
Chapter 12

Winds from Hot & Cool Stars

Hot luminous stars, such as O and B supergiants, are known to have stellar
winds. In the UV, they display P Cygni line profiles.1 P Cygni profiles show
absorption at short wavelengths and emission at longer wavelengths, as seen
in the lower panel of Figure 12.1. This asymmetric absorption/emission
profile is the characteristic signature of an expanding stellar atmosphere.
The absorption comes from material between us and the photosphere of the
star (region 5 in the upper panel of Figure 12.1). The emission comes from
material in regions 1, 2, 3, and 4. The width of the P Cygni line tells us
the terminal velocity u∞ of the expanding gas. The depth of the absorption
component tells us the column density of absorbing matter along the line of
sight to the star. From this, we can use a model of the expanding atmosphere
to deduce the total mass of the gas surrounding the star. The P Cygni lines
of OB supergiants show expansion velocities of ∼ 2000 km s−1, and mass
loss rates of ∼ 10−6 M⊙ yr−1. The hottest stars can have maximum wind
velocities of as much as 4000 km s−1.

Mass loss from hot luminous stars cannot be explained by gas pressure
gradients like those that drive the solar wind. Among the P Cygni lines that
are observed in OB supergiants are those of CIV and SiIV. These ions are
present at a temperature of ∼ 3 × 105 K; if the gas were any hotter, they
would be collisionally ionized to higher ionization states. In a hot coronal
wind driven by gas pressure, the maximum observed velocity can be only a
few times the sound speed, which is a ∼ 70 km s−1 at T ∼ 3 × 105 K. Thus,

1P Cygni itself is a variable blue hypergiant (B1 Ia); it is visible to the naked eye,
despite being some 2 kpc from the Earth. It’s an example of the type of hot, luminous
star that produces a fast stellar wind with a high mass-loss rate.
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Figure 12.1: Formation of a P Cygni line profile.
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we need some additional force to explain the very high wind velocities seen
in OB supergiants.

Winds in hot luminous stars are driven by radiation pressure. The stellar
winds emerging from OB supergiants have numerous resonance lines in the
UV, which coincidentally is where the continuum radiation of an OB star has
its maximum. The winds from OB stars are thus referred to as line-driven

winds, since the opacity of the accelerated material is provided by absorption
lines. A rough estimate of the mass-loss rate in a radiatively driven wind can
be computed by assuming that each photon emitted by the star transfers
its momentum of hν/c to a gas particle in the wind. The rate at which the
star loses momentum is L/c, where L is the radiative luminosity. The rate
at which the wind carries away the momentum is Ṁu∞, where u∞ is the
asymptotic wind velocity. By setting the two rates equal to each other, we
estimate a mass loss of

Ṁest =
L

u∞c
(12.1)

and a corresponding kinetic energy luminosity of
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For a luminous O or B star, this estimated mass loss rate is Ṁest ∼ 10−6
→

10−5 M⊙ yr−1. This is in the right range to account for the observed mass loss
from OB stars. The kinetic energy luminosity is less than 1% of the radiation
luminosity L. If each photon from the star undergoes multiple scatterings,
then the mass loss rate can be several times Ṁest.

Even if the circumstellar gas had no resonance lines, there would still be
radiation pressure on the ionized gas as a result of Thomson scattering. A
star of luminosity L will exert an outward radial force of magnitude f =
(σT L)/(4πr2c) on every electron-proton pair (where σT = 6.7 × 10−25 cm2 is
the Thomson cross section). The ratio of the outward acceleration due to
Thomson scattering, to the inward acceleration due to gravitation, is

Γ =
σT L

4πGMmpc
=

3.2 × 10−5

M/L
, (12.3)

where the mass-to-light ratio M/L is in solar units. The dimensionless
number Γ is the ratio of a star’s luminosity L to its Eddington luminos-
ity LEdd = 4πGMmpc/σT . Thomson scattering alone will not be enough to
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drive the stellar winds. For a very luminous O star, with L ≈ 106 L⊙ and
M ≈ 60 M⊙, you find Γ ≈ 1/2; for less luminous stars, Γ will be even smaller.

