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ABSTRACT

We study the physics of core-collapse supernovae and the neutron stars they cre-
ate. We study the microphysics of neutrino interactions and demonstrate the im-
portance of two processes previously ignored in full supernova simulations: inelastic
neutrino-nucleon scattering and nucleon-nucleon bremsstrahlung. We show that these
processes dominate neutrino-electron scattering and electron-positron annihilation as
thermalization and production mechanisms, respectively, for mu- and tau-neutrinos
in regimes vital to emergent spectrum formation.

In addition, we solve the general-relativistic steady-state eigenvalue problem of
neutrino-driven protoneutron star winds, which immediately follow core-collapse su-
pernova explosions. We provide velocity, density, temperature, and composition pro-
files and explore the systematics and structures generic to such a wind for a variety
of protoneutron star characteristics. Furthermore, we derive the entropy, dynamical
timescale, and compositions essential in assessing this site as a candidate for r-process
nucleosynthesis.

Finally, we construct dynamical models of core-collapse supernovae. We employ
a full solution to the transport equation for each neutrino species, a realistic high-
density nuclear equation of state, and explicit hydrodynamics. We present results
from a set of different supernova progenitors. We vary the microphysics and nuclear
equation of state and compare our results to those of other groups. We examine
the electron-neutrino breakout phenomenon and address the importance of nucleon-
nucleon bremsstrahlung and inelastic neutrino-electron scattering in p and 7 neutrino
spectrum formation. We convolve the emergent spectra obtained in these models with
terrestrial neutrino detectors and find that the electron-neutrino breakout burst can

likely be observed and identified uniquely.
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CHAPTER 1

INTRODUCTION

Core-collapse supernovae are among the most energetic phenomena in the universe.
Although the luminous energy radiated during such an event is sizable (~ 10* erg),
the total energy emitted in neutrinos is a prodigious ~ 3 x 10°® erg. In fact, for a
fraction of a second during neutrinosphere breakout, the neutrino luminosity from
a supernova is greater than the luminosity in photons from the rest of the visible
universe. This copious neutrino emission originates in the cores of supernovae where
temperatures surpass 10! Kelvin and mass densities reach 2 — 3 times those of nuclei.
From the perspective of fundamental physics, the conditions attending collapse and
explosion make supernovae a laboratory for the study of weak and high-density nu-
clear interactions. From a broader astrophysical standpoint, core-collapse supernovae
are essential as a primary source of energy and elements in the interstellar medium,
affecting galactic morphology and chemical evolution. Despite the importance of
such phenomena, the supernova problem is unsolved and a comprehensive theory of

core-collapse remains elusive.

1.1 The Supernova Story

In the early 1930’s Chandrasekhar (see e.g., Chandrasekhar 1967 and references
therein) derived the maximum stable mass for a white dwarf, a compact object with
radius of order thousands of kilometers, supported against gravity by electron degen-
eracy pressure. Chandrasekhar showed that above a certain mass the configuration
was dynamically unstable and that an object that reached such a mass would collapse
inexorably. Modern stellar evolution calculations show that stars with mass greater

than ~ 8 solar masses (M) develop inner cores much like degenerate white dwarfs,
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which become dynamically unstable to collapse in the manner predicted by Chan-
drasekhar when their mass approaches ~ 1.4 M. Although the massive star consid-
ered may have lived quietly for millions of years, the collapse proceeds on timescales
of less than a second. In 1934, just two years after Chadwick discovered the neutron,
Baade & Zwicky proposed with considerable prescience that supernovae represent
the transition between normal massive stars and neutron stars, ultra-compact ob-
jects composed predominantly of neutrons. It was thought that the implosion caused
by Chandrasekhar’s dynamical instability might reverse at nuclear densities and that
the shock wave created might be sufficient to tear apart the outer parts of the mas-
sive star, littering the galaxy with nucleosynthetic products and leaving behind both
a spectacular remnant of the explosion and a newly-born neutron star.

As beautiful and intuitive as it might be, the idea that this shock, having been
generated by the preceding implosion, continues promptly from the core and becomes
the supernova is incorrect. In the early 1980’s it was shown that the shock must
stall due to neutrino losses and the photodissociation of nuclei (e.g. Mazurek 1982;
Burrows & Lattimer 1985; Bruenn 1985). A robust conclusion of these calculations is
that the shock formed at bounce stalls into an accretion shock after having traveled
of order only 100 kilometers (km). How this shock might be revived via neutrino

heating or some other mechanism is the focus of modern supernova theory.

1.2 The Physical Conditions

Although the details change with the given model assumptions and with the initial
progenitor, the basic numbers are the following. A ‘standard’ Type-II supernova
progenitor might have a total mass of ~ 15 Mg, have lived for a multiple of 107 years,
and be classified as a red supergiant with a radius of some several x10'3 centimeters
(cm). It has an onion-skin structure with an extended hydrogen envelope, a layer

of helium below, and a core of oxygen, magnesium, and silicon, which dumps the
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ashes of nuclear burning onto a core of iron several thousands of kilometers in radius,
roughly the size of the Earth or a white dwarf. Figure (1.1) shows a schematic of this
initial configuration in the upper left-hand corner. This part of the diagram is meant
to illustrate a blue supergiant progenitor, with a smaller hydrogen envelope and so
the radius of the object is labeled as 3 x 10'2 cm. The inner core is supported by the
degeneracy pressure of relativistic electrons and becomes dynamically unstable when
the mass grows to M ~ 1.45(Y,/0.5)? My, where Y,[= (n.- — n.+)/mn] is the electron
fraction, and n.-, n.+, and n, are the number densities of electrons, positrons, and
baryons, respectively. Perhaps more precisely stated, the Chandrasekhar instability
is encountered when the average adiabatic index (I's|= dInP/dInpl,]) of the self-
gravitating core dips below 4/3.

Collapse: At the moment collapse ensues the core temperature may be ~ 1 MeV

3

and the mass density may be < 10'° g cm™3. The core collapses on a dynamical

~1/2 ~ 0.1 seconds, where G is the gravitational constant and p

timescale 7 ~ (Gp)
is the average density of the core material. During infall and bounce, peak negative
velocities approach a fourth of the speed of light. This collapse epoch is illustrated
in the lower left-hand corner of Fig. (1.1). The core density rises to nuclear densities
(pouc ~ 2 — 3 x 10 g cm™3) and the temperature to ~ 10 MeV. Owing to the
thermo-static effects engendered by the existence of many excited states of nuclei
in a realistic nuclear equation of state, up until these densities and temperatures,
the neutrons and protons are still locked in massive nuclei. In fact, just before the
phase transition from nuclei to free nucleons, the atomic mass (A) of a representative
heavy nucleus in the core may approach several hundred. Until central densities
of ~ 5 x 10* g cm™3 are reached, the process of electron capture on free protons
(e” 4+ p — n+ v.) depletes the total electron fraction in the core as the final-state
electron neutrinos (v,s) escape to infinity, thereby aiding collapse by removing electron
pressure support. In essence, it is this process with its final-state neutron, which

creates the neutron star left behind by core-collapse. Above these densities, the
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timescale for electron neutrino diffusion from the core becomes much longer than
that for the hydrodynamical evolution and the neutrinos are trapped. As a result,
equilibrium is established between e~ 4+ p — n + v, and its inverse.

Bounce and Breakout: At p,, the nuclei dissolve into free nucleons. At this
point the nucleons contribute significantly to the pressure and the equation of state
stiffens (d1n P/dInp|; — 2 — 3). As a result, the collapse halts and a strong sound
wave is formed at the center of the object. As the wave propagates down the den-
sity gradient of the infalling material it steepens into a shock as it encounters the
supersonically collapsing outer core !. The shock forms at a radius of just 10 — 20 km
with a maximum positive velocity of ~ 3 x 10° cm s™' (see the lower right-hand
snapshot in Fig. 1.1). As the shock liberates free protons, the process e”+p — n+v,
generates a huge local luminosity (L,,) of electron neutrinos just behind the shock.
This region is opaque to the final-state electron neutrinos and they are effectively
trapped, their diffusion timescale being much longer than that for shock evolution.

! As the shock moves out in radius,

As a result, L,, can reach 1 — 2 x 10°* erg s~
it eventually encounters lower mass densities and the previously trapped electron
neutrinos decouple from this more optically thin region and propagate ahead of the
shock. This pulse of electron neutrinos arrives at infinity with L, (c0) ~ 2 — 3 x 103
erg s . This electron-neutrino breakout signals collapse and bounce and, as Chapter
4 shows, may be detected unambiguously from the next galactic supernova in modern
neutrino detectors such as SuperKamiokande and the Sudbury Neutrino Observatory.
The electron neutrino breakout pulse is virtually simultaneous with the turn-on of
the other neutrino species. Anti-electron neutrinos (7.s), suppressed until now by the
very small positron number density caused by the very large chemical potential of the

electrons throughout the core, are generated predominantly in the hot post-bounce en-

vironment by et +n — p+,. Mu- and tau-neutrinos are also produced in this epoch

L A shock is a non-linear phenomenon admitted by the equations of hydrodynamics. It is evidenced
by discontinuities in the fluid variables such as velocity, temperature, and density.
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by electron-positron annihilation (ete~ — v,7,), nucleon-nucleon bremsstrahlung
(e.g. np — npv,7,), and neutrino/anti-neutrino annihilation (v.7, — v,7,; Buras et
al. 2002). Although each of these processes also contributes for v, and 7, neutrinos,
the charged-current processes et +n — p+ 7, and e~ + p — n + v, dominate.

At just ~ 75 km the shock stalls as a result of two effects. First, as the shock begins
moving outward it dissociates the infalling iron-peak nuclei into free nucleons, thus
giving up ~ 8.8 MeV per baryon in binding energy. Second, and most importantly,
as the shock dissociates nuclei into free nucleons, electrons capture on the newly
liberated protons to produce electron-neutrinos in the reaction e~ +p — n + v,.
The electron-neutrino breakout phenomenon and subsequent neutrino losses are thus
responsible for the inability of the bounce shock to promptly become the supernova.

