
Chapter 10

Advanced Accretion Disks

The total luminosity of a disk with the viscous dissipation rate D(R) is

Ldisk = 2π
∫

∞

R∗

D(R)RdR =
1

2

GM∗Ṁ

R∗

. (10.1)

The disk luminosity is half of the total accretion luminosity Lacc = GM∗Ṁ/R∗;
the other half of the luminosity is emitted when the gas makes the transition
from the inner edge of the accretion disk to the surface of the compact object.
The physical characteristics of the boundary layer between the Keplerian
disk and the compact object are poorly known. Let’s start by considering
the better-known luminosity that comes from the disk itself.

If the disk is optically thick, and the luminosity Ldisk is in the form of
black body radiation, then the temperature Tbb(R) at a given radius is set
by the relation

σSBT 4
bb =

1

2
D(R) . (10.2)

The factor of 1/2 enters because we are considering the radiation from only
one side of the disk. Using D(R) for a viscous accretion disk,

Tbb(R) = T∗

(

R

R∗

)−3/4

[1 − (R∗/R)1/2]1/4 , (10.3)

where

T∗ =

(

3GM∗Ṁ

8πR3
∗
σSB

)1/4

. (10.4)

The temperature of the disk is plotted in Figure 10.1. The hottest part of
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Figure 10.1: The temperature of an optically thick accretion disk.
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the disk is at R = 1.36R∗, where Tbb = 0.488T∗. The characteristic disk
temperature T∗, for typical X-ray binaries, is

T∗ = 1 × 107 K

(

Ṁ

1017 g sec−1

)1/4 (

M∗

1 M⊙

)1/4 (
R∗

10 km

)−3/4

. (10.5)

The spectrum of the disk is the black-body spectrum integrated over all radii:

Sν ∝
∫ Ro

R∗

ν3

exp[hν/kTbb(R)] − 1
RdR , (10.6)

where Ro is the outer radius of the accretion disk. At high frequencies,
ν ≫ kT∗/h, the spectrum falls away exponentially. At lower frequencies,
ν ≪ kT∗/h, the temperature has the radial dependence T ∝ R−3/4, and the
spectrum has the form

Sν = ν1/3

∫ hν/kTo

0

x5/3dx

ex − 1
. (10.7)

When kTo/h ≪ ν ≪ kT∗/h, the upper limit of the integral may be taken as
infinity, yielding the spectrum Sν ∝ ν1/3 at intermediate frequencies. At very
low frequencies, ν ≪ kTo/h, the main contribution to the spectrum is the
Rayleigh-Jeans tail of the cool, outer edge of the accretion disk; the resulting
frequency dependence is Sν ∝ ν2. The integrated spectrum Sν for a disk
with T∗ = 100To is plotted in Figure 10.2.

One check to see whether the ‘physically thin, optically thick’ model is
correct is to check for the characteristic ν1/3 spectrum. Unfortunately, in
binary systems, the luminosity of the normal star that is providing the ac-
creting matter may overpower the luminosity of the disk. The best system
for seeing the entire spectrum of the accretion disk is a cataclysmic vari-
able in which the compact star is a white dwarf and the normal star is a
low mass (0.1 → 1 M⊙) main sequence star. In the quiescent state, between
cataclysmic outbursts, most of the luminosity comes from the disk. The cata-
clysmic variable VW Hydri (a dwarf nova) has a very dim normal companion,
and a large disk. The observed spectrum of VW Hydri, in its post-outburst
state, is shown in Figure 10.3. It is a fairly good example of a ν1/3 law.

It is enlightening to do slightly more elaborate modeling of alpha disks,
to find its properties as a function of the radius R, the mass M∗ of the central
object, the accretion rate Ṁ , and the assumed value of α. Let ρ, a, P , and
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Figure 10.2: The spectrum Sν of an optically thick accretion disk. The units
of ν and Sν are arbitrary. The temperature at the outer edge of the disk is
Tout = To = 0.01T∗.
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Figure 10.3: The dots are the observed spectrum Fλ of VW Hydri after
an outburst. Line ‘a’ is a stellar atmosphere fit; line ‘b’ is a line of slope
Fλ ∝ λ−7/3, corresponding to Sλ ∝ ν1/3.
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T be the density, sound speed, pressure, and temperature in the z = 0 plane.
The optical depth τ = ρHκR of the disk (where κR is the Rosseland mean
opacity) is assumed to be much greater than one. We can solve for the eight
unknowns ρ, Σ, H, a, P , T , τ , and ν as a function of M∗, Ṁ , R, and α.
Equations for the alpha disk:

ρ =
Σ

H
(10.8)

H = a

(

R3

GM∗

)1/2

(10.9)

a2 =
P

ρ
(10.10)

P =
ρkT

m
(10.11)

4σSBT 4

3τ
=

3GM∗Ṁ

8πR3

[

1 −
(

R∗

R

)1/2
]

(10.12)

τ = ΣκR(ρ, T ) (10.13)

νΣ =
Ṁ

3π

[

1 −
(

R∗

R

)1/2
]

(10.14)

ν = αaH (10.15)

When the dominant source of opacity in the disk is free-free absorption, the
Rosseland mean opacity κR(ρ, T ) is well approximated by Kramers’ law:

κR = 6.6 cm2 g−1

(

ρ

10−8 g cm−3

)

(

T

104 K

)−7/2

. (10.16)

At higher temperatures and lower densities, the main source of opacity is
Thomson scattering of photons by free electrons, with κR = 0.40 cm2 g−1.

The above set of equations has an algebraic solution. Let f ≡ 1 −
(R∗/R)1/2, R10 ≡ R/1010 cm, Mc ≡ M∗/1 M⊙, and Ṁ16 ≡ Ṁ/1016 g s−1.
If the dominant source of opacity is free-free absorption, then

Σ = 5 g cm−2 α−4/5Ṁ
7/10
16 M1/4

c R
−3/4
10 f 14/5 (10.17)

H = 2 × 108 cm α−1/10Ṁ
3/20
16 M−3/8

c R
9/8
10 f 3/5 (10.18)

ρ = 3 × 10−8 g cm−3 α−7/10Ṁ
11/20
16 M5/8

c R
−15/8
10 f 11/5 (10.19)
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T = 1 × 104 K α−1/5Ṁ
3/10
16 M1/4

c R
−3/4
10 f 6/5 (10.20)

τ = 30 α−4/5Ṁ
1/5
16 f 4/5 (10.21)

ν = 2 × 1014 cm2 sec−1 α4/5Ṁ
3/10
16 M−1/4

c R
3/4
10 f 6/5 (10.22)

uR = 3 × 104 cm s−1 α4/5Ṁ
3/10
16 M−1/4

c R
−1/4
10 f−14/5 . (10.23)

Fortunately, none of these results have an exorbitantly strong dependence on
the unknown value of α.

We can check whether our assumption of Kramers’ law is valid. The
opacity within the disk will be

κR(Kramers) = 6.3 cm2 g−1 Ṁ
−1/2
16 M−1/4

c R
3/4
10 f−2 . (10.24)

The bremsstrahlung opacity dominates over the electron scattering opacity
at radii

R > 2.5 × 108 cm Ṁ
2/3
16 M1/3

c f 8/3 . (10.25)

The crossover radius is smaller than the radius of a white dwarf for values
of Ṁ typical of cataclysmic binaries. Thus, for white dwarfs, Kramers’ law
usually holds. In X-ray binaries with a central neutron star, the inner parts
of the accretion disk will have an opacity dominated by electron scattering.

The boundary layer emits half the accretion luminosity. In the absence
of a magnetic field, the accretion disk can extend all the way to the surface
of the compact object, and the boundary layer consists of a very thin region
just above the surface of the compact object. Consider the boundary layer
in the accretion disk around a non-magnetic compact object of mass M∗ and
radius R∗. The boundary layer consists of the region R∗ < R < R∗+b, where
the angular velocity decreases from its Keplerian value

Ω(R∗ + b) =

(

GM∗

(R∗ + b)3

)1/2

(10.26)

to the angular velocity of the star’s surface

Ω∗ <

(

GM∗

R3
∗

)1/2

. (10.27)

The angular velocity in the vicinity of the boundary region is plotted in
Figure 10.4. The radial extent b of the boundary layer is less than the disk
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Figure 10.4: The distribution of angular velocity Ω in the boundary layer,
compared to the Keplerian value.

