frame? Doing a partial transformation is relatively easy.
Referring to Rybicki and Lightman, we find

dP

dΩ
=

q2

4πc3

(γ2a2

‖ + a2

⊥)

(1 − β cos θ)4
sin2 Θ′ . (22)

It’s converting from the emission angle Θ′ as measured in the K ′ frame to
that measured in the K frame that is difficult. Even in this imperfect state of
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conversion, we can notice some interesting results for the radiation from an
accelerated particle. Since β = (1− 1/γ2)1/2, for highly relativistic particles,
β ≈ 1 − 1/(2γ2) is very close to one. That means that the term

1

(1 − β cos θ)4
(23)

is strongly peaked near cos θ ≈ 1 for relativistic particles. Thus, we expect to
see strong beaming of the radiation in the direction θ ≈ 0; that’s the direction
of motion of the particle as seen by the observer in the K frame of reference.
The exact formula for dP/dΩ is written in Rybicki and Lightman for the
cases in which the acceleration ~a is parallel to the ~v vector, and in which the
acceleration is perpendicular to ~v. When the acceleration is perpendicular
to the relative velocity of particle and observer (Figure 1), the majority of

Figure 1: Radiated power in the instantaneous rest frame (left) and the
observer’s rest frame (right).

the power radiated is in a single lobe of opening angle ∼ 1/γ, pointing in the
direction of the particle’s motion (as determined by the K frame observer).

2 Wednesday, November 2: Bremsstrahlung

for Beginners

We now have mastered the art of computing the radiation from a single
accelerated charged particle, even when the charged particle is moving at very
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high speeds (γ À 1) relative to the observer. As astronomers, however, we
typically have to deal with the light emitted by many, many charged particles
simultaneously. To see how the light from individual charged particles adds
together to form the spectrum of light that we actually observe, let’s start by
considering the case of thermal bremsstrahlung. As I noted near the beginning
of the course, bremsstrahlung is the term for radiation that is produced when
one charged particle is accelerated by its interaction with another charged
particle. Thermal bremsstrahlung is produced when the relative motion of
charged particles is due to the fact that they’re in a hot gas, and thus have
random thermal velocities.

Consider a hot ionized gas, which contains a number density ne of free
electrons, each with charge −e = −4.8× 10−10 esu, and a number density ni

of positively charged ions, each with charge +Ze. I’ll make the simplifying
assumption that all the ions have the same charge Z; the generalization to
ions with different charges is left as an exercise to the reader. Today, I’ll focus
on non-relativistic bremsstrahlung, which occurs when the temperature T of
the gas is T ¿ mec

2/k ∼ 6×109 K. I’ll begin by considering a single electron-
ion interaction, then I’ll generalize to find the expected power spectrum of
radiation from a large expanse of hot ionized gas.

As an aside, we don’t expect significant radiation from the interaction
of two particles with identical mass and identical charge (two electrons, for
instance, or two identical positive ions). In the case of particles with the
same mass, the center of mass is always midway between the particles; if
the charge of the particles is the same, the electric dipole moment then
vanishes. Therefore, there will be no electric dipole radiation from electron-
electron interactions, or from the interaction of identical ions. The source
of bremsstrahlung from a hot gas is the interactions between electrons and
ions; since it’s the low-mass electrons that have the greater acceleration, the
electrons are the predominant source of radiation (Figure 2). Let’s start
simply, with a system that consists of one electron and one positive ion. The
electron and ion are initially a large distance apart, and their initial relative
velocity is ~v, where v ¿ c. The impact parameter of the electron is b; that
is, if the electron continued to move on a straight line relative to the ion
(ignoring the electromagnetic forces), its closest distance to the ion would
be b. Since this is a non-relativistic system, we can approximate the force
between electron and ion as being an inverse square electrostatic force:

F = −Ze2

R2
, (24)
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Figure 2: Bremsstrahlung: cartoon version.

where R is the distance between electron and ion. Isaac Newton would tell
us that the orbit of the electron relative to the ion will be a hyperbola if the
system is unbound.

