
1 Wednesday, November 16: Return of Syn-

chrotron

Both bremsstrahlung and synchrotron radiation can be emitted by hot ion-
ized gas. How can you tell whether the light you observe from a distant
galaxy is bremsstrahlung or synchrotron? One way of distinguishing, as we
have seen, is by the spectrum of light emitted. Bremsstrahlung typically has
a flux Fν that is nearly constant with frequency between the free-free ab-
sorption cutoff at low frequencies and the exponential Planck cutoff at high
frequencies. Synchrotron emission has a steeper dependence on frequency:
Fν ∝ ν−s, with s ≈ 0.7 for typical synchrotron emission from interstellar gas.
If the distribution of relativistic electron energies is n(ε) ∝ ε−p, the relation
between p and s is

s =
p − 1

2
. (1)

Thus, s ≈ 0.7 implies p ≈ 2.4.
Another way of determining whether the source of light is bremsstrahlung

or synchrotron radiation is to look at its polarization. Thermal bremsstrah-
lung is unpolarized. Since the thermal motions of the free electrons and ions
are random, there are no preferred axes in the problem. Thus, although the
light from an individual electron – ion encounter is polarized, the light from
many, many such encounters added together has no net polarization. How-
ever, synchrotron radiation does have a preferred axis – the direction of the
magnetic flux density ~B. The calculation of the polarization of synchrotron
radiation is a bit tedious, involving more modified Bessel functions, so I’ll
let you work through that bit of the textbook at your leisure. It turns out
that the synchrotron radiation has a net linear polarization. The axis of
polarization is perpendicular to the magnetic field ~B as projected onto the
plane of the sky. The direction of polarization, as shown in Figure 1 for the
galaxy M51, indicates the (projected) direction of the magnetic field. For
electrons with n(ε) ∝ ε−p, the degree of linear polarization, integrated over
all frequencies and all electron energies, is

Π =
p + 1

p + 7/3
. (2)

If p ≈ 2.4, the degree of polarization is Π ≈ 0.72. A 72 percent polarization
is quite high; remember that the polarization of starlight scattered from
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Figure 1: Synchrotron intensity at ν = 4.86 GHz (false color) and magnetic
field orientation (straight lines) in M51; length of line is proportional to
degree of polarization.

dust was only a few percent. Synchrotron emission thus provides a powerful
tool for studying the magnetic fields within galaxies. The linear polarization
shows the projected direction of ~B. Since the synchrotron power is (as we
saw last week)

dP

dV dν
∝ neB

(p+1)/2ν−(p−1)/2 , (3)

the intensity of synchrotron emission at a given ν tells you about the ampli-
tude of ~B.

The synchrotron emission is particularly strong in radio galaxies such as
Cygnus A (Figure 2). In a radio galaxy, synchrotron emission is the main
source of electromagnetic radiation at frequencies lower than ∼ 300 GHz, cor-
responding to wavelengths longer than ∼ 1 mm. In an extremely luminous
radio galaxy such as Cygnus A, the synchrotron radiation comes primarily
from two large radio lobes, each much larger than the central stellar distri-
bution. Cygnus A is at a distance d ≈ 240 Mpc. At this distance, an angle of
1 arcsec corresponds to a linear distance of 240 million AU, or 1.2 kpc. The
radio lobes of Cygnus A, which are about 40 arcseconds across, must each
have a diameter of D ≈ 50 kpc. Each of the lobes has a radio luminosity of
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Figure 2: False color image of Cygnus A, at a frequency of 5.0 GHz (field of
view is 2 arcmin across).

P ≈ 1045 erg s−1.
If the typical magnetic flux density in the lobes is B, then the magnetic

energy density is

UB =
B2

8π
≈ 4 × 10−10 erg cm−3

(

B

10−4 gauss

)2

, (4)

scaling to a typical radio lobe magnetic field strength. The total magnetic
energy in one of the radio lobes is then

EB =
B2

8π

(

π

6
D3
)

≈ 8 × 1059 erg

(

B

10−4 gauss

)2

. (5)

This is a pretty large amount of energy; roughly equal to one billion times
the energy radiated by the Sun during its entire main sequence lifetime.