thickness H just outside the boundary layer, which in turn is less than the
radius R∗ of the compact object. To show that b < H < R∗, start with the
equation for conservation of radial momentum:

uR
∂uR

∂R
−

u2
φ

R
+

1

ρ

∂P

∂R
+

GM∗

R2
= 0 . (10.28)

In the Keplerian disk, the gravitational term (GM∗/R
2) is balanced by the

centrifugal term (u2
φ/R). Within the boundary layer, the gravitational term

is balanced by the pressure gradient term. The magnitude of the pressure
gradient is

1

ρ

∂P

∂R
∼

a2

b
, (10.29)

where a is the sound speed at the outer edge of the boundary layer and b
is the thickness of the boundary layer. From the balance of forces, a2/b ∼
GM∗/(R∗ + b)2, we see that

b ∼
R∗ + b

M2
φ

, (10.30)
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Figure 10.5: A sketch of the boundary layer of an optically thick disk.

where Mφ is the rotational Mach number at the outer edge of the boundary
layer. In a thin disk, Mφ ≫ 1, and H ∼ R/Mφ, so b ∼ H/Mφ ∼ R∗/M

2
φ.

Figure 10.5 shows the resulting geometry, with b ≪ H ≪ R∗. The black-
body temperature within the boundary layer is

TBL ≈ M
1/4

φ T∗ . (10.31)

Magnetic fields can affect the accretion of matter. The magnetic field of
compact stars is a dipole field, with dipole moment µ = B∗R

3
∗
, where R∗ is

the radius of the star and B∗ is the magnetic field at the surface of the star.
A neutron star typically will have R∗ ≈ 106 cm and B∗ ≈ 1012 G, yielding
µ = 1030 G cm3. A white dwarf with R∗ ≈ 5 × 108 cm and B∗ ≈ 104 G will
have the same magnetic moment, µ ≈ 1030 G cm3.

At distances r ≫ R∗, the amplitude of the dipole magnetic field is

B ≈
µ(1 + 3 cos2 θ)1/2

r3
, (10.32)

where θ is angle measured from the magnetic pole. The magnetic energy
density in the equatorial plane is

Emag =
B2

4π
=

1

4π

µ2

r6
≈ 8 × 1022 erg cm−3 µ2

30R
−6
6

(

r

R∗

)−6

. (10.33)
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The quantity µ30 is the magnetic moment of the star, measured in units of
1030 G cm3; the quantity R6 is the radius R∗ of the star, measured in units
of 106 cm.

Consider a neutron star or white dwarf isolated in the middle of a uniform
gaseous medium. The accreting matter will fall in radially at large distances,
where the magnetic pressure is small. The infall will be significantly deflected
from a radial flow at a radius rA (the Alfven radius), where the magnetic
energy density Emag is equal to the kinetic energy density Ekin of the gas.
From the continuity equation,

ρu = −
Ṁ

4πr2
. (10.34)

For an ionized gas (γ = 5/3) inside the accretion radius, the infall velocity is

u = −
(

GM∗

2r

)1/2

. (10.35)

The kinetic energy density is thus

Ekin =
1

2
ρu2 =

Ṁ
√

GM∗

8π
√

2
r−5/2 . (10.36)

The Alfven radius is

rA ≈
(

µ4

Ṁ2GM∗

)1/7

. (10.37)

Using the appropriate numerical values for a neutron star or white dwarf,

rA = 7 × 108 cm µ
4/7
30 Ṁ

−2/7
16 M−1/7

c . (10.38)

Accreting neutron stars will generally have rA ≫ R∗. A typical white dwarf
will have rA ∼ R∗.