By adopting the impulse approximation, we can make a rapid order-of-
magnitude estimate of the radiation emitted by the electron. Suppose that
we set t = 0 to be the time of closest approach. The impulse approximation
states that the force on the electron is zero until a time −tcol/2 ∼ −b/v.2

The electron then feels a force of order F ∼ −Ze2/b2, in in the direction
perpendicular to its initial velocity, until a time +tcol/2 ∼ b/v. The net
change of the electron’s velocity is then perpendicular to its initial velocity,
and has a magnitude

∆v ∼ F

me

(2∆t) ∼ Ze2

meb2

2b

v
∼ 2Ze2

mebv
. (25)

The name “impulse approximation” comes from the fact that the electron is
assumed to acquire its ∆v in one brief impulse; a single short, sharp, shock
administered by the positive ion. The impulse approximation is only a good
one when the change in velocity, ∆v, is small compared to the initial velocity,
v. This criterion is met when

2Ze2

mebv
< v , (26)

2The characteristic timescale for the collision, tcol ∼ 2b/v, is known as the collision

time.
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or

b > bmin ≡ 2Ze2

mev2
= 2Zr0

(

v

c

)−2

. (27)

If the impulse approximation holds, then for a time t ∼ tcol ∼ 2b/v, the
electron undergoes an acceleration

a ∼ F

me

∼ Ze2

meb2
, (28)

and thus radiates energy at the rate (from the Larmor formula)

P =
2e2a2

3c3
∼ 2e2

3c3

Z2e4

m2
eb

4
∼ 2Z2e6

3m2
ec

3b4
. (29)

The total energy radiated during the electron’s encounter with the ion is thus

W = P · tcol ∼
2Z2e6

3m2
ec

3b4

2b

v
∼ 4Z2e6

3m2
ec

3b3v
. (30)

The distribution in angular frequency ω of the emitted radiation is a useful
function to calculate. The duration of the electron – ion interaction, tcol ∼
2b/v, corresponds to an angular frequency

ωcol ∼
2π

tcol
∼ πv

b
. (31)

For low angular frequencies, ω ¿ ωcol, the acceleration of the electron looks
like a delta function; that is, the duration of the collision is much shorter
than the period of a low-frequency wave. A delta function in time, when you
perform a Fourier transform, corresponds to a uniform function in frequency.
Thus, we expect dW/dω, the distribution of emitted energy as a function of
frequency, to be roughly uniform up to a maximum frequency ∼ ωcol. The
spectral distribution of the radiated energy is then

dW

dω
∼ W

ωmax

∼ b

πv
W ∼ 4Z2e6

3πm2
ec

3b2v2
, (32)

when ω ¿ ωmax and dW/dω = 0 when ω À ωmax.
I find, when I consult the textbook, that the result in equation (32) is

smaller than a factor of two than the more painstakingly derived result of
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Rybicki and Lightman. I bow to their expertise, and will henceforth assume
that

dW

dω
≈ 8Z2e6

3πm2
ec

3b2v2
. (33)

This result still represents the radiation emitted by a single electron during
a single encounter with an ion. We still need to compute the spectrum of
light expected from a large ensemble of electrons and ions. Suppose that the
number density of free electrons in a medium is ne and the number density
of ions (each of which has electric charge Ze) is ni. The relative velocity of
the electrons and ions is assumed to have the value v. The flux of electrons
passing by any particular ion will have the value vne (electrons per unit time
per unit area). At a distance b from the ion, the area element is dA = 2πbdb,
so the number of electrons per unit time passing the ion at a distance b will
be

dN

dtdb
db = vnedA = vne2πbdb . (34)

The power radiated by those electrons will be the rate at which electrons
pass times the energy per electron:

dW

dωdtdb
=

dN

dtdb

dW

dω
= ne2πbv

8Z2e6

3πm2
ec

3b2v2
≈ ne

16Z2e6

3m2
ec

3bv
. (35)

To compute the power per unit volume radiated by all the electrons in the
medium (also known as the specific intensity of the medium), we integrate
the power per ion over all possible impact parameters b, then multiply by
the number density of ions:

dW

dωdtdV
= nine

16Z2e6

3m2
ec

3v

∫ bmax

bmin

db

b
(36)

Note that we need both an upper and lower cutoff on the integral; otherwise
the power will be logarithmically divergent. As it is, we have a formula that
states

dW

dωdtdV
≈ nine

16Z2e6

3m2
ec

3v
ln

(

bmax

bmin

)

. (37)

We don’t need to know the values of bmax and bmin with extreme exactness,
since they only enter our formula logarithmically, but we should know what
they are to within an order of magnitude. We can set bmax by noting that
for a fixed value of b, no power is radiated for frequencies higher than ωcol ∼
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πv/b. Thus, for a fixed value of ω, no power is contributed by encounters
with impact parameters greater than bmax ∼ πv/ω. In the classical regime,
we can take for the lower limit on b, the value bmin for which the impulse
approximation breaks down:

bmin ∼ 2Ze2

mev2
. (38)

For high electron energies, the cutoff is imposed by quantum mechanical
factors.

