

Supernovae

Astronomy 1101

Key Ideas:

End of the Life of a Massive Star:

- Burn H through Si in successive cores
- Finally build a massive Iron core.
 Iron core collapse & core "bounce"
 Neutron star formation.
 Supernova Explosion:
- How? We don't really know. Then, envelope ejection Neutron stars and pulsars.

The other Supernovae: the explosion of White Dwarfs (Type – la supernovae)

Last Days of a Massive Star

Burns a succession of nuclear fuels:

- Hydrogen burning : 10 Myr
- Helium burning : 1 Myr
- Carbon burning : 1000 years
- Neon burning
- Oxygen burning : ~1 year
- Silicon burning : ~1 day

- : ~10 years

Builds up an inert Iron core in the center...

End of Silicon Burning Phase:

The Nuclear Impasse

Fusion works by releasing *nuclear* binding energy.

But, Iron (Fe) is the most bound nucleus:

- Fusion of nuclei lighter than Fe releases energy (exothermic).
- Fusion of nuclei heavier than Fe absorbs energy (endothermic)

Once an Fe core forms, there are no fusion fuels left for the star to tap.

Iron Core Collapse

Iron core grows to a mass of ~1.4 M_{sun}

• T > 10 Billion K & density $\sim 10^{10}$ g/cc

Two energy consuming processes kick in:

- Photodisintegration: high-energy photons melt Fe/Ni nuclei into He, p & n
- Neutronization: protons & electrons combine into neutrons & neutrinos: (this produces a 'neutron' star)

 $e^- + p \rightarrow n + v_e$

 Neutrinos escape & carry away energy
 So, no source of energy, and energy leaking out rapidly! Collapse accelerates as it accelerates.

Catastrophic Collapse Start of Iron Core collapse: • Radius ~ 6000 km ($\sim R_{earth}$) • Density ~ $10^{10} - 10^8 \text{ g/cm}^3$ 0.1 second later... Radius ~20 km • Density $\sim 3 \times 10^{14} \text{ g/cm}^3$

• Collapse Speed ~ 0.1 c ~ 20,000 miles/sec.

Bounce!

Core collapses until its density is ~2-3x10¹⁴ g/cc, the density of a single nucleus. Then, the *Strong Nuclear Force* comes into play. It binds nuclei together. But, if you compress to much, it repels. Complex equation of state. Inner part of the core comes to a screeching halt & springs back a bit (*bounces*)

Infalling gas hits the bouncing core head-on at 0.1c!

Post-Bounce Shockwave

Shockwave blasts out into the infalling star:

 Kinetic Energy is >10⁵¹ ergs! (more than Sun radiates in its lifetime)

After about 50 milliseconds:

Shockwave stalls

Meanwhile, <u>neutrinos</u> pour out of the core:

 Some heating the gas, leads to violent convection

$$e^{-} + p \rightarrow n + v_{e} \quad e^{-} + p \leftarrow n + v_{e}$$

Collapse – Bounce – Stall - Explosion(?) – Wind - Cooling

Burrows, Hayes, & Fryxell (1995)

Shockwave evolution:

Somehow shockwave revives and explodes (maybe!) after ~1 second. Otherwise, black hole formation (about 5-30% of the time!). Blastwave smashes out through the star:

 Explosive nuclear fusion in its wake produces more heavy elements, like Ni, Co, Fe

Heats up and accelerates the envelope
 Shock breakout from the star's surface a few hours later.

Supernova Shocks its Host Star

Kifonidis et al

1 sec

Supernova!

At shock breakout:

- Brightens by 10 Billion
 L_{sun} in minutes
- Outshines an entire galaxy of billions of stars!

Outer envelope is blasted off:

 accelerated to a few x 10,000 km/sec

gas expands & cools off
 Only the neutron star
 core remains behind...

Supernova 1987a

Nearest visible supernova since 1600's. February 23, 1987:

- 15 M_{sun} Supergiant Star SK–69°202 Exploded in the Large Magellanic Cloud.
- Saw a pulse of neutrinos, then the explosion.
- Confirmed the basic picture of collapse.
- Continued to follow it for the last 25 years.

Wealth of information on supernova physics

SN 1987A 1987 A.D.

February 23 Type-II Progenitor: Sanduleak -69° 202a Supergiant

Before

During

Crab Nebula

Remnant of Supernova in 1054, Song dynasty discovery, visible in daylight for 23 days.

X-Ray Supernova Remnants

D ~ 200 pc (600 lyr) L ~ 100,000 L_{sun} R ~ 1000 R_{sun} T ~ 3500 K M ~ 20 M_{sun}

Betelgeuse

It's supernova might be nearly as bright as the full moon. For weeks. ~ 1 Sun-like star born per year.
~ 1 massive star >8 Msun every 100 years.
~1 supernova every 100 years.

A galaxy

In 10 billion years:

- ~ 100 million supernovae.
- ~ 1 billion M_{sun} of elements ejected.
- ~ 100 million neutron stars.