Equilibrium: Only 2 — 3 milliseconds after the shock was created it has suc-
cumbed and a quasi-hydrostatic equilibrium is maintained between the newly-born
‘proto’neutron star (with radius of ~ 50—80km) and the stalled accretion shock. This
phase in the evolution is illustrated in the upper right-hand snapshot of Fig. (1.1),
which shows the hot, extended protoneutron star, the accompanying neutrino radi-
ation, and the mass-flux of the infalling material (M). Although the shock stalls
at 75 — 100 km, it may move slowly over hundreds of milliseconds to larger radius
(~ 200km) as the composition of the infalling material changes and because neutrino
heating and cooling affect the dynamics. The matter from the star itself continues
falling onto the shock on near-free-fall timescales. The core of the protoneutron star is
hot and dense, producing neutrinos of all species. The neutrinos diffuse in the dense
inner core, but at some radius decouple from the matter and free-stream to infinity.
The radius of decoupling, called the neutrinosphere (R,), is roughly defined as the
point at which the mean-free path for neutrino interaction approaches the character-
istic length scale of the object as a whole (perhaps 50 — 100 km). Owing to the fact
that neutrino-matter cross sections are generally proportional to the neutrino energy

squared (£2), the neutrinosphere is very energy dependent and not sharply defined.
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The primary processes driving neutrino heating (H) and cooling (C) in and around
the neutrinospheres are e~ +p > n+ 1, (C), et +n—>p+ 7, (C),ve+n— e +p
(H), and 7. +p — e™ +n (H). Importantly, a robust conclusion of detailed numerical
models is that directly above the electron neutrinosphere (R,, ~ 60km) is a region
of net neutrino cooling. At what is called the gain radius (R,), heating balances
cooling (R, ~ 100km). Treating the problem stationarily, R, must also correspond
with a peak in the matter entropy because Tvds/dr|g, ~ H — C = 0, where s is
the specific entropy and 7" and v are the postshock temperature and velocity, respec-
tively (e.g. Burrows, Hayes, & Fryxell 1995). Between R, and the radius of the shock
(Rs ~ 200km) is a region of net neutrino heating.

The Neutrino-Driven Mechanism: The radial extent of the heating region,
as well as the magnitude of the net energy deposition depend crucially on the neu-
trino energy density and flux in this semi-transparent regime. Because this regime is
marginally optically thin to neutrinos, the transport equation must be solved accu-
rately for all neutrino species. Fundamentally, the neutrino-driven mechanism suc-
ceeds when the hot protoneutron star transfers enough energy to the region just
behind the shock via neutrino interactions. Note that the kinetic energy associated
with the mass motions of observed supernovae is ~ 10°! erg. In contrast, the amount
of gravitational binding energy released in going from a degenerate progenitor iron
core with a radius of several thousand kilometers to a neutron star with a radius
of order ten kilometers is approximately £ ~ GM?/R. Taking M = 1.4M, and
R = 10kilometers implies E ~ 3 x 105 erg. Virtually all of that energy is released
in the form of neutrinos, only a small fraction (~ 1%) of which must couple to the
mantle above the protoneutron star that is ejected as the supernova.

All one-dimensional models that do not employ ad hoc neutrino luminosity boost
mechanisms fail in one spatial dimension. However, models of supernovae in two
dimensions yielded explosions as a result of the larger gain region caused by convec-

tion behind the shock (Herant et al. 1994; Burrows, Hayes, & Fryxell 1995). These
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models, however, suffered from crude treatments of the neutrino transport in the semi-
transparent gain region and, hence, cannot be regarded as a solution to the supernova
problem. For a more complete analysis of the requirements for the neutrino-driven
mechanism, the reader is referred to Bethe & Wilson (1985), Burrows & Goshy (1993),
and Janka (2001).

Explosion and Protoneutron Star Cooling: Assuming that some combina-
tion of neutrino heating and multi-dimensional convective effects are sufficient to drive
explosion, the protoneutron star is left to cool and contract (see the central drawing
in Fig. 1.1). This cooling phase may last tens of seconds and most of the gravitational
binding energy will be released in neutrinos as the protoneutron star contracts from
~ 50km to of order 10 km. In the successful two-dimensional simulation of Burrows,
Hayes, & Fryxell (1995) the shock, newly-revived, moves outward in radius at a ve-
locity of ~ 20000 km s™*. The region behind the shock and above the neutrinosphere
becomes more tenuous as the shock moves out. A portion of the neutrino radiation
coming from the cooling neutron star may drive a wind via energy deposition into

this evacuating region (Janka & Miiller 1996; Burrows, Hayes, & Fryxell 1995).

1.3 This Thesis in Context

Microphysics: At the temperatures and densities achieved in core-collapse super-
novae, neutrinos are produced in profusion via charged- and neutral-current weak in-
teractions. The emission and absorption mechanisms, combined with opacity sources
such as neutrino-electron and neutrino-nucleon scattering, couple the neutrinos to
the ambient matter, affecting energy transport from the dense inner core to the more
tenuous outer layers, where the neutrinos free-stream. This coupling may be suffi-
cient to drive Type-II supernovae. Essential in answering the question of whether
the neutrino mechanism succeeds generically is a precise understanding of neutrino

transport in this context. In turn, this analysis relies on detailed knowledge of the
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role and importance of each relevant weak interaction. Full supernova models are
often difficult to diagnose in this regard. Simple test problems often shed light on
the role of particular processes. In Chapter 2 we analyze the importance of several
neutrino interactions in an easily manipulated theoretical framework. Particularly,
we focus on the role of inelastic neutrino-nucleon scattering as an energy exchange
process and nucleon-nucleon bremsstrahlung as a production process in models of
supernovae. For more than 20 years theorists have neglected these processes. Chap-
ter 2 shows unequivocally that they cannot be ignored; an accurate prediction of the
emergent neutrino spectrum from a galactic core-collapse supernova relies on their in-
clusion. Motivated by the work of Hannestad & Raffelt (1998) and Burrows & Sawyer
(1998), we compare neutrino-nucleon scattering and bremsstrahlung with processes
previously thought to dominate in the supernova problem.

Although supernova theorists had neglected the inelasticity of neutrino-nucleon
scattering, they included the neutrino-electron energy redistribution kernel in their so-
lution to the neutrino Boltzmann equation. Chapter 2 compares the neutrino-nucleon
and neutrino-electron scattering thermalization rates for all relevant neutrino ener-
gies, at a variety of temperatures, densities, and compositions. Our results contradict
the accepted approximation and show clearly that above neutrino energies of ~ 15
MeV, neutrino-nucleon scattering is comparable with or dominates neutrino-electron
scattering as a thermalization mechanism. Similarly, the supernova community con-
sidered electron/positron annihilation as the dominant production process for y and 7
neutrino/anti-neutrino pairs. Again, in contrast to the standard thinking on neutrino
processes, we discovered that nucleon-nucleon bremsstrahlung dominates production
in regimes vital to spectrum formation. In addition, as part of this study we derived
for the first time the emissivity due to nucleon-nucleon bremsstrahlung at arbitrary
nucleon degeneracy.

Dynamical Models and Neutrino Signals: Fundamental to an understanding

of supernovae is a precise prediction of the neutrino signature from such an event.
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Modern terrestrial neutrino detectors can expect to observe thousands of neutrinos
from the next galactic supernova. The best direct observation that can be made of
supernovae, the one most capable of revealing the details of the inner core structure,
is that of the neutrino signature of core collapse. Comparing the emergent spectrum
and its time evolution from models of supernovae with the neutrino signature observed
in underground detectors is the acid test for any complete theory of core collapse.
In addition, the observed spectral evolution can put significant constraints on the
physics of neutrino oscillations, including the mass hierarchy, and the high-density
nuclear equation of state. It can also unambiguously indicate black hole formation.
Although much work has been done on the mechanism itself, comparatively little
attention has been paid to the detailed systematic changes in the detected neutrino
spectra as a function of progenitor, high-density nuclear equation of state, and neu-
trino microphysics. The basics of the modern supernova paradigm including shock
breakout, shock stall, accretion onto the core, and subsequent explosion will all be
borne out in the neutrino signature. For these reasons, precise models of supernovae
should be constructed, their neutrino signatures diagnosed, and these signals folded
with the sensitivities and characteristics of modern detectors. We have done exactly
that. Chapter 4 gives the details of our models of supernovae, predictions for the time
evolution of the neutrino spectra for all species, and our predictions for the signals
observed in several neutrino detectors in the first ~ 250 milliseconds after collapse.
Large variations in actual detected signals from future supernovae can only represent
new and interesting, previously ignored or perhaps even unknown physics. The work
of Chapter 4 is part of a new and small class of tools that address the core-collapse
problem with previously unattained precision in one spatial dimension. Comparable
to this work is only that of Rampp & Janka (2002) and Mezzacappa et al. (2001) and
Liebendérfer (2000).

Protoneutron Star Winds and the r-Process: Although predicting the neu-

trino signature of collapse and explosion is absolutely crucial to a complete theory of
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supernovae, we are only afforded a potential glimpse of such an event once every ~50
years. Next to electromagnetic observations of supernovae and their remnants, one
might also hope to learn something about the mechanism of supernovae from their
nucleosynthetic ejecta.

A complete and self-consistent theory of the origin of the elements has been
the grand program of nuclear astrophysics since the field’s inception. The rapid(r)
neutron-capture process is responsible for ~ 50% of nuclei with atomic mass greater
than 60. Recent abundance observations of ultra-metal-poor halo stars by the Hubble
Space Telescope (e.g. Cowan et al. 1999; Sneden et al. 1998) show remarkable agree-
ment with solar values for A > 135 — suggesting a universal r-process site that acts
early in the chemical enrichment history of the galaxy. While the relevant nuclear
physics is fairly well understood, the site in Nature where the r-process occurs, pro-
ducing abundance peaks at A ~ 80, 130, and 195, is one of the outstanding unknowns
in astrophysics.

Some multiple of 10°® erg will be lost via neutrino radiation by the protoneutron
star as it cools after the preceding supernova explosion. A small fraction of that
energy will be deposited in the surface layers of the nascent neutron star, heating and
driving material from its surface in a hydrodynamical wind. As a consequence of the
charged-current electron and anti-electron neutrino interactions, the wind is expected
to be neutron-rich. The large neutron excess, coupled with high matter entropy, is
thought to be conducive to a robust r-process. Although considerable research on
protoneutron star winds has been conducted, only Woosley et al. (1994) calculated
the nucleosynthetic yield from winds obtained in self-consistent core-collapse calcula-
tions. Other investigators (e.g. Burrows et al. 1995) obtained winds after successful
explosions, but were unable to evolve the wind to late times due to timestep limi-
tations caused by their explicit hydrodynamics. Woosley et al. (1994) obtained sig-
nificant r-process yields tens of seconds after explosion, but the very high entropy

and long dynamical timescale realized in their calculations have never been indepen-
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dently reproduced. Indeed, several groups have concluded that such entropies cannot
be achieved in transonic winds and that they are not likely to be obtained during
the cooling phase of protoneutron star evolution (e.g. Takahashi et al. 1994; Qian
and Woosley 1996). Moreover, fully self-consistent steady-state models in general
relativity had not previously been constructed. Chapter 3 fills these gaps in our
understanding of this phenomenon.