Generally, physicists write

dW

dωdV dt
= Z2nine

16πe6

3
√

3c3m2
ev

gff , (39)

where gff is the Gaunt factor, which in general depends on both the electron
speed v and the radiation frequency ω.3 By comparison with equation (37),
we find that the Gaunt factor is equivalent to

gff (v, ω) =

√
3

π
ln

(

bmax

bmin

)

. (40)

There exist tabulations of gff in different temperature and frequency regimes.
(However, it is generally a factor of order unity.)

3 Friday, November 4: Advanced Bremsstrah-

lung

Suppose that you have a gas containing a number density ne of free electrons
(each with charge −e) and a number density ni of positively charged ions
(each with charge +Ze). If the electrons are moving relative to the ions with
a typical velocity v then the gas will emit bremsstrahlung radiation with a
specific intensity

dW

dνdV dt
∝ v−1Z2nenigff (ν, v) , (41)

where gff is the Gaunt factor.4 In an x-ray tube (Figure 3), the relative

3The subscript “ff” refers to the fact that bremsstrahlung emission is also called “free-
free” emission; the electron starts free and ends free.

4I have changed from using the angular frequency ω of the radiation to the frequency
ν = ω/(2π). Although ω and ν are interchangeable, ν is more frequently used by as-
tronomers.
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Figure 3: Production of x-rays by bremsstrahlung.

velocity of electrons and atomic nuclei is produced by a high voltage vacuum
tube (about 100 kilovolts is typical). The rapidly moving electrons penetrate
a metallic target. If an electron comes close to an atomic nucleus (well inside
the electron cloud surrounding it), it is accelerated by its electromagnetic
interaction with the nucleus, and emits bremsstrahlung.

If the relative motion of the electrons and ions is due to thermal motions,
we expect that v2 ∼ kT/me, and thus

dW

dνdV dt
∝ T−1/2Z2nenigff (ν, T ) . (42)

More precisely, an integration over the Maxwell distribution of electron ve-
locities at a given temperature yields

dW

dνdV dt
=

25πe6

3mec3

(

2π

3mekT

)1/2

Z2neniḡffe
−hν/kT , (43)

where ḡff (ν, T ) is the Gaunt factor averaged over all electron velocities at
a fixed temperature T . The exponential cutoff in equation (43) is a simple
quantum effect, of the sort Max Planck would appreciate. Light of wave-
length ν comes in quanta of energy e = hν. An electron can’t produce a
bremsstrahlung photon with energy greater than its initial kinetic energy.
At a temperature T , there is an exponentially small number of electrons
with kinetic energy > kT ; thus, there can only be an exponentially small
number of photons produced with hν > kT . Note, in equation (43), that
for frequencies hν ¿ kT , the only dependence on frequency is through the
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Gaunt factor ḡff . At low frequencies, the Gaunt factor depends only loga-
rithmically on ν; thus, bremsstrahlung spectra tend to be nearly flat up to
the exponential cutoff at hν ∼ kT .5

Integrated over frequency, the power per unit volume from non-relativistic
thermal bremsstrahlung is

dW

dtdV
=

25πe6

3hmec3

(

2πkT

3me

)1/2

Z2neniḡB , (44)

where ḡB(T ) is the frequency-averaged value of ḡff (ν, T ). Thankfully, over
a wide range of temperatures, the approximation ḡB ≈ 1.2 is within 20% of
the truth – good enough for astronomical purposes. If all quantities are in
cgs units, this yields

dW

dtdV
≈ 1.7 × 10−27 erg s−1 cm−3T 1/2Z2neni . (45)