A single line will provide an acceleration

gL =
κL

c

∫

∞

ν=0
πFν(ν)φ(ν)dν , (12.4)

where κL is the line opacity (in units of cm2 g−1), πFν is the flux from the
central star at frequency ν (in units of erg sec−1 cm−2 Hz−1) and φ(ν) is the
line profile function.

A complication is added by the fact that the gas of the stellar wind
is being steadily accelerated away from the star. Thus, the radiation that
each bit of gas sees from the central star will be more and more redshifted.
Suppose that the gas has a strong line at a frequency ν0, as measured in the
rest frame. A photon emitted by the star with a frequency ν > ν0 will be
scattered by the shell of gas that has a velocity

u(r) = c
ν − ν0

ν0

. (12.5)

The stellar wind will be able to scatter photons with frequencies between
ν0 and ν0 + δν, where δν = ν0(u∞/c). Photons with a frequency ν0 will be
scattered near the surface of the star; photons with a frequency ν0 + δν will
be scattered far from the star, where the expansion velocity has reached its
asymptotic value of u∞.

That maximum mass loss rate that can be produced by a single strong
line is found by setting the mass momentum flux equal to the radiation
momentum flux in the frequency range ν0 → ν0 + δν:

Ṁu∞ =
Lνδν

c
=

Lνν0

c2
u∞ . (12.6)

The quantity Lνδν is the stellar luminosity in the frequency range ν → ν+δν.
If ν0 is near the peak of the star’s energy distribution, then Ṁ ∼ L/c2. This
rate is smaller by a factor u∞/c than the mass loss rate Ṁest that occurs
if all photons are scattered or absorbed, rather than those in the restricted
frequency range ν0 → ν0(1 + u∞/c). Even for the fastest stellar winds, the
ratio u∞/c is only 0.01. If a line-driven wind is to effectively convert the
momentum of photons into the momentum of gas, it must have many strong
lines in the frequency range where the star emits most of its radiation.
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Suppose that a radiative flux Fν is incident on the inner side of a thin gas
shell. If the gas scatters photons with a frequency ν0, then the observed res-
onance line will have a Doppler width ∆νD = ν0ut/c, where ut = (kT/m)1/2

is the thermal velocity within the shell. The radiative acceleration of the
shell is

gL = κL
πFν

c
∆νD

1 − e−τL

τL

. (12.7)

In the above equation, τL is the effective optical depth of the shell, and is
given approximately by the equation

τL = κLρ(r)ut(r)

(

du

dr

)−1

. (12.8)

For strong lines, where τL ≫ 1, the acceleration is

gL ≈
πFν

c

ν0

ρc

du

dr
, (12.9)

while for weak lines, where τL ≪ 1,

gL ≈
πFν

c

ν0κLut

c
. (12.10)

In real stellar winds, the total line acceleration,

gL =
∑

i

gL,i , (12.11)

will be a sum over weak and strong lines. It is customary (following Cas-
tor, Abbott, & Klein 1975, ApJ, 195, 157), to parameterize the total line
acceleration in a spherically symmetric wind as

gL =
(

GM

r2
Γ
)

k

(

1

κρut

du

dr

)α

, (12.12)

where the force constant k and the slope α are found by an empirical fit to the
observed line strengths in stellar atmospheres. (The parameter κ = σT /mp =
0.40 cm2 g−1 is the Thomson scattering opacity.) If all the observed lines are
strong, α = 1; if all the lines are weak, α = 0. An O4 star has k ≈ 1/30 and
α ≈ 0.7.
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With this parametric form for the line acceleration, the isothermal Bondi
equation takes the modified form

1

2

d(u2)
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(1 −

a2
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]

, (12.13)

where
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(

κutṀ
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)(
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2

d(u2)
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. (12.14)

In the absence of line opacity, the solution to this equation is a Parker wind
with a sonic radius at

rs =
GM(1 − Γ)

