
Chapter 4

Radiative &

Magnetohydrodynamic Shocks

I have been dealing, so far, with non-radiative shocks. Since, as we have seen,
a shock raises the density and temperature of the gas, it is quite likely, under
astrophysical conditions, that the post-shock gas will be highly radiative.

Consider, again, plane parallel shocks in which the gas flow is perpen-
dicular to the shock front, as shown in Figure 4.1. A gas with density ρ1

and pressure P1 flows into the shock front with a velocity u1 relative to the
front. The pre-shock gas is assumed to be in thermal equilibrium, and is not
radiating energy. The gas passes through the thin shock layer; immediately
downstream, it has density ρ2, pressure P2, and bulk velocity u2 given by
the Rankine-Hugoniot jump conditions. So far, everything is the same as in
the nonradiative shock. Now, however, we assume that there is an optically
thin radiative relaxation layer downstream of the shock front, in which
the cooling function L(ρ, T ) is greater than zero.1

Within the radiative relaxation layer, the conservation equations are

ρu = constant (4.1)

ρu2 + P = constant (4.2)

ρu
dε

dx
= −P

du

dx
− ρL . (4.3)

For an ideal gas, the energy equation reduces to

u

γ − 1

dP

dx
+

γ

γ − 1
P
du

dx
= −ρL (4.4)

1The cooling function L has units of energy per unit mass per unit time.
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Figure 4.1: The geometry of a radiative plane parallel shock; we are in the
shock’s frame of reference, with pre-shocked gas flowing in from the left.
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or, using the continuity and momentum equations,

a2 − u2

γ − 1

du

dx
= −L(ρ, T ) . (4.5)

The cooling function for a very hot ionized gas, as an example, is domi-
nated by bremsstrahlung, for which L ∝ ρT 1/2. At lower temperatures, the
cooling may be dominated by radiative recombination, or line radiation, or
some other process. Computing the exact values of ρ, P , T , and u in the
radiative relaxation layer is usually done numerically, with tabulated values
of L (or a functional fit). Without resorting to a computer, we can still derive
the qualitative behavior of the gas in the radiative relaxation layer.

As initial conditions, take the values of ρ2, P2, T2 and u2 immediately
downstream of the shock front. The four equations

ρu = ρ2u2 (4.6)

ρu2 + P (x) = ρ2u
2

2
+ P2 (4.7)

1

γ − 1
(γP/ρ− u2)

du

dx
= −L(ρ, T ) (4.8)

T =
m

k

P

ρ
(4.9)

tell us the physical conditions within the radiative relaxation layer. Since
the post-shock gas is subsonic (u2 < γP/ρ) and since L > 0, equation (4.8)
indicates that the flow velocity u decreases as you move through the radiative
relaxation layer away from the shock front. Since u decreases, equation (4.6)
tells us that ρ increases. From equations (4.6) and (4.7), the pressure is

P = P2 + ρ2u
2

2
(1 − u/u2) . (4.10)

For a strong shock P2 > ρ2u
2

2
, and the pressure increases only slightly as the

gas flows through the radiative relaxation layer. The temperature, in terms
of u, is

T = T2

(

u

u2

)

[

1 +
ρ2u

2

2

P2

(1 − u/u2)

]

≈ T2

(

u

u2

)

. (4.11)

For a strong shock, T ∝ u and the temperature decreases in the radiative
relaxation layer. The gas will approach a steady state equilibrium in which
L = 0, and the density, pressure, temperature, and bulk velocity have the
constant values ρ3, P3, T3, and u3.
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Frequently, the final temperature T3 is the same as the initial value T1.
A radiative shock for which this equality holds true is called an isothermal

shock. The jump conditions for an isothermal shock are

ρ3u3 = ρ1u1 (4.12)

ρ3u
2

3
+ P3 = ρ1u

2

1
+ P1 (4.13)

T3 = T1 . (4.14)

Making use of the equation of state P = ρkT/m, and using the “isothermal
sound speed” aT ≡ (kT1/m)1/2, we find that the increase in density is

ρ3

ρ1

=
(

u1

aT

)2

= M2

T , (4.15)

where MT is the upstream isothermal Mach number. The bulk velocity is
decreased by a factor u3/u1 = 1/M2

T . The properties of a MT = 2 isothermal
shock are displayed in Figure 4.2. Radiative isothermal shocks can achieve
arbitrarily high compression as the Mach number approaches infinity. Su-
pernova remnants in the early stages of their expansion are surrounded by
nonradiative shocks. However, as the spherical shocks expand and slow down,
the postshock temperatures drop below ∼ 104 K. At this point, line emission
kicks in, and the cooling becomes much more efficient. Thus, highly evolved
supernova remnants (such as the Cygnus Loop) have structures with very
high density contrasts.