What left behind? Neutron Stars

Remnant cores of massive stars:

- 8 < M < 100 M_{sun} (??)
- Leftover core of a core-collapse supernova
- Produced by $e^- + p \rightarrow n + v_e$
- Held up by Neutron Degeneracy Pressure:
 - Mass: ~1.2 2 M_{sun}, Radius: ~10 km (born 20-30km)
 - Density: ~ few x 10¹⁴ g/cc
 - Escape Speed: ~0.7c (70% speed of light)

Shine by residual heat: no fusion or contraction

Manhattan (spaceimaging.com) $M = 1.5 M_{sun}$ $R \sim 10 km$ $V_{esc} \sim 0.7c$

Neutron Star

Ended here, Weds Oct 15

What about old neutron stars? Accidental Discovery of Pulsars

<u>1967</u>: Jocelyn Bell (Cambridge grad student) & Anthony Hewish (her adviser) discover pulsating radio sources while looking for something else.

Pulsars = Pulsating Radio Sources

- Emit sharp millisecond-long pulses every spin period.
- Strong magnetic field rips electrons off the surface, beams radio waves to us.
- Many hundreds now known, Periods from 0.002 – 20s.

Massive stars explode, leave neutron stars.

The Crab 1054 A.D. July 4, China

NASA, ESA, Hubble

Chandra

Pulsar Evolution

Pulsars spin slower as they age.

- Lose rotational energy Young neutron stars:
 - fast spinning pulsars.
 - found in supernova remnants (e.g., Crab pulsar)

Old neutron stars:

cold and hard to find

Neutron Stars Move Fast: Kicks!

V ~ 1000 km/s Much faster than normal stars (orbital velocity in galaxy uniform ~200 km/s)

Over the top?

What if the remnant core is *very* massive? $M_{core} > 2.2 M_{sun}$ or so. (original star had M \sim 20-30 M_{sup}) Neutron degeneracy pressure fails. Strong force fails. Nothing can stop gravitational collapse. Collapses to zero radius and infinite density. Becomes a Black Hole... (This process has never been observed)

Collapse – Bounce – Stall - Explosion(?) – Wind - Cooling

Burrows, Hayes, & Fryxell (1995)

The Other Type of Supernova

Degenerate Gas Law

At high density, a new gas law takes over:

- Pack many electrons into a tiny volume
- These electrons "fill" all low-energy states
- Pauli exclusion principle: fermions (e.g., electrons, neutrons, protons) cannot occupy the same energy state.
- Only high-energy = high-pressure states left

Result is a *"Degenerate Gas"* equation of state:

• Pressure is *independent* of Temperature.

Allows for very cold objects to be in Hydrostatic Equilibrium. (Related to how the cores of planets hold themselves up.)

White Dwarfs

Remnant cores of stars with $M < 8 M_{sun}$.

- Held up by Electron Degeneracy Pressure.
- M < 4 M_{sun} : C-O White Dwarfs
- $M = 4 8 M_{sun}$: O-Ne-Mg White Dwarfs

Properties:

- Mass: < 1.2 M_{sun} , Radius: ~ R_{earth} (~0.01 R_{sun})
- Density: ~10⁶ g/cc
- Escape Speed: few% speed of light (0.01-0.03c)
 Shine by residual heat: no fusion or contraction

Binary of Sirius and Sirius B

Sirius B

 $M \sim 1.0 M_{sun}$ R ~ 5800 km V_{esc} ~ 0.02c

Evolution of White Dwarfs

White dwarfs shine by leftover heat:

- No sources of new energy (no fusion)
- Cool off and fade away slowly.
- Ultimate State: A "Black" Dwarf:
 - Old, cold White Dwarf
 - Takes ~10 Tyr to cool off all the way...

Universe is not old enough for Black Dwarfs

Not to be confused with "Black Holes"

Chandrasekhar Mass

White dwarfs are supported by "electron degeneracy pressure". Temperature independent.

Maximum Mass for White Dwarf:

 M_{Chandra} = 1.4 M_{sun}
 Calculated by S. Chandrasekhar in the 1930s. Above it, electron degeneracy fails to support the star in HE & the star collapses.
 How could you make a WD greater than the Chandrasekhar mass? What would happen if you did?

White Dwarf in a Binary?

White dwarfs can "accrete" from a companion in a close binary system.

Artist's impression of accretion onto a WD

But, then the mass grows, and grows, and grows ... What happens if M > 1.4 Msun? Exceeds Chandrasekhar Mass

"Type-la" Supernovae

If M >1.4 M_{sun}? (Exceeds Chandrasekhar Mass)

- Electron degeneracy fails, no H.E., star collapses
- Ignites C-O (or O-Ne-Mg) fusion at high density
- Generates heat, but not enough to stave off gravity
- Greater heat = greater fusion = greater heat ...
- Runaway nuclear explosion:
 - Fusion of light elements into Iron & Nickel
 - White Dwarf detonates as a Type la Supernova

Leaves behind nothing (total disruption). The brightest optical display in the universe. Litters the universe with Iron.

Another way

Strong evidence against accretion scenario (e.g., no such systems are seen; no blasted off material seen).

Another way: Slam two white dwarfs together. Option 1: Binary WD+WD merge via gravitational wave emission. (>50% of all stars in binaries.) Option 2: Binary WD+WD in a triple system. Exotic dynamics leads to a collision between the two WDs. (10% of systems on the sky are triple.) Option 3: ? Current active area of research.

Guillochon

We see Type Ia Supernovae throughout the universe.

Ia supernova exploding in a galaxy by HST

We see Type Ia Supernovae in our galaxy: 1 every 200yr.

Kepler's Supernova

Tycho's Supernova

End Oct 17