In the hot coronal bubbles that fill the interstellar medium, the typical tem-
perature is T ∼ 106 K and ne ∼ ni ∼ 10−2 cm−3. If we assume the interstellar
gas is mainly hydrogen (Z = 1), the specific intensity from bremssstrahlung
will be dW/dtdV ∼ 2× 10−28 erg s−1 cm−3; this means that a cube of coronal
gas 1 AU on a side would produce less than 100 kilowatts of bremsstrah-
lung power. The Local Bubble, in which the Sun is located, has a radius of
R ∼ 50 pc ∼ 1.5 × 1020 cm, and a volume, assuming spherical symmetry, of
V ∼ (4π/3)R3 ∼ 1.5 × 1061 cm3. Thus, its total bremsstrahlung luminosity
will be

L =
dW

dtdV
V ∼ (2 × 10−28 erg s−1 cm−3)(1.5 × 1061 cm3) ∼ 3 × 1033 erg s−1 ,

(46)
or roughly one solar luminosity.6 The maximum frequency at which the
bremsstrahlung will be radiated is ν ∼ kT/h ∼ 2×1016 Hz, in the ultraviolet.

The bremsstrahlung process can also be run in reverse. That is, if an
electron passing close to a positive ion can emit a photon, then an electron

5For comparison, the spectrum of a blackbody has a fairly steep I ∝ ν2 dependence
until you reach its exponential cutoff at hν ∼ kT .

6The total mass of gas in the Local Bubble is about 120M¯, so the mass-to-light ratio
is high.
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passing close to a positive ion can also absorb a photon.7 Since bremsstrah-
lung is also referred to as “free – free emission”, the inverse process is known
as “free – free absorption”. Let’s consider a large cloud of ionized gas which
both emits light by free – free emission and absorbs light by free – free
absorption. If we rummage through our memories of radiative transfer, we
remember that the emission coefficient jν is the energy emitted per unit time
per unit volume per unit solid angle. For isotropic bremsstrahlung emission,

jν =
1

4π

dW

dνdtdV
, (47)

where the value of dW/dνdtdV is given by equation (43). If the gas cloud
is in thermal equilibrium, the rate of emission, jν , is equal to the rate of
absorption, αff

ν Bν(T ), where αff
ν is the absorption coefficient for free – free

absorption and Bν(T ) is the Planck function. Thus, the relation

jν = αff
ν Bν(T ) (48)

implies

αff
ν =

1

4π

dW

dνdtdV

1

Bν(T )
, (49)

or

αff
ν =

8e6

3mec3

(

2π

3mekT

)1/2

Z2neniḡffe
−hν/kT · c2

2hν3
(ehν/kT − 1) (50)

=
4e6

hmec

(

2π

3mekT

)1/2 Z2neni

ν3
ḡff (1 − e−hν/kT ) . (51)

This absorption coefficient is much more complicated than the Thomson
scattering coefficient (σν = σT ne), but it’s useful to know, since free – free
absorption is the dominant opacity source in some temperature and frequency
regimes.

In the high-frequency limit (hν À kT ), we are on the Wien tail of the
Planck function, and αff

ν ∝ ν−3. In the low-frequency limit (hν ¿ kT ), we
are in the Rayleigh-Taylor portion of the Planck function, and αff

ν ∝ ν−2.
Because of the steep decline of the absorption coefficient with increasing

7For an electron to absorb a photon, there must be a third body present – such as the
ion – to carry away some of the momentum. Otherwise, it would be impossible to conserve
both momentum and energy.
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frequency, free – free absorption tends to be an important physical process
at low frequencies. In the low-frequency limit, the numerical value of the
absorption coefficient is

αff
ν = 0.018 cm−1T−3/2

Z2neni

ν2
ḡff , (52)

when all quantities are in cgs units. In the Local Bubble, where T ∼ 106K,
and ne ∼ ni ∼ 10−2 cm−3, the free – free absorption coefficient is

αff
ν ∼ 2 × 10−15 cm−1

ν2
. (53)

If we are at a distance R ∼ 50 pc ∼ 1.5× 1020 cm from the edge of the Local
Bubble, then the Bubble will be optically thick when

αff
ν R ∼ 3 × 105

ν2
> 1 . (54)

This corresponds to frequencies ν < 500 Hz, or wavelengths λ > 600 km. One
reason why astronomers don’t observe at extremely low frequencies is that
the local interstellar medium is opaque in the ELF bandpass (usually defined
as 3 Hz < ν < 300 Hz.)8

8Another reason is that powerful ELF transmitters are used to send messages to deeply
submerged submarines. Thus, any signal you picked up would be likely to be manmade.
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