Suppose that the lobes of Cygnus A contain relativistic electrons with
n(γ) ∝ γ−p between a minimum Lorentz factor γ1 and a maximum Lorentz
factor γ2. If p > 1 and γ2 À γ1, then we can make the normalization

n(γ) = (p − 1)
ne

γ1

(

γ

γ1

)

−p

, (6)
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where ne is the total number density of relativistic electrons. The energy
density of the electrons is then

Ue =
∫ γ2

γ1

(γmec
2)n(γ)dγ (7)

= (p − 1)ne(γ1mec
2)
∫ γ2/γ1

1
x−p+1dx , (8)

where I’ve made the change of variables x ≡ γ/γ1. If p > 2, as we expect for
real distributions of electrons, the integral converges, and for γ2 À γ1,

Ue ≈
p − 1

p − 2
ne(γ1mec

2) (9)

≈ 3 × 10−10 erg cm−3
(

ne

10−5 cm−3

)(

γ1

10

)

. (10)

Note that I have ever-so-casually chosen values for ne, γ1, and B that have
made the energy density of the magnetic field (equation 4) nearly equal
to the energy density of the electrons (equation 10).1 It has not escaped
the notice of astronomers that plausible choices for ne, γ1, and B provide
comparable energy densities for the magnetic field and for the relativistic
electrons. This “equipartition” of magnetic field energy and electron energy
is a subject of speculation among radio astronomers. Do the magnetic field
and electrons somehow swap energy back and forth to attain equipartition?
If so, relativistic magnetohydrodynamic turbulence is probably involved. If
you want to study relativistic magnetohydrodynamic turbulence, I encourage
you to do so. I’ll be cheering you on from the sidelines.

The power per unit volume per unit frequency, dP/dV dν ∝ ν−(p+1)/2, has
a high-frequency cutoff at the highest frequency produced by the highest-
energy electrons in the emitting region (νmax ∼ γ2

2νcyc). There is also a
low-frequency cutoff. As you might recall, a bremsstrahlung spectrum is cut
off at the low-frequency end by free-free absorption, which is the inverse
process to bremsstrahlung (otherwise known as “free-free emission”). You
might expect, then, that a synchrotron spectrum would be cut off at the low
frequency end by synchrotron self-absorption, which is the inverse process to
synchrotron emission. If you expected this, your expectation would not be
disappointed.

Unfortunately, computing the synchrotron absorption coefficient, αsyn
ν , is

more difficult than computing the free-free absorption coefficient, αff
ν . In

1I have also assumed p ≈ 2.4.
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part, this is because the synchrotron emission is not necessarily isotropic,
since ~B imposes a preferred direction. We can wiggle our way out of this
difficulty by declaring that we will look at a region in which the magnetic field
~B is badly tangled, so that it has no net direction. With that assumption, we
can set the emission coefficient jν equal to the angle-averaged synchrotron
power per unit volume per unit frequency:

jν =
1

4π

dP

dV dν
∝ neB

(p+1)/2ν−(p−1)/2 . (11)

A more difficult problem is posed by the fact that synchrotron emission is
non-thermal, so that we cannot assume that the source function Sν is equal
to the Planck function Bν . Without that handy assumption, the synchrotron
absorption coefficient must be calculated by the tedious use of Einstein co-
efficients. For a power law distribution of electron energies, n(γ) ∝ γ−p, the
synchrotron absorption coefficient has the dependence

αsyn
ν ∝ neB

(p+2)/2ν−(p+4)/2 . (12)

When p ≈ 2.4, the frequency dependence of the synchrotron absorption
coefficient is αν ∝ ν−3.2. This steep dependence on frequency means that a
region containing a magnetic field and relativistic electrons will be optically
thick to synchrotron radiation at sufficiently low frequencies.