In Chapter 3 we solve the eigenvalue problem of steady-state transonic neutrino-
driven winds in general relativity. For given protoneutron star masses, radii, and
neutrino spectral characteristics, we compute the mass outflow rate using the appro-
priate hydrodynamical wind equations. We obtain velocity, temperature, density, and
composition profiles and compute the asymptotic entropy, dynamical timescale, and
electron fraction — each essential in assessing this site as a candidate for r-process
nucleosynthesis. We include a detailed analysis of the important power laws govern-
ing this system and map the entire relevant parameter space. We then post-process
our wind profiles for their nucleosynthetic yield. For the first time, we derive the
relationship between the entropy and dynamical timescale and the associated mass
outflow rate. We derive significant constraints on the epochs of wind evolution when
the r-process is likely to occur. Before this work, many assumed that the wind would
naturally evolve to high entropy (~ 400 kg baryon ') and relatively long dynamical
timescales (hundreds of milliseconds). Thus, generation of r-process nuclei would
proceed at late times, many seconds after the supernova explosion. This work rules
out such a scenario. It shows that although the wind evolves to high entropy at late
times (as the neutrino luminosity decays) it fails to enter a regime where a robust
r-process can take place. We also show that even if r-processing could occur at these
late times, the mass loss rate is too small (less than ~ 107® Mg s™') to contribute
significantly to the total r-process budget of the galaxy.

We show that a robust r-process can only be achieved in winds from very massive

protoneutron stars with high neutrino luminosities that contract rapidly after the
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preceding supernova. Although we were able to achieve nucleosynthesis up to the
platinum peak, the protoneutron star characteristics required to generate such spher-
ical transonic winds are unrealistic. Our results indicate that although nuclei with
mass numbers up to ~ 135 may be produced generically in this environment, a full r-
process, producing elements up to the actinides, is unlikely. Finally, we also show that
shocks engendered by the interaction of the newly formed wind with the preceding

supernova shock may have important dynamical and nucleosynthetic consequences.
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Collapse of Core

{(~1.5Mg)

"WHITE DWARF"

FIGURE 1.1. A cartoon of the basic stages in a supernova for a 15 Mg, progenitor. The
initial ‘onion-skin’ configuration is shown in the upper left-hand corner. The ~ 1.5 M
iron-core collapses dynamically (lower left-hand corner). The nuclear EOS stiffens
during collapse and drives a prompt ‘Bounce’ shock into the supersonic outer core
(lower right-hand corner). The shock stalls due to neutrino emission and dissociation
losses (upper right-hand corner). Assuming a successful supernova explosion, the
newly-formed protoneutron star is left to cool and contract (center).
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CHAPTER 2

THERMALIZATION AND PRODUCTION

2.1 Introduction

The cores of protoneutron stars and core-collapse supernovae are characterized by
mass densities of order ~ 10!® — 10'* g cm™ and temperatures that range from ~ 1
to 50 MeV. The matter is composed predominantly of nucleons, electrons, positrons,
and neutrinos of all species. For v, and v, types (collectively ‘v,s’), which carry away
50—60% of the ~ 2—3 x 10° ergs liberated during collapse and explosion, the prevail-
ing opacity and production processes are v,-electron scattering, v,-nucleon scattering,
electron-positron annihilation (ete~ <> v,7,), and nucleon-nucleon bremsstrahlung.
While all of these processes contribute for the electron types (ves and 7,s), the charged-
current absorption processes v,n <> pe” and 7,p <> ne™ dominate their opacity so
completely that in this paper we address only v, production and thermalization.
Supernova theorists had long held (Lamb & Pethick 1976) that v,-nucleon scat-
tering was unimportant as a mechanism for neutrino equilibration. While this process
was included as a source of opacity (Bruenn 1985; Burrows, Hayes, & Fryxell 1995),
it served only to redistribute the neutrinos in space, not in energy. In contrast, v,-
electron scattering was thought to dominate v, neutrino thermalization. In addition,
the only v,, pair production mechanisms employed in full supernova calculations
were ete” <> 1,7, and plasmon decay (v > v,7,) (Bruenn 1985); nucleon-nucleon
bremsstrahlung was neglected as a source. Recent developments, however, call both
these practices into question and motivate a re-evaluation of these opacities in the
supernova context. Analytic formulae have recently been derived (Reddy, Prakash, &
Lattimer 1998; Burrows & Sawyer 1998, 1999), which include the full nucleon kine-

matics and Pauli blocking in the final state at arbitrary nucleon degeneracy. These
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efforts reveal that the average rate of energy transfer in v,-nucleon scattering may sur-
pass previous estimates by an order of magnitude (Burrows & Sawyer 1998; Hannestad
& Raffelt 1998; Keil, Janka, & Raffelt 1999; Janka et al. 1996; Raffelt & Seckel 1998;
Sigl 1997). Hence, this process may compete with v,-electron scattering as an equili-
bration mechanism. Similarly, estimates for the total nucleon-nucleon bremsstrahlung
rate have been obtained (Hannestad & Raffelt 1998; Burrows et al. 1999; Friman &
Maxwell 1979; Flowers, Sutherland, & Bond 1975), which indicate that this process
might compete with ete™ annihilation.

These results suggest that the time is ripe for a technical study of the relative
importance of each process for production or thermalization. To conduct such a study,
we consider v, neutrinos in an isotropic homogeneous thermal bath of scatterers and
absorbers. In this system, the full transport problem is reduced to an evolution of
the neutrino distribution function (f,) in energy space alone. Although this is a
simplification of the true problem, it provides a theoretical laboratory in which to
analyze the rates both for equilibration of an initial neutrino distribution function
with dense nuclear matter and for production of the neutrinos themselves. From
these rates we determine the importance and particular character of each process, and
discover in which energy, temperature, or density regime each dominates. We employ
a general prescription for solving the Boltzmann equation in this system with the full
energy redistribution collision term. We compare quantitatively, via direct numerical
evolution of an arbitrary neutrino distribution function, the rates for thermalization
and production by each process, at all neutrino energies. Furthermore, we present
the total nucleon-nucleon bremsstrahlung rate for arbitrary nucleon degeneracy and
derive the single v, and 7, production spectra. This facilitates a more comprehensive
evaluation of its relative importance in neutrino production than has previously been
possible.

In §2.2, we discuss the general form of the Boltzmann equation and our use of

it to study v, equilibration and production rates. In §2.3, we provide formulae for



28

each of the four processes we consider: v,-nucleon scattering, v,-electron scattering,
and v, 7, pair production via both nucleon-nucleon bremsstrahlung and e*e~ annihi-
lation. In §2.4, we present the results of our equilibration calculations, showing the
time evolution of v, distribution functions as influenced by each of these processes
individually. We include plots of thermalization and production rates for each process
as a function of neutrino energy and time. For the scattering interactions we include
figures of the time evolution of the net energy transfer to the medium as a function of
incident neutrino energy. We repeat this analysis at points in temperature, density,
and composition space relevant to supernovae and protoneutron stars, taken from
snapshots of a stellar profile during a realistic collapse calculation (Burrows, Hayes,
& Fryxell 1995). Using these results, we discuss the relative importance of each pro-
cess in shaping the emergent v, spectrum. In §2.5, we recapitulate our findings and

conclusions.

2.2 The Boltzmann Equation

The static (velocity = 0) Boltzmann equation for the evolution of the neutrino dis-
tribution function (f,), including Pauli blocking in the final state, and for a spherical

geometry, is

10 9 1—u%o
— + R
or r o

where ¢ is the time, 7 is the radial coordinate, and p(= cosf) is the cosine of the

) fI/ = (1 - fu)ju - fI/XI/J (21)

zenith angle. j, and Y, are the total source and sink, respectively. For emission and
absorption, j, is the emissivity and x, is the extinction coefficient. For scattering,
both j, and x, are energy redistribution integrals which couple one neutrino energy
bin with all the others. The matrix element and associated phase-space integrations
which comprise j, and x, for electron and nucleon scattering yield the probability
that a given collision will scatter a particle into any angle or energy bin. A full

transport calculation couples energy and angular bins to each other through the right
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hand side of eq. (2.1).
In a homogeneous, isotropic thermal bath of scatterers and absorbers no spatial

or angular gradients exist. Consequently, the Boltzmann equation becomes

19/,
c Ot

= (1 - fu)ju - fVXI/' (22)

By dealing with this system, the transport problem reduces to an evolution of f, in
just energy and time. Note that for scattering processes, both j, and x, require an
integral over the scattered neutrino distribution function f/. Similarly, in evolving f,
via the production and absorption processes, j, and x, involve an integration over the
anti-neutrino distribution function f;. Therefore, f; must be evolved simultaneously
with f,. While j, and x, may be fairly complicated integrals over phase-space, the
numerical solution of eq. (2.2) is straightforward.

Given an arbitrary initial f,, we divide the relevant neutrino energy (&,) range
into n energy bins (typically 200 bins with 0 < ¢, (MeV) < 100). We then solve

eq. (2.2) for each bin individually and explicitly:

3,k+1 = Iik: + c(At)y, [(1 - fzi,k)jl/;k - fzi,k Xu,k} )

where ¢ denotes the neutrino energy bin and k£ denotes the timestep. Angular inte-
grals over scattering cosines which appear in the v,-nucleon and v,-electron scattering
formalism, as well as the electron energy integration needed for ete™ annihilation,
are carried out with a 4-point Gauss-Legendre integration scheme. The double in-
tegral over dimensionless nucleon momentum variables needed to obtain the con-
tribution from nucleon-nucleon bremsstrahlung is computed using nested 16-point

Gauss-Laguerre quadratures.