There exists, however, a class of magnetic white dwarfs, which have
magnetic dipole moments as large as µ ∼ 1034 G cm3, and Alfven radii
rA ∼ 1011 cm. One class of cataclysmic variables, known as AM Herculis
systems, consists of magnetic white dwarfs with low mass main sequence
companions, on an orbit with P ∼< 3 hr. In these systems, the Alfven radius
is larger than the orbital radius. The mass that is lost by the main sequence
star is compelled to flow along the magnetic field lines.
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Consider a binary system in which the magnetic field of the compact star
is small enough to allow an accretion disk to form. The accretion disk will
be disrupted at a radius RA, which is the radius at which the torque exerted
by the magnetic field on the disk is equal to the viscous torque. Computing
the magnetic torque is, unfortunately, difficult. The torque exerted depends
on the azimuthal component Bφ of the magnetic field, which in turn depends
on the extent to which the magnetic dipole configuration is distorted by the
interaction of the magnetic field with the disk. Calculations usually show
that RA ≈ rA/2.

Because the magnetic field lines are pinned to the compact object, they
have an angular velocity equal to Ω∗, the angular velocity with which the
compact object rotates. At radii R ≥ RA, the accreting gas rotates with
an angular velocity Ω(R) = (GM∗/R

3)1/2. At radii R ≤ RA, the gas flows
along the magnetic field lines, and hence rotates with an angular velocity
Ω(R) = Ω∗. For steady accretion to occur, we must have a situation in
which Ω∗ ≤ (GM∗/R

3
A)1/2. Numerically, this requires that

Ω∗ < 2 sec−1 µ
−6/7
30 Ṁ

3/7
16 M5/7

c . (10.39)

If the magnetized compact object rotates more rapidly than this, gas will be
unable to accrete.

Matter will leave the accretion disk at a radius RA and flow along the
magnetic field lines to the magnetic poles of the neutron star, as shown in
Figure 10.6. The rotation axis of the the neutron star is aligned with the
rotation axis of the disk. However, the magnetic axis of the neutron star is
generally at an angle to the rotation axis of the disk. Let α be the angle
between the magnetic axis of the star and the plane of the disk, as shown in
Figure 10.6. In polar coordinates (r, θ) aligned with the magnetic axis, the
magnetic field lines are described by the equation r(θ) = C sin2 θ. The field
line that passes through the disk at the radius r = RA and angle θ = α must
then have the equation

r(θ) = RA
sin2 θ

sin2 α
. (10.40)

The gas that is ripped away from the disk will follow along this path until
it reaches the surface of the neutron star at a radius r = R∗. The accretion
thus takes place on a ring of angular radius θc around the magnetic pole,
where θc is given by the relation

sin2 θc =
R∗

RA

sin2 α . (10.41)
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Figure 10.6: Accretion from a gaseous disk onto a magnetized neutron star.
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Diffusion effects tend to smear the area of accretion into a circular cap cen-
tered on the magnetic pole. The area of the two accreting polar caps takes
up a fraction

f ∼ 2
πR2

∗
sin2 θc

4πR2
∗

∼
R∗ sin2 α

2RA

(10.42)

of the total surface area of the neutron star. The fraction f is small; f ∼ 10−3

for a neutron star with α ∼ π/2. All of the ‘boundary layer’ accretion lumi-
nosity, equal in value to L = (GM∗Ṁ)/(2R∗), will be emitted from two small
regions. The rotation of the neutron star will cause a periodic modulation in
the observed flux from the accreting polecaps. Pulsation periods are observed
in X-ray binaries, with typical periods in the range 1 sec ∼< P ∼< 103 sec. In
many X-ray binaries, the pulsation period P is observed to be decreasing
steadily, on time scales of ∼ 104 yr. This spin-up is the result of the torque
exerted by the accretion disk on the magnetic field of the neutron star. For
a magnetized neutron star accreting matter from a disk, the Keplerian an-
gular velocity at the Alfven radius, Ω = (GM∗/R

3
A)1/2, is larger than Ω∗,

the angular velocity of the neutron star and its attached magnetic field. The
star + magnetic field combination is thus accreting angular momentum from
the disk at the rate ṀR2

AΩ(RA). If the moment of inertia of the star is
I ∼ M∗R

2
∗
, then the spin-up rate is given by the relation

IΩ̇∗ = ṀR2
AΩ(RA) = Ṁ(GM∗RA)1/2 . (10.43)

The spin-up rate for the neutron-star is then

−
Ṗ

P
≈ 10−5 yr−1 I−1

45 Ṁ
6/7
16 µ

2/7
30 M3/7

c P1 , (10.44)

where I45 is the moment of inertia in units of 1045 g cm2.
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