
1 Monday, November 7: Synchrotron Radia-

tion for Beginners

An accelerated electron emits electromagnetic radiation. The most effective
way to accelerate an electron is to use electromagnetic forces. Since electrons
have mass, they can also be accelerated gravitationally. However, electrons
are seldom in freefall for long. In addition, gravitational accelerations are
frequently small. An acceleration g = 980 cm s−2 makes an electron radiate
with a power

P =
2e2g2

3c3
= 5.5 × 10−45 erg s−1 . (1)

This amount of power would be produced if the electron passed a proton at
a distance

b =

(

e2

meg

)1/2

= 510 cm . (2)

Thus, if a free electron is falling near the Earth’s surface, if there’s a proton
within five meters, the electrostatic acceleration will be greater than the
gravitational acceleration.1

An electron experiences an electromagnetic force if it passes a positively
charged ion; the light it emits in this case is bremsstrahlung. In the limit
that the relative velocity ~v of the electron and ion is small (v ¿ c), the
electron experiences a pure electric force directed toward the ion. In the case
of relativistic bremsstrahlung, the electron experiences a mixture of electric
and magnetic fields in its instantaneous rest frame as the ion zips past.

There exist circumstances in which the electron experiences a purely mag-
netic force. Suppose, in some inertial frame of reference, there exists a uni-
form magnetic flux density ~B, with a negligibly small electric field strength
~E. In the universe, it is not difficult to find magnetic fields, ranging in
strength from the microgauss fields of intergalactic space to the teragauss
fields near the most highly magnetized neutron stars. They aren’t usually
uniform in strength, but the constant ~B approximation is a useful place to
start. If the velocity of the electron is small, then (as we’ve seen in Problem

Set 2) the electron has a circular orbit in a plane perpendicular to ~B, with

1This is just another way of stating that gravity is a pathetically feeble force.
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angular frequency

ωcyc =
Be

mec
= 1.8 × 107 s−1

(

B

1 gauss

)

. (3)

The radiation produced in this non-relativistic case is called cyclotron radia-

tion. In the limit v → c, the cyclotron radiation is monochromatic, with fre-
quency ν = ωcyc/(2π). Thus, the Earth’s magnetic field, with B ∼ 0.5 gauss,
would produce radio waves with ν ∼ 1 MHz. Producing visible light by
the cyclotron process would require a much higher magnetic flux density:
B ∼ 2 × 108 gauss. The power produced by cyclotron radiation is

Pcyc =
2e2ω4

cycr
2

3c3
=

2

3
r2
0c
(

vcyc

c

)2

B2 (4)

= 1.6 × 10−15 erg s−1 β2
cyc

(

B

1 gauss

)2

, (5)

where vcyc = βcycc = ωcycr is the orbital velocity of the electron in the

magnetic field ~B.
For a relativistic electron moving through a magnetic field, the emitted

radiation becomes more complicated, and thus more interesting. As we noted
just a week ago, in an inertial frame where a charged particle is at highly
relativistic speeds, with a Lorentz factor

γ = (1 − v2/c2)−1/2 À 1 , (6)

the radiation from the charged particle is strongly beamed in the particle’s
direction of motion. The angular width of the beamed radiation is ∼ 1/γ.
Not only is the direction of radiation altered in the relativistic limit, but so
is the total power radiated and the spectrum of radiation.

To begin, consider a charged particle of mass m and charge q in a uniform
magnetic field ~B. There is no electric field: ~E = 0. The velocity of the
particle, ~v = ~βc, is not necessarily small compared to the speed of light. The
equation of motion, in its correct relativistic form, is

d

dt
(γm~v) = q( ~E +

~v

c
× ~B) =

q

c
~v × ~B . (7)

The rate at which work is done on the charged particle is

d

dt
(γmc2) = q~v · ( ~E +

~v

c
× ~B) = 0 . (8)
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The constancy of the charged particle’s energy implies that γ = constant.
Thus, the velocity vector ~v is constant in length, although changing in direc-
tion, and the relativistic equation of motion can be written in the form

d~v

dt
=

q

γmc
~v × ~B . (9)

Since the acceleration of the charged particle is proportional to the cross
product of ~v and ~B, it’s convenient to separate ~v into a component parallel
to ~B and a component perpendicular to ~B. If we look at ~v‖, the velocity

component parallel to ~B, we find, from equation (9),

d~v‖
dt

= 0 , (10)

and thus v‖ is constant. Since v = (v2
‖ + v2

⊥)1/2 is also constant, it follows
that v⊥ must also be constant. The equation of motion for ~v⊥,

d~v⊥
dt

=
q

γmc
~v⊥ × ~B , (11)

then represents motion in a circle with a constant acceleration and a constant
angular frequency

ωB =
qB

γmc
. (12)

Note that the frequency is lower by a factor 1/γ than it would be in the
non-relativistic limit.