2.2.1 Rates for f, Evolution and Energy Transfer

Scattering, emission, and absorption processes, at a given neutrino energy (g,), pro-

duce and remove neutrinos from the phase-space density at that energy. The former
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achieves this by transferring energy to the matter during scattering, the latter two
by emitting or absorbing directly from that bin. The Boltzmann equation can then
be written in terms of an in and an out channel, the former a source and the latter a

sink:
af, | _ f

ot Ot ot

Consequently, for any interaction, there are two rates to consider: the rate for scat-

(2.3)

mn out

tering or production into a given energy bin (I';;,) and the inverse rate for scattering
or absorption out of that bin (I'y,;). The rates cj, and cy, yield timescales for an
interaction to occur, but fail, in the case of the former, to fold in Pauli blocking in
the final state. Equation (2.3) includes these effects and provides natural timescales

for f, evolution:

_ 1 afll _ (1 - fu) .
Pzn - fy at . - fl/ CJV (2'4)
and
_ 10k
Fout = E ot » = CXy- (25)

Note that although eq. (2.5) does not explicitly contain a Pauli blocking term, y,
contains an integral over (1 — f!), in the case of scattering, and an appropriate final-
state blocking term, in the case of absorption. At a given ¢,, then, I';, incorporates
information about the v, phase-space density at that energy. Conversely, at that same
€y, L'our contains information about the phase-space at all other energies. Regardless
of the initial distribution, 0f,/0t = 0 in equilibrium. This implies [';, = Tyy in
equilibrium and, hence, we build in a test for the degree to which the system has
thermalized.

Just as there are distinct rates for the ¢n and out channels of the Boltzmann
equation during equilibration, so too are there distinct scattering energy transfers.

For v, scattering with a scatterer s (electron or nucleon), at a specific €,,, two thermal



31

average energy transfers can be defined;

_ [ B, w fLT™ [v,s I/Ls']
fd?’p,’, frzm [1/“8 — VLS']

(W)in

(2.6)

and
f dpl,w (1 — fl) T [V“S — VLS’]

[ d®pl, (1 — f1)Zout [Vus — I/LS'}

(Wyout = (2.7)

where primes denote the scattered neutrino, w(= ¢, — €,) is the energy transfer,
and Z* and Z°% are the kernels for scattering into and out of a given energy bin,
respectively. As a consequence of detailed balance between the in and out channels
of the Boltzmann equation, Z" = e #“Z°% where 8 = 1/kgT and T is the matter
temperature. (The scattering kernels are discussed in detail in §2.3 for both scattering
processes.) Note that the denominators in egs. (2.6) and (2.7), up to constants which
divide out in the definitions of {(w);, and (W), are just j, and Y, respectively.

In an effort to provide more than one measure of the timescale for f, equilibration
due to scattering and to make contact with previous neutrino thermalization studies
(Tubbs 1978; Tubbs 1979; Tubbs et al. 1980) we also define a set of timescales in

terms of (w),y: and the higher w-moment, (w?),ut;

I'p=cx, {Wout (2.8)
and
2
w oy
Tp=cx, < 82 3 (2.9)

v

['p is the rate for shifting the centroid of a given distribution and I'g is the rate for
spreading an initial distribution (Tubbs 1979). In contrast with the work of Tubbs
(1978), Tubbs (1979), and Tubbs et al. (1980), we include the full effects of Pauli
blocking in the final state, allowing us to deal consistently with cases in which the

v,s are partially degenerate.
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2.3 Individual Interactions

This section details the source and sink terms necessary to solve the Boltzmann
equation for the time-evolution of f,. Sections §2.3.1 and §2.3.2 are dedicated to the
presentation and discussion of the collision terms for v,-nucleon and v,-electron scat-
tering, respectively. Section §2.3.3 describes the Legendre series expansion approxi-
mation and the use of it to compute the contribution to the Boltzmann equation, the
pair emissivity, and the single v, spectrum due to e*e~ <+ v,7,. Our derivations of j,
and x,, as well as the single and pair spectra from nucleon-nucleon bremsstrahlung
at arbitrary nucleon degeneracy and in the non-degenerate limit, are presented in
§2.3.4. In what follows, we take G ~ 1.55 x 10733 cm® MeV~2 57!, sin? @y ~ 0.231,

and employ natural units in which A =c = kg = 1.

2.3.1 Nucleon Scattering: v,n <> v,n and v,p <> v,p

Researchers working on supernova and protoneutron star evolution have recently re-
evaluated the issue of energy transfer via v,-nucleon scattering (Burrows & Sawyer
1998; Hannestad & Raffelt 1998; Keil et al. 1995; Janka et al. 1996; Raffelt & Seckel
1998). Originally, the assumption was made that the nucleons were stationary (Lamb
& Pethick 1976). If a neutron of mass m,, is at rest with respect to an incoming
neutrino of energy ¢,, one finds that the energy transfer (0) is ~ —&2/m,,. For €, =
10 MeV, @ ~ —0.1 MeV, a fractional energy lost of 1%. Using these simple kinematic
arguments and disregarding neutrino and nucleon Pauli blocking, one finds that the
thermalization rate for v,-electron scattering should be approximately a factor of 20
larger than that for v,-nucleon scattering. In the context of interest, however, at
temperatures of order 10 MeV and mass densities of order 10'® g cm™3, free nucleons
are not stationary, but have thermal velocities. The fractional energy exchange per
collision, in the case of v,-neutron scattering, is then ~ p,/m,c (Burrows & Sawyer

1998). For T ~ 10 MeV this gives a ~10—20% change in €, per collision. This calls the
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naive estimate of the relative importance of v,-nucleon scattering as a thermalization
process into question and a more complete exploration of the relative importance of
the two scattering processes is necessary.

Recently, analytic formulae have been derived which include the full kinematics
of v,-nucleon scattering at arbitrary nucleon degeneracy (Reddy, Praksh, & Lattimer
1998; Burrows & Sawyer 1998, 1999). At the temperatures and densities encountered
in the supernova context non-interacting nucleons are not relativistic. Due to nucleon-
nucleon interactions, however, at and around nuclear density (~ 2.68 x 10 g cm™3),
the nucleon’s effective mass drops and is expected to be comparable with its Fermi
momentum (Reddy, Praksh, & Lattimer 1998). In such a circumstance, a relativistic
description of the v,-nucleon scattering interaction is warranted. In addition, spin
and density correlation effects engendered by these nucleon-nucleon interactions have
been found to suppress the v,-nucleon interaction rate by as much as a factor of
~ 2 — 3 (Burrows & Sawyer 1998; Raffelt & Seckel 1998; Sigl 1997).

In this study, we focus on v, equilibration rates at densities  1x10™ g cm™ where
it is still unclear if nucleon-nucleon interactions will play an important role. This am-
biguity is due in part to uncertainties both in the nuclear equation of state and the
nucleon-nucleon interaction itself. For this reason, in considering neutrino-nucleon
scattering, we choose to treat the nucleons as non-relativistic and non-interacting,
thereby ignoring collective effects which might enhance or reduce the v,-nucleon scat-
tering rate. Particularly, in calculating this scattering rate, we ignore the effect of
inelastic nucleon-nucleon scattering (e.g. v,nn <> v,nn) (Hannestad & Raffelt 1998).

Making these assumptions, we find that j, and x, in eq. (2.2) are given by

GQ
Jy = W / d?’ﬁlll Inc flll B_ﬂw (210)
and
G2 3,2 !
%= o [ 7Tl = £ (211)

where 5 = 1/T, ), is the final state neutrino momentum, and w is the energy transfer.
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In egs. (2.10) and (2.11), the neutral-current scattering kernel is given by
Inc = S(q,w) [(1+ m)V* + (3 — w) A%, (2.12)

where p(= cos ) is the cosine of the scattering angle between incident and final state
neutrinos and S(g,w) is the dynamic structure function. In eq. (2.12), V and A are
the appropriate vector and axial-vector coupling constants; for v,-neutron scattering,

V =—-1/2 and A = —1.26/2. The dynamic structure function is

S(gw) = 2 / P 1~ ) @m)o(w e — &)

(2m)?
= 2ImIY(g,w) (1 — ™) (2.13)
where ¢ = |p, — pl,| = [€2 + £'? — 2¢,¢' u]'/? is the magnitude of the momentum

transfer, and f and f’ are the incident and scattered nucleon distribution functions,
respectively. In eq. (2.13), p is the incident nucleon momentum, ¢ is the incident
nucleon energy, and ¢’ is the scattered nucleon energy. The imaginary part of the free

polarization is given by (Burrows & Sawyer 1998; Fetter & Walecka 1971)

m2

= |
27 Bq n

o= (") (2h n). 215)

n is the nucleon degeneracy (u/T), and m is the nucleon mass. The factor e~ which

ImI1® (g, w)

(2.14)

14 e QHn
14+ e @+n—Bw |’

where

appears in eq. (2.10) is a consequence of the fact that S(q, —w) = e #“S(q,w), itself
a consequence of detailed balance between the in and out channels of the Boltzmann
equation. The dynamic structure function can be thought of as a correlation function
which connects ¢, and €!,.

The ¢ angular integrations implicit in egs. (2.10) and (2.11) can be computed
trivially assuming the isotropy of f,. Furthermore, defining the coordinate system

with the momentum vector of the incident neutrino, the scattering angle and the
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direction cosine are equivalent. Combining these two equations in the Boltzmann
equation for the evolution of f, due to neutral-current v,-nucleon scattering, we
obtain

of,  G?
ot (2m)?