In equilibrium, the emission coefficient jν is equal to the absorption co-
efficient αsyn

ν times the source function Sν . Thus, the synchrotron source
function is

Sν =
jν

αsyn
ν

∝ B−1/2ν5/2 . (13)

Note that the source function is independent of γ, the power-law index for the
relativistic electrons. At low frequencies, the synchrotron-emitting region will
be opaque, and the observed intensity Iν will be proportional to the source
function: Iν ∝ Sν ∝ ν5/2. At high frequencies, the region will be transparent,
and the observed intensity will be proportional to the emission coefficient:
Iν ∝ jν ∝ ν−(p−1)/2 ∝ ν−0.7. The frequency at which the synchrotron-
emitting region makes the transition from transparent to opaque depends on
the depth of the region, its number density of relativistic electrons, and its
magnetic flux density.
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2 Friday, November 18: Compton Scattering

About a month ago (on October 19 and 21, to be precise), we investigated
the scattering of light by photons in the limit that hν ¿ mec

2. In that limit,
it is useful to regard light as an electromagnetic wave. The varying electric
field causes the electron to oscillate, and the oscillating dipole causes a re-
emission of light from the electron. As you will recall (I hope), this classical
scattering of waves, called Thomson scattering, leaves the frequency of light
unchanged, and has a cross-section σT = (8π/3)r2

0 = 6.65×10−25 cm2, where
r0 is the classical electron radius.

But what about the limit of high photon energy, with hν À mec
2? Al-

though most photons in the universe have an energy less than the rest energy
of an electron, there are still plenty of gamma-ray photons out there carrying
more than 0.5 MeV of energy. In the limit hν À mec

2, it is more useful to
think of light as being a stream of photons, rather than an electromagnetic
wave. The scattering of a high-energy photon from an electron is known as
Compton scattering. As Compton pointed out, a photon has both an energy
ε = hν and a momentum p = ε/c = hν/c. A collision between a photon and
an electron must conserve both energy and momentum. If we treat it as a
classical problem, it’s a simple “billiard ball” collision.

For simplicity of calculation, let’s place ourselves in a frame of reference
in which the electron is initially at rest, and orient our cartesian axes so
that the photon is initially moving along the x axis (Figure 3). The initial
momentum of the two-particle system is

~pi = ~pelec,i + ~pphot,i = 0 + (hνi/c)êx . (14)

The initial energy of the system is

εi = εelec,i + εphot,i = mec
2 + hνi . (15)

After scattering, the photon leaves at an angle θ (see Figure 3) with a new,
lower frequency νf . The electron flies off at an angle Φ with a velocity uf (and
hence a dimensionless velocity βf = uf/c and Lorentz factor γf = (1−β2

f )
1/2).

The final momentum of the system is

~pf = ~pelec,f + ~pphot,f (16)

= γfmev cos Φêx + γfmev sin Φêy (17)

+(hνf/c) cos θêx + (hνf/c) sin θêx . (18)
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Figure 3: Compton scattering: frame of reference in which electron is initially
at rest.

The final energy of the system is

εf = εelec,f + εphot,f = γfmec
2 + hνf . (19)

With a bit of algebra, we can find νf in terms of νi and θ. First of all, the
natural unit of energy in this problem is the rest energy of the electron. In
these units, we can write the initial and final energy of the photon as

Xi ≡
hνi

mec2
(20)

Xf ≡
hνf

mec2
. (21)

Conservation of momentum in the x direction tells us

γfβf cos Φ = Xi − Xf cos θ , (22)

Conservation of momentum in the y direction tells us

γfβf sin Φ = −Xf sin θ , (23)

and conservation of energy tells us

γf − 1 = Xi − Xf . (24)
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That which the electron gains, the photon loses. It’s a zero sum game.
Squaring each of the momentum equations (22 and 23), then adding them

together eliminates the angle Φ:

γ2
fβ

2
f = X2

f + X2
i − 2XiXf cos θ . (25)

Since β2
f = 1 − 1/γ2

f , we can rewrite this as

γ2
f − 1 = X2

f + X2
i − 2XiXf cos θ . (26)

By rearranging, we can write the electron’s final Lorentz factor in the form

γ2
f = 1 + (Xi − Xf )

2 + 2XiXf (1 − cos θ) . (27)

However, the energy conservation equation (24) tells us that

γ2
f = [1 + (Xi − Xf )]

2 = 1 + 2(Xi − Xf ) + (Xi − Xf )
2 . (28)

Comparison of equations (27) and (28) reveals that

2XiXf (1 − cos θ) = 2(Xi − Xf ) , (29)

or

Xf =
Xi

1 + Xi(1 − cos θ)
. (30)

Since 1 − cos θ is always non-negative, Xf ≤ Xi. The photon always loses
energy, except in the special case cos θ = 1, when the photon is not deflected
at all.

In the low-energy limit of Thomson scattering, the initial energy (in units
of mec

2) is Xi ¿ 1, and the final energy is Xf ≈ Xi[1−Xi(1− cos θ)]. Thus,
the energy lost by the photon and gained by the electron, is only

∆X = Xi − Xf ≈ X2
i (1 − cos θ) ¿ Xi . (31)

Thus, the transfer of energy from the photon to the electron is small. The
frequency of the light can be approximated as being constant, and the velocity
imparted to the electron is highly non-relativistic.

In the extremely high energy limit, where Xi(1 − cos θ) À 1, the final
energy is Xf ≈ (1 − cos θ)−1, independent of the initial photon energy, and
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depending only on angle. The energy lost by the photon (and gained by the
electron) is

∆X = Xi − Xf ≈ Xi À 1 . (32)

Thus, the final state of the electron (in the frame of reference where it was
initially at rest) is highly relativistic. Thus, one way of giving an electron
γ À 1 is to hit it with a photon that has hνi À mec

2.
Earlier, I defined Xi and Xf as dimensionless photon energies; for in-

stance,

Xi ≡
hνi

mec2
. (33)

However, since νi = c/λi, we can also write

Xi ≡
h

mec

1

λi

=
λC

λi

, (34)

where λC = h/(mec) ≈ 2.43 × 10−10 cm is the Compton wavelength of the
electron. In terms of wavelengths, the energy formula for Compton scattering
(equation 30) can be written in the form

λf − λi = λC(1 − cos θ) . (35)

That is, the shift in wavelength produced by Compton scattering will be
comparable in magnitude to the Compton wavelength.2

So far, I’ve been able to compute the properties of Compton scattering
without resorting to quantum mechanics. However, a correct calculation of
the cross-section for Compton scattering requires the use of quantum me-
chanics. Unfortunately, it’s an ugly calculation (even Rybicki and Lightman
refuse to show it). However, in the 1920s, a brave pair of physicists, Oskar
Klein and Yoshio Nishina, tackled the problem. The cross-section that they
calculated is named the Klein-Nishina cross-section in their honor. The full
formula is given in Rybicki and Lightman. I’ll just look at the limiting cases
of low photon energy and high photon energy. In the limit Xi ¿ 1, the
electron’s cross-section is

σKN ≈ σT (1 − 2Xi) , (36)

2Note also that ∆λ ≡ λf − λi is independent of λi; it depends only on the scattering

angle θ.
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which reduces to the Thomson cross-section σT as Xi → 0. In the limit
Xi À 1, the electron’s cross-section is

σKN ≈ σT
3

8x
[ln(2x) + 1/2] . (37)

Klein and Nishina also calculated that the differential cross-section is strongly
peaked in the forward direction (θ ∼ 0) in the limit of high photon energy.
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