The combination of constant velocity parallel to ~B and circular motion
perpendicular to ~B means that the net motion of the charged particle is
helical (Figure 1), with a pitch angle given by tan α = v⊥/v‖. As the charged
particle winds along its helix, it emits radiation at a rate

P =
2q2

3c3
γ4a2

⊥ , (13)

where I am using the relativistically correct equation, taking into account
that the acceleration is entirely perpendicular to the charged particle’s mo-
tion. The magnitude of the acceleration is

a⊥ =
v2
⊥

r
= v⊥ωB = (β⊥c)

(

qB

γmc

)

. (14)
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Figure 1: Helical motion of a charged particle in a magnetic field.

This leads to a radiated power of

P =
2q2

3c3
γ4β2

⊥c2 q2B2

γ2m2c2
=

2q4

3m2c3
γ2β2

⊥B2 . (15)

If the charged particle is an electron (and it usually is), we can write

P =
2

3
r2
0cγ

2β2
⊥B2 , (16)

larger by a factor of γ2 than the non-relativistic result. The electrons in
a magnetic field usually have a wide range of pitch angles α, so the power
radiated by an individual electron,

P =
2

3
r2
0cγ

2β2 sin2 α B2 , (17)

ranges from zero for electrons with α = 0 (or v⊥ = 0) to a maximum for
electrons with α = π/2 (or v‖ = 0). If we assume that ~v has a probability
distribution that is uniform over solid angle, then 〈sin2 α〉 = 2/3, and

〈P 〉 =
4

9
r2
0cγ

2β2B2 . (18)

The observed spectrum of synchrotron radiation is strongly affected by
the fact that the radiation emitted by a relativistic electron is strongly
beamed. Thus, an observer will only be able to see light from a highly rela-
tivistic electron during the part of its orbit when it’s moving almost straight
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toward the observer. Thus, once for every turn of the helix, which occurs
with period tB ≡ 2π/ωB, the observer will detect a brief burst of radiation,
with duration ∆t ¿ tB. Since the power observed as a function of time is
nearly a delta function, doing a Fourier transform tells us that the power
observed as a function of angular frequency should be nearly uniform, up to
a critical frequency ωc ∼ 1/∆t.

The more detailed argument of Rybicki and Lightman tells us that the
duration of a pulse seen by a distant observer should be

∆t ∼ 1

γ3

1

ωB sin α
, (19)

where α is the pitch angle.2 Thus, we expect radiation from a synchrotron
electron to have a more-or-less uniform spectrum up to a cutoff frequency

ωc ∼
1

∆t
∼ γ3ωB sin α ∼ γ2 eB

mec
sin α . (20)

There is a notable difference in the spectra of (highly non-relativistic) cy-
clotron radiation and (highly relativistic) synchrotron radiation. The cy-
clotron radiation is all emitted at the cyclotron frequency ωcyc = eB/mec.
The synchrotron radiation is emitted over a broad range of frequencies up
to a limiting frequency ωc ∼ γ2ωcyc À ωcyc. Thus, synchrotron radiation is
a mechanism for extracting photons of high energy from a magnetic field of
fixed B, and thus fixed cyclotron frequency ωcyc.