[e9) 1
/ dﬁ'ﬁf/ dp Inc {[1 = ) fre™™ = £ 11 = f]}- (2.16)
0 -1
2.3.2 Electron Scattering: v,e” <> v e”

At the temperatures and densities encountered in supernovae and protoneutron stars,
electrons are highly relativistic. A formalism analogous to that used for v,-nucleon
scattering is desired in order to include the full electron kinematics at arbitrary elec-
tron degeneracy. Reddy, Prakash, & Lattimer (1998) have developed a relativistic
generalization of the structure function formalism described in §2.3.1. They obtain a
set of polarization functions which characterize the relativistic medium’s response to
a neutrino probe in terms of polylogarithmic functions. In analogy with eq. (2.16), we
can write the Boltzmann equation for the evolution of f, due to v,-electron scattering,

as
of,  G?
ot (4m)3

where Zy is the relativistic neutral-current scattering kernel for v,s, analogous to

/ &, Tio {[1— £] fre™™ — f,[1 = f2]}, (2.17)

Inc in eq. (2.12). All the physics of the interaction is contained in Z} ., which can

be written as
2
T = gqgl Im{A®TIE (1 — e #) L, (2.18)

where ¢, (= (w,q)) is the four-momentum transfer. As in the non-relativistic case,

I%c is composed of the lepton tensor,
A% = 8[2k°KkP + (k- q)g*® — (k*¢® + q°kP) — ie®Prr kg, (2.19)

which is just the squared and spin-summed matrix element for the scattering process

written in terms of k,, the incident v, four-momentum. The scattering kernel also
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contains the retarded polarization tensor, Hfﬂ, which is directly analogous to the free
polarization in the non-relativistic case given in eq. (2.13). The retarded polarization

tensor is related to the causal polarization by

Im I17; = tanh <—%ﬁw> ImIl,4 (2.20)
and
d*p
typ = i [ G G oGl +0)5) (221)

In eq. (2.21), p, is the electron four-momentum and J, is the current operator. The
electron Green’s functions (G, and G), explicit in the free polarization, connect points
in electron energy space and characterize the effect of the interaction on relativistic
electrons. The polarization tensor can be written in terms of a vector part, an axial-

vector part, and a mixed part, so that
o = V2, + A1, — 2VATILYS. (2.22)

In turn, the vector part of the polarization tensor can be written in terms of two
independent components, II7 and II;. In contrast with eq. (2.12), since v/c ~ 1 for
the electrons, the angular terms which were dropped from the matrix element in the
non-relativistic case, leading to a single structure function, must now be retained.
Zic can then be written as a set of three structure functions (Reddy, Prakash, &

Lattimer 1998):
2
q B —
Iic = 8&1—“/[1451(61, w) +S2(q,w) + BS3(q,w)](1 —e )Y, (2.23)
where A = (4e,e!, + ¢2)/2¢*> and B = ¢, + ¢!,. These structure functions can be
written in terms of the vector parts of the retarded polarization tensor (I1% and I1%),

the axial part (IT1%), and the mixed part (IIf,):
Si(g,w) = (V2 + A% [Imll}(g,w) + Imllf (g, w) |, (2.24)

Sa(g,w) = (V? + A?) Imllf(g, w) — A’ImIT} (g, w), (2.25)
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and

S3(q,w) = 2VA ImII{ (g, w). (2.26)

The retarded polarization functions, in terms of differences between polylogarithmic

integrals, can be found in Appendix B.3.1.

2.3.3 Electron-Positron Annihilation: ete™ < 1,7,

Fermi’s Golden Rule for the total volumetric emission rate for the production of v,s
via electron-positron annihilation can be written as

0 / I’y &y g PG
= El/
(2m)32¢ (2m)32¢’ (2m)32¢, (27)32¢;

x (32 |M2\> (2m)'5" (P) =1, (2.27)

where
Elf]=0 =)A= fo)fefer, (2.28)

and 6*(P) conserves four-momentum. f,- and f.+ are the electron and positron distri-
bution functions. In eq. (2.27), po(= (¢,7)) and pl,(= (¢',p")) are the four-momenta
of the electron and positron, respectively, and ¢%(= (¢,,q,)) and ¢2(= (¢5,G5)) are
the four-momenta of the v, and 7,, respectively. The process of electron-positron
annihilation into a neutrino/anti-neutrino pairs is related to neutrino-electron scat-
tering considered in §2.3.2 via a crossing symmetry. In order to make the problem
tractable, we follow the standard procedure (Bruenn 1985) of expanding the produc-
tion kernel in a Legendre series in the scattering angle to first order (see Appendix
B.1.4). Near the neutrinospheres, at densities which render neutrino transport diffu-
sive this approximation holds. In a full neutrino transport algorithm, however, which

must handle both the diffusion and free-streaming limits, the second-order term, with

proper closure relations, must be used in the semi-transparent regime between the
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neutrinospheres and the shock (Pons, Miralles, & Ibanez 1998). Having made this ap-
proximation, including only the zeroth- and first-order terms, the single v, spectrum
is
dQ o
X =(1-f) -
de, ( 1v) 8t

where ®}(¢,,¢5) is the zeroth-order production kernel expansion coefficient, an in-

/ " dep e Ben,e0) (1= o), (2.29)
0

tegral over the electron energy (see Appendix B.1.4) (Bruenn 1985). With the dif-
ferential spectrum or emissivity (d@/de,) in hand, it is a simple matter to extract
the contribution to the Boltzmann equation due to e*e™ annihilation. As eq. (2.29)
already contains the v, blocking factor, the contribution to the Boltzmann equation,
the in channel explicit in eq. (2.3), can be written as (Bruenn 1985)

of,| L(QW)?’@
ot m_47T e de,

(2.30)

In order to obtain the out channel for absorption due to e™e~ annihilation, we need
only replace F.-F+ in eq. (2.28) with an electron/positron blocking term, (1 —
Fe-)(1 — Fe+), and replace the v, and 7, blocking terms in eq. (2.29) with F,F;.
Finally, the Boltzmann equation for the evolution of f, in time due to eTe™ < v,1,

can be written as

afu . 2G2 © 9 € ] - o
ot (2@3/0 der ey /OdSHo(Ewgu:a) {El -2 (2.31)

where
El[f] = fufﬂ(l_fe_)(l_fe"‘)a (232)

€ =&, + €y, and H,(e,,€5,¢) is given in eq. (B.21). In solving eq. (2.31), f, must
be evolved simultaneously with f,. To do so, in addition to making the appropriate
changes to the vector and axial-vector coupling constants, V' and A, one needs to
integrate over ¢, instead of €;. Note that the electron and positron distribution
functions appear explicitly in eq. (2.31). We take these distributions to be Fermi-
Dirac at temperature 7" and with 7, determined by 7', p, and Y.
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Equation (2.27) may also be used to find the total volumetric v,7, pair spectrum
by replacing ¢, in the numerator with e. Ignoring neutrino blocking in the final state

one can show that (Dicus 1975)

Quay =~ 209x10% (1) 1) exgs em (2.3)
where
F(n) = F4(7le)F3(;;jo‘;ﬁié)—ne)f%(ﬁe)’ (2.34)
and
Fu(y) = /0 h %dm (2.35)

are the Fermi integrals.

2.3.4 Nucleon-Nucleon Bremsstrahlung

The importance of nucleon-nucleon bremsstrahlung in late-time neutron star cooling
has been acknowledged for some time (Friman & Maxwell 1979; Flowers, Sutherland,
& Bond 1975). Recently, however, this process has received more attention as a con-
tributor of v,, pairs and as an energy transport mechanism in both core-collapse
supernova and nascent neutron star evolution (Hannestad & Raffelt 1998; Burrows et
al. 1999; Brinkmann & Turner 1988; Suzuki 1993). The contribution from nucleon-
nucleon bremsstrahlung is a composite of neutron-neutron (nn), proton-proton (pp),
and neutron-proton (np) bremsstrahlung. Fermi’s Golden Rule for the total volumet-
ric emissivity of single v,s due to nn, pp, or np bremsstrahlung, including v, and 7,

blocking in the final state, is given by

—

Q= /[H p?,] 2:53;&(;3;5 s (s0IMP) (@m)s'(P)=(f]  (2:36)

where

Elfl=fif2(1 = f3) (A = f) (A = fo)(L = fo). (2.37)
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The product of differential phase space factors in eq. (2.36) includes a term for each
of the four nucleons involved in the process; 1 and 2 denote initial-state nucleons
whereas 3 and 4 denote final-state nucleons. In eq. (2.36), s is a symmetry factor for
identical initial-state fermions, ¢, is the neutrino three-momentum, ¢, is the neutrino
energy, and the four-momentum conserving delta function is explicit. In a one-pion
exchange model for the nucleon-nucleon interaction, the spin-summed matrix element
can be approximated by (Friman & Maxwell 1979; Brinkmann & Turner 1988)

£\

Z IM|? ~ 64G?¢% (m—>
s

x k? +m2

k2 2 I
(7) +.. e eer—q, kg k) (2.38)

where € = €, +¢5, k is the magnitude of the nucleon momentum transfer, g4 ~ —1.26,
f ~ 1is the pion-nucleon coupling, and m, is the mass of the pion. In order to make
the 18-dimensional phase-space integration in eq. (2.36) tractable we assume the
quantity in square brackets to be of order unity, but possibly as low as 0.1 (Burrows
et al. 1999). To acknowledge our ignorance, we introduce the factor, ¢, and assume
these momentum terms are constant. Recently, Hanhart, Phillips, & Reddy (2001)
have addressed these momentum terms in the context of axion emission and v,v,
production in supernovae. In an effort to make contact with the approximation to the
matrix element we present here, they plot ( as a function of average relative thermal
nucleon momentum (p; Phillips, private communication). The function peaks for {(p)
between 150 — 200 MeV at ¢ ~ 0.47. At p = 50 MeV ( ~ 0.08 and at p = 500 MeV
¢ ~ 0.27. We are most interested in the region around the v, neutrinospheres, where
the emergent spectrum might be most affected by nucleon-nucleon bremsstrahlung.
Mass densities and temperatures in this region might be 102 — 10! g cm =2 and 5—10
MeV, respectively. We estimate p in this regime to be ~ 175 MeV and take ¢ = 0.5 for
all thermodynamical points in this Chapter. Furthermore, we neglect the momentum

of the neutrinos relative to the momentum of the nucleons. We are left with a simple,
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but general, form for the bremsstrahlung matrix element:

Y IMP e~ AcTET, (2.39)

€2

where A = 64G?¢% f*/m?. In the case of nn or pp bremsstrahlung, as appropriate
for identical particles in the initial state, the symmetry factor (s) in eq. (2.36) is
1/4. Such a symmetry factor does not enter for the mixed-nucleon process, np,
which is still further enhanced by the fact that a charged pion mediates the nucleon
exchange (Brinkmann & Turner 1988). This increases the matrix element in eq. (2.39)
by a factor of 7/3 in the degenerate nucleon limit and ~ 5/2 in the non-degenerate
limit (Brinkmann & Turner 1988). Considering the already substantial simplifications
made by choosing not to handle the momentum terms directly, we will adopt the more
conservative 4 x (7/3) enhancement for the np matrix element. The total volumetric
emission rate combining all processes is just Qot = Qnn + @pp + Qnp- What remains
is to reduce eq. (2.36) to a useful expression in asymmetric matter and at arbitrary
neutron and proton degeneracy.