2a2
0

. (12.15)

Once the line opacity is added, the sonic radius is no longer a critical point.
There is, however, a unique solution which has a smooth transition from
subsonic flow near the star to supersonic flow far from the star. The terminal
velocity for this model has the value

u∞ =
(

α

1 − α

)1/2

vesc , (12.16)

where

vesc =

[

2GM(1 − Γ)

R∗

]1/2

. (12.17)

The observed values of u∞/vesc for a sample of hot, luminous stars are plotted
in Figure 12.2. The O stars are observed to have u∞/vesc ≈ 3, suggesting a
value of α ≈ 0.9 for these stars. Late B stars, by contrast, have u∞/vesc ≈ 1,
yielding α ≈ 0.5. The mass loss rate for a line-driven wind is

Ṁ =
L

utc
k1/αα(1 − α)(1−α)/α

(

Γ

1 − Γ

)(1−α)/α

. (12.18)

This leads to a luminosity dependence Ṁ ∝ L1/α. If all the lines are optically
thick, then Ṁ ∝ L; if all the lines are optically thin, then there will be a
very steep dependence of Ṁ on L.

An O5 star has a mass M = 60 M⊙, a luminosity L = 106 L⊙, and a radius
R∗ = 14 R⊙. The effective temperature is then 49,000 K. Castor, Abbott,
and Klein used their parametric model, with k = 1/30 and α = 0.7, to deduce
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Figure 12.2: The ratio of terminal wind velocity to escape speed as a function
of spectral type for stars from O4 to A2.
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a terminal velocity u∞ = 1500 km s−1 for such a star, and a mass loss rate
of Ṁ = 7× 10−6 M⊙ yr−1. This is in good agreement with observations of O
stars. The time scale for mass loss in such a star is tM = M/Ṁ = 1× 107 yr,
which is only three times the main sequence lifetime of an O5 star.

The terminal velocities deduced for cool luminous stars range from u∞ ∼

10 km s−1 for M supergiants to u∞ ∼ 75 km s−1 for K giants. These velocities
are smaller than the corresponding escape velocities vesc from the stellar
surface. An approximate fit, found empirically, is

u∞ ∼
v2

esc

1000 km s−1
. (12.19)

The deduced mass loss rate for cool luminous stars lies in the approximate
range 10−8 M⊙ yr−1

→ 10−5 M⊙ yr−1.
Winds in cool K and M stars cannot be driven by pressure gradients, since

cool stars with winds lack hot, extended coronas. Thomson scattering is not
enough to drive the winds of cool stars. An M supergiant, with L = 3×104 L⊙

and M = 20 M⊙, will have Γ = L/LEdd = 3.2 × 10−5(M/L)−1 = 0.05. A K
giant, with L = 130 L⊙ and M = 4 M⊙, will have Γ = 0.001. The radiative
acceleration from lines is also small; the continuum of cool stars peaks in
infrared or red, where there are few resonance lines in the atmosphere. How-
ever, in cool giants and supergiants, there is an additional source of opacity.
Cool giants and supergiants are observed to emit an excess of radiation in
the infrared. This infrared excess can be attributed to the formation of
dust grains in the cool, extended stellar envelope; dust condensation requires
temperatures lower than T ∼ 1000 K.

The infrared opacity of the atmosphere increases very rapidly at the radius
where the dust condenses out. The grains, once they form, are accelerated
outward as the result of the momentum they gain by absorbing photons.
Some of the momentum of the grains is transferred to the gas by collisions.
As the grains are driven outward, they thus drag the gas along with them.
When the dust grains are accelerated to high velocities, however, they begin
to be destroyed by ‘sputtering’. The acceleration ceases, and the terminal
wind velocity stays at the relatively low value of ∼ 20 − 50 km s−1. If dust
particles were indestructible, the wind could be accelerated to velocities of
∼ 100 km s−1 or more. The radiative acceleration on the dust grains is greater
than the gravitational acceleration when

κd >
4πGMc

L
= 1.3 × 104 cm2 g−1

(

M

L

)

, (12.20)
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where κd is the frequency-averaged opacity of the dust, and the mass-to-light
ratio M/L is in solar units. An M supergiant, with M/L = 7×10−4 M⊙/ L⊙,
will require a dust opacity of κd > 9 cm2 g−1 in order to have a dust-driven
wind; a K giant, with M/L = 0.03 M⊙/ L⊙, will require κd > 400 cm2 g−1.