The effectiveness of cooling is indicated by the cooling time tT ∼ ε/L. At
high temperatures, T ∼ 107 K, the cooling time is tT ∼ 6 Myr (1 cm−3/nH).
At a temperature of T ∼ 8000 K, cooling is much more efficient, and tT ∼
0.02 Myr (1 cm−3/nH). At lower temperatures, in the range 50 K ∼< T ∼<

600 K, the cooling time is tT ∼ 0.2 Myr (1 cm−3/nH).
It is now time to consider magnetohydrodynamics (or MHD). MHD

is the study of the motions of a conducting fluid in the presence of mag-
netic fields. Magnetic field strengths encountered in astrophysics range from
10−6 G in the hot ISM to 1012 G on the surface of a neutron star. Magnetic
fields have a significant effect on the dynamics of astrophysical gases.

A good place to start our discussion of MHD is by writing down Maxwell’s
equations for the electric field ~E and the magnetic flux ~B.

~∇ · ~E = 4πρe (4.16)
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Figure 4.2: The density, bulk velocity, temperature, and pressure of material
passing through a Mach 2 isothermal shock.
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~∇× ~E = −
1

c

∂ ~B

∂t
(4.17)

~∇ · ~B = 0 (4.18)

~∇× ~B =
4π

c
~je +

1

c

∂ ~E

∂t
. (4.19)

In the above equations, ρe is the charge density and ~je is the current density.
In nonrelativistic systems, the term c−1∂ ~E/∂t in equation (4.19) may be
ignored.

In an ionized gas, the current, electric field, and magnetic flux are related
through the expression

~E =
1

σ
~je −

1

c
~u× ~B , (4.20)

where σ is the electrical conductivity. Using equation (4.19) to eliminate je,

~E =
c

4πσ
~∇× ~B −

1

c
~u× ~B . (4.21)

Substituting this result into equation (4.17), we find the basic equation for

the evolution of ~B:

∂ ~B

∂t
+ ~∇× ( ~B × ~u) = −~∇× (η~∇× ~B) . (4.22)

The quantity η is the electrical resistivity,

η ≡
c2

4πσ
. (4.23)

If η is constant throughout the gas, equation (4.23) may be rewritten in the
form

∂ ~B

∂t
+ ~∇× ( ~B × ~u) = η∇2 ~B , (4.24)

where I have made use of the fact that ~∇ · ~B = 0. If ~u = 0, then the
above equation represents the diffusion of the vector field ~B, with a diffusion
constant η.

The electric and magnetic fields exert force on the charged particles that
make up an ionized gas. For a completely ionized gas, with ions of charge
Ze, the mean force per unit volume is

~fL = Zeni( ~E +
1

c
~ui × ~B) − ene( ~E +

1

c
~ue × ~B) . (4.25)
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The ions have a number density ni and a bulk velocity ~ui; the electrons
have a number density ne and a bulk velocity ~ue. Since maintaining charge
neutrality requires that Zeni − ene = 0, and the current density is given by
the relation ~je = Zeni~ui − ene~ue, the Lorenz force per unit volume is

~fL =
1

c
~je × ~B (4.26)

=
1

4π
(~∇× ~B) × ~B . (4.27)

Using the appropriate identity from vector algebra,

~fL =
1

4π
( ~B · ~∇) ~B − ~∇

(

B2

8π

)

. (4.28)

The first term on the right hand side represents a ‘magnetic tension’; it
exists only if the magnetic field lines are curved, and acts in such a way as
to straighten them out. The second term on the right hand side represents
the gradient of the ‘magnetic pressure’, Pm = B2/(8π).

The magnetic field also adds a heating term to the internal energy con-
servation equation. An electric current je passing through a medium of re-
sistivity η converts electromagnetic energy to heat energy at the rate

P =
4πη

c2
j2

e =
η

4π
|~∇× ~B|2 . (4.29)

For the sake of monumental completeness, let’s write down the basic equa-
tions of MHD in all their glory.

Dρ

Dt
= −ρ~∇ · ~u (4.30)

ρ
D~u

Dt
= −~∇P + ~∇·

↔
π −ρ~∇Φ + ~frad +

1

4π
(~∇× ~B) × ~B (4.31)

ρ
Dε

Dt
= −P ~∇ · ~u− ~∇ · ~F + ψ + Γ − Λ +

η

4π
|~∇× ~B|2 (4.32)

∇2Φ = 4πGρ (4.33)

∂ ~B

∂t
+ ~∇× ( ~B × ~u) = −~∇× (η~∇× ~B) (4.34)

~∇ · ~B = 0 (4.35)

ε =
1

γ − 1

P

ρ
. (4.36)
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Now that we’ve taken the trouble to write down these complicated equations,
we will ruthlessly simplify them. First we will ignore viscosity and heat
conduction, setting

↔
π= 0, ψ = 0, and ~F = 0. We will ignore gravity, and set

~∇Φ = 0. We will ignore radiative effects, and set ~frad = 0 and Γ − Λ = 0.
We will ignore diffusion of the magnetic field, and set η = 0.