Following Brinkmann & Turner (1988), we define new momenta, p. = (p1 £p2)/2

and pscac = psa — P+, new direction cosines, v = py - p—/|p+||p-| and . = p; -

D3¢/ P+ |p3c|, and let u; = p?/2mT. Furthermore, we note that d®p,d®p, = 8d*p, d®p_.
Using the three-momentum conserving delta function, we can do the d*p; integral

trivially. Rewriting eq. (2.36) with these definitions, we find that

Q = 24s¢(2mT)*?2n)~° / de, &3 / dey du_ duy dus. dy, dv,

X (ep/€)” (u_uyug)'? 5(E) E[f], (2.40)
where A
§(E) = 5(26" —€) = 62T (u_ — us, — €/2T)). (2.41)

The nucleon distribution functions in the term Z[f] in eq. (2.40) have been rewritten

in terms of the new direction cosines, the dimensionless momenta (u;), and the initial-
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state nucleon degeneracy factors 1o = 12/

ef(a,1+bl71) d ef(alszl'yl) 2 42
fi= 2 cosh(a) + /1) ol fo= 2 cosh(alh — /y1)’ (242)
where a} , = a15/2 = $(uy +u_ — 1) and b = b/2 = (uju_)"/2. Furthermore,
e(cll+dl'70) e(cg*d,'h)
(1—f3)= and (1—fi)= (2.43)

"~ 2cosh(c, + d'y.) ~ 2cosh(cy, —d'y.)’
where ¢, = c12/2 = J(uy + use — mp) and d' = d/2 = (ujus)/?. f, and f;,
in contrast with the nucleon distribution functions, are independent of angle; for a
given set of thermodynamic conditions, they remain functions of energy alone. While
non-trivial, the integrations over 7; and . can be performed. For example, the result
for the v, integration is of the form

1

where B = sinh?a’ and ¢ = coshb'y;. With a proper evaluation of the integration

limits and some algebra one can rewrite this result as

1 n[(l + cosh a cosh b + sinh @ sinh b)} (2.45)

2sinha’ cosha’ | (1 + cosha cosh b — sinh @ sinh b)

Similar operations yield a result for the 7, integral in terms of ¢ and d. In addition,
eq. (2.41) can be used to eliminate the integral over u_. Collectively, these manipu-
lations reveal that the differential v, bremsstrahlung emissivity at arbitrary neutron
and proton degeneracy is simply a three-dimensional integral over u, us., and €;:

4Q

= = Ks¢C(1-f,)& /ds,; du, dus. (€5/¢€)? u:rl/Qe_*Be/2

X D€, uy,use) (1 — f), (2.46)

where

4
K = 2G? (2)9/2 <i> AT, (2.47)

272 My
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®(e, uy,uz) = sinh™'(f)In [( ; E ;
% sinh 1(j)In [ <1+cosh§h+;) (COShE];-i-coshE]]er;)] (2.48)

cosh(7) + cosh

and

ex = (uf 2+ Ul/Q) — 2
fo= uptu.—m/2—m/2
gr = £2uju )Vt —n /2412
he = (ul 12 | u1/2) —m
o= Uy tuze—m/2—m/2
kr = 42(ujus)? —m/24+m/2 . (2.49)

Though u_ has been integrated out via the energy-conserving delta function, it ap-
pears here in an attempt to make this expression more compact and should be read as
u_ = uz.+¢/2T. Importantly, if 7; = 7 the right-hand term within both logarithmic
terms in ® (€, uy, uz.) becomes unity.

Using eq. (2.30), we can easily obtain the contribution to the Boltzmann equation
due to nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy, in asym-
metric matter, and including the full nucleon and neutrino Pauli blocking terms. We

find that

= K'sC / den duty duse (e9/€)2 U 2P ®(e,us,us) (1= f,)  (2.50)

where K' = [(27)3/4n]K. The nucleon phase-space integrations above are identical
in form for the v,v, absorption process, v,v,nn — nn. In this case, then, the primed
energies are now associated with nucleons 1 and 2 in the above manipulations and the
incident nucleons (3 and 4) have unprimed energies. If we take the form derived above
for the nucleon phase-space terms, the absorption channel (x,) must then contain a

factor of e%¢. In addition, the blocking term, (1 — f;), becomes f;. The Boltzmann
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equation for the evolution of f, in time is then,

10f,
c Ot

= K's(/de,; duy duse (€5/€)? ujrl/Qe"Be/2 O (e, uy, use) Z[f], (2.51)

where
Blfl= (= £)A = fo) = fufse’™ (2.52)

For the neutron-neutron (nn) or proton-proton (pp) bremsstrahlung contribution,
we simply set s = 1/4 in eq. (2.51) and use 7y = 12 = n, Or 71 = 72 = 7, respectively.
For the mixed nucleon (np) bremsstrahlung we set s = 1, multiply eq. (2.51) by 7/3,
and set 7, = 1, and 7o = 7,. While egs. (2.46) and (2.51) may not appear symmetric
in 77 and 7 the logarithmic terms conspire to ensure that the rates for both np and
pn bremsstrahlung are identical, as they should be. That is, it makes no difference
whether we set 7, or n, equal to 7, or n,.

Just as in §2.3.3, in considering ete™ > v,7,, f; must be evolved simultaneously
with f,. In this case, however, the situation is simpler. Suppose we wish to compare
electron-positron annihilation with nucleon-nucleon bremsstrahlung by starting at
t = 0 with f; = f, = 0 over all energies. We then solve eq. (2.31) and its f;
counterpart at each timestep and at each energy. For eTe™ annihilation, f, and
f» will evolve differently; they will be visibly different at each timestep, because of
the weighting of the vector and axial-vector coupling constants which appear in the
matrix element. In contrast, eq. (2.51) for bremsstrahlung must be solved only once.
Since there is no difference in weighting between v, and 7,, we can set f; = f, at
every energy, at every timestep, as long as f; = f, at t = 0. Of course, if we wish to
consider f; # f, initially, the two distributions would need to be evolved separately
and simultaneously, coupled through the blocking and source terms on the right-hand
side of the Boltzmann equation.

Equation (2.36) can also be used to find the total volumetric v,7, pair emissivity.
To facilitate this we replace ¢, with € and insert [ (e — (g, + €5))de. Assuming the

neutrinos are radiated isotropically, we can use this delta function to do the integral
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over d*q, and leave the total rate in terms of an integral over ¢, from zero to e and
another over € from zero to infinity. Momentarily ignoring neutrino blocking in the
final state, the former can be integrated easily. Making the same momentum, angle,
and nucleon distribution function substitutions we used in deriving the single v,
spectrum we can reduce the pair spectrum to an integral over u,, us., and ¢ = €/27.

We find that
@, = DT [ dgdusedu g'e 7 0 s, (2.53)

where

2 2 4
D= 8 Gy (] md/? (2.54)
15279 \mg ’

and ®(e,uy,us.) is defined in eq. (2.48). Note that eq. (2.53) allows us to easily

calculate the pair differential volumetric emissivity (dQ,,s, /de). For Q"5 and Qﬁ’: D
s =1/4. As with the single v, spectrum, for Q,”; multiply eq. (2.53) by 7/3 and set
s = 1. Finally, QI =Qu, + QI%5, +QL%s,.

The Non-Degenerate Nucleon Limit In the non-degenerate nucleon limit, the term
fifa(1 = f3)(1 — f4) reduces to eMe™e 2u++u-) (Burrows et al. 1999), which is inde-
pendent of angle. This tremendous simplification allows for easy integration over u
and ug, in egs. (2.46), (2.51), and (2.53). The total volumetric emissivity of a single
v, 7, pair in this limit, ignoring v, and 7, blocking in the final state, is (Burrows et
al. 1999)
T \5%

Qu,5, == 1.04 x 10%°¢ (X p14)” (M—eV> ergscm st (2.55)
For nn and pp bremsstrahlung, X is the number fraction of neutrons (X,) or protons
(X,), respectively. For the mixed-nucleon process (np), X? becomes (28/3)X,X,.
Figure 2.1 compares the non-degenerate nucleon limit (eq. 2.55) with the arbitrary
nucleon degeneracy generalization (eq. 2.53) in the case of neutron-neutron (nn)

bremsstrahlung, as a function of the neutron degeneracy 7, = u,/T. The filled square

shows the degenerate limit obtained by Flowers, Sutherland, and Bond (1975). Note
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that at n, ~ 0, the fractional difference between the two is just ~ 12%. At realistic
neutron degeneracies within the core (1, ~ 2), this difference approaches 30%.
The single differential v, emissivity can be written in terms of the pair emissivity

(Burrows et al. 1999):
Q _ ¢ <—Q”ﬂ’7ﬂ> . / T )y
1

de, T4 v 3
= O Q”uﬂu 3 = e_qK 2
= i )& 1(9) (g — @) dq , (2.56)
qv q

where C' = 2310/2048 ~ 1.128, q, = ¢,/2T, ¢ = ¢/2T, and K; is the standard
modified Bessel function of imaginary argument. A useful fit to eq. (2.56), good to

better than 3% over the full range of relevant neutrino energies is (Burrows et al. 1999)

d D » 24
g ~ 0.234 QT (%) 1o /T, (2.57)

Using eq. (2.30), we obtain the contribution to the Boltzmann equation including

Pauli blocking of v, and 7, neutrinos in the final state:

(98{: — CSC/O dey (Sg/e)Kl (%) e Pel? {(1 _ fu)(l _ f,;) i f,,f,yeﬂe} ' (2.58)

where

2,..4.5 4 2 2 4 15
2
C = G'm™ <i> G T* eme® ~ G g4 (i> m—nlng. (2.59)

65 My 35 My TS

In obtaining eq. (2.59), we have used the thermodynamic identity in the non-degenerate

o1 \*/2 n;
e’"z( W) fi (2.60)

mT 2’

where n is the number density of nucleons considered and ¢ is 1 or 2 for neutrons or

limit,

protons, depending on which nucleon bremsstrahlung process is considered.

2.4 Results

The numerical algorithm we have developed accepts arbitrary initial v, and v, phase-

space distributions. Using the scattering formalism developed in the previous section,
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we evolve two initial distribution functions: (1) a broad Gaussian in energy centered
at 40 MeV with a maximum of f, = 0.80 and a full-width at half~-maximum of ~28.6
MeV, and (2) a Fermi-Dirac distribution at a temperature 2 x the temperature of the
surrounding matter and with zero chemical potential. While the former is unphysical
in the context of supernova calculations, it illustrates the effects of blocking on both
the average energy transfer and the rates for each scattering process. Furthermore,
its evolution is more dynamic than the Fermi-Dirac distribution. As a result, the way
in which the distribution is spread and shifted in time is more apparent. The essential
differences between the two processes are then more easily gleaned. The latter initial
distribution is motivated by consideration of the environment within the core of a
supernova. The v, and 7, distribution functions, having been generated as pairs via
ete” « v,7, and nucleon-nucleon bremsstrahlung should have approximately zero
chemical potential. Furthermore, even in the dense core, the v,s will diffuse outward
in radius and, hence, from higher to lower temperatures. By starting with a Fermi-
Dirac distribution at twice the temperature of the matter at that radius, we learn
more about how equilibration might effect the emergent v, spectrum in an actual
collapse or protoneutron star cooling calculation.