2 Wednesday, November 9: Advanced Syn-

chrotron Radiation

Suppose that an electron (charge = −e, mass = me) with velocity ~v is in

a region of constant magnetic flux density ~B. The velocity of the electron
can also be expressed as the dimensionless velocity β ≡ v/c, as the Lorentz
factor γ ≡ (1 − β2)−1/2, or as the electron energy ε = γmec

2. The electron

2You might not have guessed γ−3 without doing the detailed analysis. A factor of
γ−1 comes from geometrical considerations; the beam is only pointed toward you for a
fraction ∼ 1/γ of the complete orbital period. A factor of γ−2 comes from the fact that
the electron is moving toward the observer at highly relativistic speeds during the pulse,
so the duration of the pulse is strongly blueshifted, by a factor 1 − v/c ∼ 2/γ2.
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will move on a helix whose axis lies along the ~B vector (see Figure 1). As
the electron is accelerated, it emits electromagnetic radiation with power

P =
2

3
B2r2

0cγ
2β2 sin2 α = 2UBσT cγ2β2 sin2 α , (21)

where σT = (8π/3)r2
0 is the Thomson cross-section of the electron, and

UB = B2/(8π) is the energy density of the magnetic field. In the limit
of an extremely relativistic electron, β ≈ 1, and

P ≈ 2UBσT cγ2 sin2 α , (22)

which becomes

〈P 〉 ≈ 4

3
UBσT cγ2 (23)

when averaged over all angles, since 〈sin2 α〉 = 2/3.
From the discussion of the previous lecture, we expect the spectral dis-

tribution of the power to be roughly constant at a value

dP

dω
∼ P

ωc

, (24)

up to a critical frequency ωc ∼ γ2ωcyc sin α, and drop off rapidly at higher
frequencies. I was prowling through various textbooks trying to find a brief
yet clear derivation of the actual shape of dP/dω. I was discouraged when
Frank Shu stated (in The Physics of Astrophysics, Volume I ), “The formal
manipulations required for synchrotron theory can get formidable.”3 The full
equations are laid out in Rybicki and Lightman. I will merely cite the results,
then stride forward to apply them to something astrophysically interesting.

Physicists, by convention, have defined

ωc ≡
3

2
γ2 eB

mec
sin α =

3

2
γ2ωcyc sin α . (25)

In terms of this critical frequency ωc, the power spectrum of light from a
highly relativistic synchrotron electron is

dP

dω
=

√
3

2π

e3B sin α

mec2
F (ω/ωc) . (26)

3Malcolm Longair (High Energy Astrophysics, Volume II ), chimes in with “It is a very
major undertaking to work out properly all the properties of synchrotron emission...”.
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The synchrotron function F (x) is a dimensionless function which describes
the shape of the synchrotron spectrum. The calculations in section 6.4 of
Rybicki and Lightman reveal that

F (x) = x
∫ ∞

x
K5/3(x

′)dx′ , (27)

where K5/3 is a modified Bessel function.4 If you are a true Bessel function
fanatic, you may want to prove that F (x) ∝ x1/3 when x ¿ 1 (that is, when
ω ¿ ωc), and that F (x) ∝ x1/2e−x when x À 1, giving the desired cutoff
when ω À ωc. A plot of F (x) is shown in Figure 2. The synchrotron function

Figure 2: The synchrotron function F (x), shown as log F versus log(ω/ωc).

is skewed. The modal (most probable) value of x is xmod ≈ 0.29; the mean
value of x is 〈x〉 ≈ 1.32.

If you had a population of electrons with the identical pitch angle α and
Lorentz factor γ, you would expect the spectrum of light they emit to look
like Figure 2, with

dP

dV dω
= ne

dP

dω
∝ ω1/3 (28)

in the low frequency limit where ω ¿ ωc. The mean frequency of the emitted
light would be

〈ω〉 = 1.32ωc = 2.0γ2ωcyc sin α . (29)

However, when we look at the spectrum of actual synchrotron emitting
sources, such as the Crab Nebula (Figure 3), we do not see a ν1/3 power

4The factor of
√

3/(2π) in equation (26) is then required for proper normalization.
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Figure 3: Spectrum of the Crab Nebula. (Note: what is plotted is ∝ νFν .)

law for Iν . Frequently, the spectrum is reasonably well fit by a power law,
Iν ∝ ν−s, over a wide range of frequencies, but we usually find s 6= −1/3.

The fact that s 6= −1/3 can be easily explained: not all electrons have the
same energy ε. In general, high energy electrons (large γ) are less common
than low energy electrons (smaller γ). If you look, for instance, at the energy
distribution for charged particles in cosmic rays, you find that a power law
is a good fit:

n(ε)dε ∝ ε−pdε , (30)

where n(ε)dε is the number density of electrons with energies in the range
ε → ε + dε. The fit is usual good over a wide range of energies: ε1 < ε < ε2,
with ε2 À ε1.