Radiative pressure on dust cannot be the sole mechanism driving winds
from cool luminous stars, since dust can only exist in a relatively cool envi-
ronment. Infrared observations of Betelgeuse (an M supergiant) show that
less than 20% of the emission from dust comes from within a distance 12R∗ of
the star. For K stars, with their higher effective temperatures, the problem
of forming dust close to the star’s surface is even greater. If dust forms at 10
times the stellar radius, then some other mechanism must lift gas 90% of the
way out of the star’s gravitational well before it even encounters the dust.

Winds from cool, luminous stars might be driven by Alfvén waves prop-
agating outward in the atmosphere of a magnetized star. Large amplitude
Alfvén waves (δB ∼ B) are observed in the sun’s atmosphere, so it is not im-
plausible that such waves may propagate through other stellar atmospheres
as well. The rate at which Alfvén waves deposit momentum in the star’s at-
mosphere depends on whether the waves are adiabatic (undamped) or dissi-
pational (damped). Hartman & MacGregor, 1980 (ApJ, 242, 260) examined
models of Alfvén-wave driven winds. For a supergiant with M = 16 M⊙,
R = 400 R⊙ and a surface magnetic field of B = 10 G, the predicted terminal
velocity is u∞ = 400 km s−1 if the Alfvén waves are undamped. If the Alfvén
waves are heavily damped, then all of the wave energy goes into heating the
base of the atmosphere. If, however, the damping length of the Alfvén waves
is comparable to the radius of the star, then the observations can be matched.
For a 16 M⊙, 400 R⊙, 10G supergiant, with an Alfvén damping length of
L = R∗ = 400 R⊙, the terminal velocity of the wind is u∞ = 50 km s−1, and
the mass loss rate is Ṁ = 5 × 10−7 M⊙ yr−1, in agreement with observed
values.

Another possible mechanism for driving winds from cool, luminous stars
is pulsationally driven, radially expanding shock waves in the stellar atmo-
sphere. Many M giants and supergiants are observed to be variable, with long
periods. For instance, Mira (an M giant) has a period of 330 days, during
which its luminosity varies by 8 magnitudes. The variability in luminosity
is due to the radial pulsation of the star. The pulsating star can be thought
of as a spherically symmetric piston, driving periodic shock waves into the
stellar atmosphere. Every year or so, before the gas has a chance to settle
down into hydrostatic equilibrium again, it is hit by another shock, and yet
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Figure 12.3: The density (upper panel) and velocity (lower panel) for shock-
driven winds. On the left, the wind is assumed to be adiabatic; on the right,
the wind is assumed to be isothermal. [Wood 1979, ApJ, 227, 220]

more momentum and energy is added to the gas. Eventually, the outer layers
of the star are unbound, and flow outward in a wind. The properties of a
shock-driven wind, as illustrated in Figure 12.3, depend on whether the gas
is adiabatic or isothermal. A model star with M = M⊙, L = 104 L⊙ and pul-
sational period P = 373days will have a mass loss rate of Ṁ = 0.02 M⊙ yr−1

if the gas is adiabatic, and a mass loss rate of Ṁ = 10−12 M⊙ yr−1 if the gas is
isothermal. The main difference in the two types of flow is that the adiabatic
case has much higher densities at large radii. A combination of isothermal
shock-driven flow (effective at small radii) and dust-driven flow (effective at
large radii) gives a mass loss rate of Ṁ = 3 × 10−7 and a terminal velocity
u∞ = 7 km s−1, which are of the right magnitude for mass loss from a Mira
variable.