For the production and emission processes, we start with zero neutrino occupancy
and let each build to an equilibrium distribution of v,s and 7,s. As a check to the
calculation, the asymptotic distribution should be Fermi-Dirac at the temperature of
the ambient matter with zero neutrino chemical potential. Throughout these simula-
tions, we take the factor ¢ in eq. (2.51) for nucleon-nucleon bremsstrahlung to be 0.5
(see §2.3.4).

We repeat these calculations for four temperature, density, and composition points
(StarA, StarB, StarC, and StarD) taken from the one-dimensional collapse calculation
profile, Star (Burrows, Hayes, & Fryxell 1995), corresponding to four radii below the
shock (~ 80 km). Roughly, these points have densities 10**, 103, 10'%, and 10! g

cm~3. The actual numbers are shown in Table 2.1.
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2.4.1 Scattering

Figures 2.2 and 2.3 show the evolution of a Gaussian distribution at ¢ = 0 to an equi-
librium Fermi-Dirac distribution at the temperature of the surrounding matter due
to v,-neutron (v,n) and v -electron (v,e~) scattering, respectively. The equilibrium
distribution has a non-zero neutrino chemical potential set by the initial total number
of v,s, which is conserved to better than .001% throughout the calculation. Multiple
curves on each plot show snapshots of f, in time from ¢ = 0 to 1000 microseconds
(us). Both calculations were carried out at the thermodynamic point StarB whose
characteristics are shown in Table 2.1. StarB is indicative of the core of a supernova,
a region of moderate to high temperatures (T ~ 15 MeV) and densities of ~ 103 g
cm™?. These two figures illustrate the fundamental differences between v e~ and v,n
scattering as thermalization processes. Curve A in Fig. 2.2 and curve C in Fig. 2.3
indicate that at high v, energies (¢, > 30 MeV) v,n scattering is a much more effec-
tive thermalization mechanism. At ¢, ~ 40 MeV both curves show the distribution
is within ~30% of equilibrium. Importantly, however, curve A is at 0.33 us for v,n
scattering whereas curve C is at 3.30 us for v,e™ scattering. Curve C, in Fig. 2.2 for
v,n scattering, also at ¢ = 3.30 us, shows that above ~25 MeV the distribution has
almost equilibrated. For v, e~ scattering, similar evolution at high neutrino energies
takes approximately 25 us. These simple estimates reveal that v, n scattering is about
10 times faster than v,e” scattering at equilibrating v,s with energies greater than
approximately 25 MeV.

This situation is reversed at low ¢,s. Comparing curve E at ¢t = 33.0 us in both
Fig. 2.2 and Fig. 2.3, we can see that at ~ 10 MeV both distributions have filled
to approximately the same percentage of the asymptotic, equilibrium f,. However,
below ¢, ~8 MeV, v,n scattering has not filled f, to the extent v,e” scattering has. In
fact, the rate at which these low-energy states are filled by v,n scattering is very low;

the energy transfer (w) is much smaller than the incident v, energy. In this regime,
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the Fokker-Planck approximation for the time evolution of f, in energy space may
be applicable. In marked contrast, Fig. 2.3 indicates how effective v,e~ scattering
is at filling the lowest ¢, states. Curves F from Figs. 2.2 and 2.3, taken at 1000 us,
show that though the distribution has reached equilibrium via v,e~ scattering, for v,n
scattering the very lowest energy states remain unfilled. For each of the four points in
the Star profile we consider, v,n scattering dominates at high energies (> 20 MeV),
whereas v,e” scattering dominates at low v, energies (g 10 MeV) and particularly
for e, < 3 MeV.

Figures 2.4 and 2.5 depict the evolution of f, via v,n and v,e~ scattering, respec-
tively, for an initial Fermi-Dirac distribution at 2x the temperature of the surrounding
neutrons and electrons and with zero neutrino chemical potential. This calculation
was carried out at StarC (see Table 2.1), which is representative of the outer core,
in the semi-transparent regime, where the neutrinos begin to decouple from the mat-
ter (near the neutrinosphere). The same systematics highlighted in the discussion
of the evolution of the initial Gaussian distribution for StarB are borne out in these
figures. Curves A and B on both plots, denoting 0.10 and 0.33 milliseconds (ms) of
elapsed time, respectively, confirm that above €, ~ 15 MeV v,n scattering dominates
thermalization.

Figures 2.6 and 2.7 show {(w);, and (w)ey,, as defined in egs. (2.6) and (2.7),
for v,n scattering and v e scattering, respectively. The separate curves portray
the evolution in time of the thermal average energy transfers as the distributions
evolve to equilibrium (cf. Figs. 2.4 and 2.5). As one would expect from kinematic
arguments, the magnitudes of both (w);, and (w),y: for v,n scattering are much less
than those for v,e scattering. Though the energy transfers are much smaller, even
at the highest energies, v,n scattering still dominates v, e~ scattering in thermalizing
the v, distribution because the rate for scattering is so much larger. At low neutrino
energies, however, both average energy transfers for neutron scattering go to zero,

whereas they approach large negative values (~ —20 MeV) for electron scattering.
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At these low energies, the fact that the rate for v,n scattering is larger than for v e~
scattering fails to compensate for the vanishing energy transfer. For example, at
e, = 3 MeV and ¢ = 33 ms, the energy transfer for v, e~ scattering is more than 100
times that for v,n scattering.

In order to fold in information about both the rate of scattering and the average
thermal energy transfer, we plot I'p and I'g (egs. 2.8 and 2.9) in Fig. 2.8 for all
four points considered in the Star profile. We show here a snapshot of the rates for
both scattering processes for a Fermi-Dirac distribution initially at twice the local
matter temperature, with zero neutrino chemical potential. Note that the spikes in
I'p indicate the neutrino energy at which (w)u: = 0 (cf. Figs. 2.6 and 2.7). In general,
we find that as €, — 0, I'p and I'g go to zero for v,-neutron scattering, whereas I'p
approaches a constant and I'y gets very large for v,e™ scattering (Tubbs 1979). This
is a consequence of the fact that, regardless of f,, (w)ous — 0 for v,n scattering as
e, — 0, as shown in Fig. 2.6. For v e~ scattering the situation is different. As Fig. 2.7
reveals, (W) o, approaches ~ —20 MeV at e, = 0. As expected from our analysis of the
evolution of f, in Figs. 2.4 and 2.5, at approximately 40 MeV the thermalization rate
for v,n scattering for StarB is about an order of magnitude greater than that for v,e”
scattering. Specifically, the I'p’s cross at ~15 MeV, whereas the ['g’s cross at ~20
MeV. Below these energies, both v,n rates drop off precipitously as a consequence
of the fact that (w)ous — 0. Below €, ~ 5 MeV, the thermalization rate for v,e”
scattering dominates by 2-5 orders of magnitude. As evidenced by the other panels
in Fig. 2.8, this same trend holds in the other regions of the stellar profile. In general,
the rates drop over the whole energy range for both processes as the density and
temperature decrease, but the same systematics hold. In fact, for StarA, StarC, and
StarD the I'g and I'p crossing points for both processes are lower than those for
StarB. As a result of the higher temperature at this radius (7" ~ 14.5 MeV) v e~
scattering is important in thermalizing slightly higher energy neutrinos than at the

other radii. For StarC and StarD, specifically, both rates cross at neutrino energies
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less than 12 MeV.

These results demonstrate that v,-nucleon scattering is an important thermaliza-
tion process from the dense core through the semi-transparent regime for v,s with
energies greater than approximately 15 MeV. The addition of this energy transfer
mechanism implies that the v,s stay energetically coupled to the surrounding mat-
ter longer than has been previously estimated (Burrows & Mazurek 1982). We can
approximate the radius at which the v,s energetically decouple from the matter (the
E,-sphere) (Burrows & Mazurek 1982) by observing when the diffusion timescale is
approximately equal to the equilibration timescale given by PBl = Tp, as defined in
eq. (2.8). Using this crude approximation we find that by including v,-nucleon energy
transfer the E,-sphere is pushed outward in radius by approximately 3 kilometers.
This difference in radius corresponds to a 1-2 MeV drop in the matter temperature in
the model Star. The average energy of the emergent spectrum is roughly correlated
with the local matter temperature of the E,-sphere. Therefore, we conclude that v,-
nucleon energy transfer in full transport calculations will likely soften the emergent

v, spectrum.

2.4.2 Emission and Absorption

Figure 2.9 shows the total integrated volumetric emissivity as a function of radius
in the model Star for nucleon-nucleon bremsstrahlung in the non-degenerate nucleon
limit (eq. 2.55), its generalization for arbitrary nucleon degeneracy (eq. 2.53), and the
emissivity for ete~ annihilation (eq. 2.33). Note that not one of these expressions
contains neutrino blocking terms and that the general bremsstrahlung rate crosses
that for eTe™ annihilation at ~ 23 kilometers where p ~ 6 x 10'? g cm™3, T' ~ 11
MeV, and Y, ~ 0.13. While this plot gives a general idea of where e™e™ annihilation
should begin to compete with nucleon-nucleon bremsstrahlung, it fails to include

the differential nature of the production in energy. In addition, it does not include
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absorption or blocking effects, which quantitatively alter the relative strength of the
emission.

To begin to understand the import of these terms and the character of each pair
production process, we include Figs. 2.10 and 2.11, which show the time evolution of f,
via nucleon-nucleon bremsstrahlung and electron-positron annihilation, respectively,
for the point StarC, initialized with zero v, and 7, phase-space occupancies. The final
equilibrium distribution is Fermi-Dirac at the temperature of the surrounding mat-
ter, with zero neutrino chemical potential. Comparing curve C on both graphs, which
marks 10.0 milliseconds (ms) of elapsed time, one can see that bremsstrahlung domi-
nates production below ~ 15 MeV. Indeed, bremsstrahlung overshoots its equilibrium
distribution at energies below 10 MeV before finally filling the higher ¢, states. In
contrast, electron-positron annihilation fills the higher states first and moves slowly
toward the low-lying neutrino energies, taking a factor of 10 more time at this ther-
modynamic point to reach equilibrium.