5 Since ε = γmec
2, a power-law distribution of energies implies

a power-law distribution of Lorentz factors:

n(γ)dγ ∝ γ−pdγ , (31)

for γ1 < γγ2. To find the power radiated per unit volume per unit frequency,
we need to compute

dP

dV dω
=
∫ γ2

γ1

n(γ)
dP

dω
dγ . (32)

Taking dP/dω for a single electron from equation (26), and using the power-
law distribution for n(γ), we find that

dP

dV dω
∝ e3B sin α

mec2

∫ γ2

γ1

γ−pF (x)dγ . (33)

5The observed cosmic ray spectrum has p ≈ 2.8 from ε1 ∼ 1010 eV to ε2 ∼ 1020 eV.
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where

x =
ω

ωc

= γ−2 2ω

3ωcyc sin α
. (34)

By changing the variable of integration from γ to x ∝ γ−2, we can write

γ−pdγ = −1

2

(

2ω

3ωcyc sin α

)−(p−1)/2

x(p−3)/2dx . (35)

With this substitution in equation (33), we find that

dP

dV dω
∝ e3B sin α

mec2
(sin α)(p−1)/2ω(p−1)/2

cyc ω−(p−1)/2

×
∫ x1

x2

x(p−3)/2F (x)dx . (36)

As long as p > 1/3, the integral over F (x) converges, even in the limit x2 → 0
and x1 → ∞. It’s just a dimensionless number of order unity.6 By using the
definition of the cyclotron frequency, ωcyc = eB/(mec), we can write

dP

dV dω
∝ e3B

mec2
(sin α)(p+1)/2

(

eB

mec

)(p−1)/2

ω−(p−1)/2 (37)

∝ e2

c
(sin α)(p+1)/2

(

eB

mec

)(p+1)/2

ω−(p−1)/2 . (38)

If we want, we can integrate over all pitch angles α, to leave the magnetic
flux density B and the angular frequency ω as the only variables left in the
problem. This yields the interesting result

dP

dV dω
∝ B(p+1)/2ω−(p−1)/2 . (39)

Note that the shape of the spectrum depends only on the parameter p, which
describes the energy spectrum of the electrons. The shape of F (x), which
describes the radiation spectrum of an individual photon, only affects the
normalization.7

6It’s actually something you can look up in integral tables, and involves the product of
gamma functions.

7You find the same dependence of dP/dV dω on ω if you substitute a delta function for
F (x).
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We find, in conclusion, that if you have a power-law distribution of elec-
tron energies, n(ε) ∝ ε−p, you get out a power-law spectrum of synchrotron
photons, dP/dV dω ∝ ω−s, with s = (p − 1)/2. If the spectrum of electron
energies falls off very rapidly toward high energies, with p À 1, then the
spectrum of synchrotron photons falls off less rapidly, with s ≈ p/2. This
is because 〈ω〉 ∝ γ−2; thus, a change that occurs over one e-folding of γ
is stretched out over two e-foldings of ω. If the spectrum of electron ener-
gies falls off less precipitously, with p ∼ 1, then the resulting synchrotron
spectrum is nearly flat, with s = (p − 1)/2 ∼ 0. In many cases, it is found
empirically that p ≈ 2.4, leading to s ≈ 0.7.

The continuum emission from the interstellar medium is commonly dom-
inated by synchrotron emission at low frequency, where Iν ∝ ν−0.7. The
spectrum of the irregular galaxy M82, for instance, is shown in Figure 4.
Synchrotron emission, which has a spectrum decreasing with frequency, is

Figure 4: Contributions from synchrotron emission (dot-dashed), brems-
strahlung (dashed), and blackbody dust emission (dotted) to the spectrum
of M82.

dominant in the low frequency regime (ν < 10, GHz, corresponding to λ >
3 cm). Bremsstrahlung, which has a nearly flat spectrum, dominates only
at ν ∼ 100 GHz (corresponding to λ ∼ 3 mm. The blackbody emission
from dust, which has Iν ∝ ν2 in the Rayleigh-Taylor regime, dominates for
ν > 300 GHz, or λ < 1 mm.
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