All of these simplifications will make it possible for us to consider a steady-
state planar shock in the presence of a magnetic field. If a planar shock front
exists, then the velocity vector ~u and the magnetic field vector ~B can both be
broken down into components perpendicular to the shock front (designated
by the subscript ⊥) and parallel to the shock front (designated by the sub-
script ‖). Quantities measured just upstream of the shock will be designated
by the subscript ‘1’, as usual, and quantities measured just downstream of
the shock will be designated by the subscript ‘2’. The jump conditions across
the shock are:

ρ1u⊥1 = ρ2u⊥2 (4.37)

ρ1u
2

⊥1
+ P1 +

B2

‖1

8π
= ρ2u

2

⊥2
+ P2 +

B2

‖2

8π
(4.38)

ρ1u⊥1u‖1 −
B⊥1B‖1

4π
= ρ2u⊥2u‖2 −

B⊥2B‖2

4π
(4.39)

ρ1u⊥1(
γ

γ − 1

P1

ρ1

+
u2

1

2
) −

B‖1

4π
(B⊥1u‖1 −B‖1u⊥1) = (4.40)

ρ2u⊥2(
γ

γ − 1

P2

ρ2

+
u2

2

2
) −

B‖2

4π
(B⊥2u‖2 −B‖2u⊥2)

B⊥1u‖1 −B‖1u⊥1 = B⊥2u‖2 −B‖2u⊥2 (4.41)

B⊥1 = B⊥2 (4.42)

Note that the component of the velocity parallel to the shock is no longer
conserved. The discontinuity in u‖ occurs because there is a current within
the shock front of strength (c/4π)(B‖2 −B‖1), which increases u‖ by a factor

u‖2 − u‖1 =
B⊥

4πρu⊥
(B‖2 −B‖1) . (4.43)

The most mathematically tractable MHD shock is a normal shock (u‖ = 0,
u⊥ = u) in which the magnetic field is parallel to the shock front (B⊥ = 0,
B‖ = B). In this case, the jump relations simplify to the form

ρ1u1 = ρ2u2 (4.44)
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ρ1u
2

1
+ P1 +

B2

1

8π
= ρ2u

2

2
+ P2 +

B2

2

8π
(4.45)

γ

γ − 1

P1

ρ1

+
1

2
u2

1
+

B1

4πρ1

=
γ

γ − 1

P2

ρ2

+
1

2
u2

2
+

B2

2

4πρ2

(4.46)

B1u1 = B2u2 (4.47)

Using these four equations, we can solve for the density jump ρ2/ρ1 in terms
of the upstream Mach number M1 and the ratio of the magnetic pressure to
the thermal pressure,

α1 ≡
B2

1

8πP1

. (4.48)

After discarding the trivial solution ρ2 = ρ1, the four jump relations simplify
to the quadratic relation

2(2−γ)α1

(

ρ2

ρ1

)2

+γ[(γ−1)M2

1
+2(α1 +1)]

(

ρ2

ρ1

)

−γ(γ+1)M2

1
= 0 . (4.49)

When the magnetic pressure is relatively insignificant (α1 ≪M2

1
) the change

in density is approximately

ρ2

ρ1

= y0

[

1 −
4

γ

γ +M2

1

[2 + (γ − 1)M2
1 ]2
α1

]

, (4.50)

where y0 is the density ratio in the absence of a magnetic field. The presence
of a magnetic field thus tends to decrease the density jump from what it
would be in the absence of magnetism. In fact, if we again examine the
quadratic equation for ρ2/ρ1, we see that ρ2 > ρ1 when

M2

1
> M2

cr
≡ 1 +

2

γ
α1 . (4.51)

The existence of a magnetic field permits you to have supersonic motions
(M > 1) without the formation of shocks. Magnetosonic waves (fluctua-
tions in the combined magnetic and gas pressure) can travel ahead of the
shock front. Fluctuations in the gas pressure have a characteristic speed
a ∝ (P/ρ)1/2. Similarly, fluctuations in the magnetic pressure have a char-
acteristic speed, called the Alfven velocity, uA ≡ B/(4πρ)1/2 ∝ (Pm/ρ)

1/2.

Magnetosonic waves that travel in a direction perpendicular to ~B have a
phase velocity u = (a2 + u2

A)1/2 = a[1 + α(2/γ)]1/2.
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