In Figs. 2.12 and 2.13, we plot [';, and Ty, as defined in eqgs. (2.4) and (2.5), for
both production processes at the point StarB. As one would predict from our simple
observations of the time evolution of f,, the bremsstrahlung rates are much faster
(~2 orders of magnitude) than the e*e™ annihilation rates at low neutrino energies.
At StarC, eTe™ annihilation competes with bremsstrahlung above ¢, ~ 15 MeV. For
StarB, however, at a matter density an order of magnitude greater than that for StarC,
the energy at which nucleon-nucleon bremsstrahlung becomes more important than
ete™ annihilation is ~ 60 MeV. In this regime, where T ~ 12—14 MeV and p ~ 1033 g
cm~3, we find that bremsstrahlung dominates neutrino pair-production via electron-
positron annihilation. A close look at the evolution of the total thermal average
neutrino energy ((¢,)) reveals that f, reaches its asymptotic equilibrium distribution
via nucleon-nucleon bremsstrahlung in ~ 1 ms. Electron-positron annihilation takes
~ 50 ms to fill all but the very lowest energy states. This trend continues as the

matter becomes more dense. For StarA, well beneath the neutrinospheres at p ~ 104



93

g cm ™3, the rates for bremsstrahlung and electron-positron annihilation never cross.
In fact, the former produces an equilibrium Fermi sea of v,’s in ~ 50 us, whereas
the latter takes ~ 103 seconds. This difference of 8 orders of magnitude in timescale,
however, is a bit misleading. Similar to v,n scattering, e*e~ annihilation has trouble
filling only the very lowest neutrino energy states. In actuality, at the highest energies,
both T';, and T',,; for e"e~ annihilation come within 3-4 orders of magnitude of the
rates for bremsstrahlung at the same energy. Still, the difference is striking. As the
temperature drops from StarB (14 MeV) to StarA (10 MeV) and the density increases
by an order of magnitude, 7, goes from 3.79 to 15.75. Consequently, Pauli blocking of
electrons in the final state suppresses the process v,7, — ete™, and the phase-space
density of positrons is depleted to such an extent that efe” — 1,7, is suppressed
as well. We conclude that beneath the neutrinospheres and specifically for p ~ 10'3
g cm ™3, nucleon-nucleon bremsstrahlung is the primary and dominant v,, source.
Near the neutrinosphere, within the gain region and behind the shock, between 30

km and 60 km at p ~ 10?2 g cm 3

and T" ~ 6 — 8 MeV, bremsstrahlung competes
with eTe™ annihilation at all neutrino energies and is the primary production process
for the low-lying €, and ¢; states.

The addition of nucleon-nucleon bremsstrahlung will have quantitative implica-
tions for the v, and v, emergent spectra. Specifically, they should be softer and
brighter. Burrows et al. (2000) confirm this with their study of static supernova and
protoneutron star atmospheres, having included nucleon-nucleon bremsstrahlung in

the non-degenerate limit. In addition to observing a systematic softening, they also

find that the v, spectrum is a factor of 2 more luminous at €, = 10 MeV.

2.5 Summary and Conclusions

Our results for equilibration via v,-electron scattering and v,-nucleon scattering in-

dicate that the latter competes with or dominates the former as a thermalizer for
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neutrino energies > 10 MeV for p > 1 x 10" g cm™ at all temperatures. At neutrino
energies > 30 MeV the difference at all densities and temperatures is approximately
an order of magnitude. For the production and absorption processes, we find that
nucleon-nucleon bremsstrahlung, at the average energy of an equilibrium Fermi-Dirac
distribution at the local temperature, is 5 and 2 orders of magnitude faster than eTe™
annihilation at StarA (T ~ 10 MeV, p ~ 10 g cm™3) and StarB (T ~ 15 MeV,
p ~ 10" g cm™?), respectively. Only for p ~ 10 g cm 3 and T ~ 6 MeV does

et

e < v, begin to compete with bremsstrahlung at all energies. We conclude
from this study that the emergent v, and v, spectrum is (1) brighter and (2) softer
than previously estimated. The former results from the inclusion of the new pair
emission process, nucleon-nucleon bremsstrahlung. The latter is a consequence of
both the increased energy coupling between the nuclear and neutrino fluids through
v,-nucleon scattering and the fact that bremsstrahlung dominates e*e™ annihilation
near the neutrinospheres at the lowest neutrino energies. While the full transport
problem, including v,-nucleon scattering energy redistribution and nucleon-nucleon
bremsstrahlung, must be solved in order to delineate precisely what consequences

these processes have for the emergent v, spectrum, these calculations demonstrate

that they should not be omitted.
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Label R (km) p(gem™3) T (MeV) Y, T Ty Me

StarA  10.75  1.281 x 10* 10.56 0.2752 237 0.70 15.75
StarB  18.75  1.023 x 10%3 14.51 0.2021 -1.62 -3.04 3.79
StarC ~ 34.75  1.082 x 10'2 6.139 0.0907 -2.48 -4.81 3.03
StarD  49.75  1.071 x 10" 4.527 0.1671 -4.45 -6.06 1.93
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F1GURE 2.1. The total volumetric emissivity due to neutron-neutron bremsstrahlung
(Qnn) in ergs cm™ s7! in the non-degenerate neutron limit (solid line, eq. 2.55) and
at arbitrary nucleon degeneracy (dashed line, eq. 2.53) for T = 6 MeV, Y, = 0.0,
and for a range of densities from 5 x 10'® g cm™ to nuclear density (~ 2.68 x 10
g cm™3). The filled box denotes the degenerate neutron limit obtained by Flowers,

Sutherland, and Bond (1975).
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FIGURE 2.2. The time evolution via v,-neutron scattering of the neutrino distribu-
tion function (f,) for an initial Gaussian distribution centered on 40 MeV, for the
thermodynamic characteristics specified by StarB in Table 2.1. The curves show the
distribution at snapshots in time: (A) ¢ = 0.33 us, (B) t = 1.00 us, (C) t = 3.30 ps,
(D)t = 10.0us, (E) t = 33.0pus, and (F) ¢ = 1000 us. The solid dots denote an
equilibrium Fermi-Dirac distribution at the temperature of the surrounding thermal
bath with a neutrino chemical potential u, ~ 2.32T set by the initial v, neutrino
number density.
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FIGURE 2.4. The time evolution via v,-neutron scattering of the neutrino distribution
function (f,) for an initial Fermi-Dirac distribution at 2x the ambient temperature,
for the thermodynamic characteristics specified by StarC in Table 2.1. The curves
show the distribution at snapshots in time: (A) ¢ = 0.10 milliseconds (ms), (B)
t = 033 ms, (C)t = 1.0 ms, (D)t = 3.3 ms, and (E) ¢ = 33.0 ms. The
solid dots denote an equilibrium Fermi-Dirac distribution at the temperature of the
surrounding thermal bath with a neutrino chemical potential p, ~ 2.55T set by the
initial , neutrino number density. Comparison of this plot with Fig. 2.5 shows that
v,n scattering dominates thermalization above €, ~ 10 MeV.
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FIGURE 2.5. The same as Fig. 2.4, but for v,-electron scattering. Comparison of
this plot with Fig. 2.4 shows that v,-electron scattering dominates thermalization
below ¢, ~ 10 MeV.
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FIGURE 2.6. The thermal average energy transfers, (w);, and (W), defined in egs.
(2.6) and (2.7), respectively, as a function of neutrino energy (e,) for v,-neutron
scattering at the thermodynamic point StarC. The curves show snapshots of the
average energy transfers in time as f, evolves (see Fig. 2.4). For (w);,, (A)t = 0.0033
milliseconds (ms), (B) ¢ = 0.33 ms, and (C) ¢t = 33.0 ms. We show (W)t at t =0
(thin line) and ¢ = 33.0 ms (thick line). Note that in equilibrium (¢ ~ 33.0 ms)
<w>in = <w>out-
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FIGURE 2.7. The same as Fig. 2.6, but for v,-electron scattering. For (w);,, (A)
t = 0.10 milliseconds (ms), (B) ¢ = 0.33 ms, and (C) ¢ = 33.0 ms.
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FIGURE 2.8. I'p and I'y as defined in eqgs. (2.8) and (2.9), respectively, for both v,n
scattering for an initial Fermi-Dirac distribution at StarA, StarB, StarC,
and StarD (see Table 2.1) at a snapshot in time. The spikes in the I'j, curves are
a consequence of the fact that (W), — 0 at those neutrino energies (compare the
plot above for StarA with Figs. 2.6 and 2.7). The solid and the short-dashed lines in
all four plots are 'y and I'p, respectively, for v,n scattering. The long-dashed and
long-short-dashed lines are I'y, and I'p, respectively, for v,e™ scattering. At all four
points in the stellar profile Star, v,n scattering dominates v,e~ scattering at energies
above 10—20 MeV by approximately an order of magnitude. For StarA, the points
where the rates for v,-electron and v,-neutron scattering cross are at ~ 8 and ~ 13
MeV. For StarB, they lie higher, at ~ 15 and ~ 20 MeV, due predominantly to the
higher temperature at that radius. For both StarC and StarD, the rates cross at
between 7 and 12 MeV.
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FIGURE 2.9. The integrated total volumetric emissivity in ergs cm=3 s~ for ete~
annihilation and nucleon-nucleon bremsstrahlung in the non-degenerate limit (Eq.
2.55) and at arbitrary degeneracy (Eq. 2.46) as a function of radius in the stellar
collapse profile, Star. Note that the total bremsstrahlung and eTe~ annihilation
emissivities cross at R ~ 23 kilometers where p ~ 6 x 10'? g cm™ and T ~ 11 MeV.

Above this radius, ete” dominates.
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FiGuRE 2.10. The time evolution of f, due to nucleon-nucleon bremsstrahlung via
eq. (2.51) for the point StarC described in Table 2.1 starting with f, = f; = 0 at
all energies. Curves show snapshots of the evolution of f, with time: (A) ¢ = 0.66
milliseconds (ms), (B) ¢ = 3.30 ms, (C) t = 10.0 ms, (D) t = 33.0 ms, and (F)
t = 330 ms. The solid dots denote an equilibrium Fermi-Dirac distribution at the
temperature of the surrounding thermal bath with zero neutrino chemical potential.
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FIGURE 2.11. The same as Fig. 2.10, but for e*e~ annihilation via eq. (2.31).
Curves show snapshots of the evolution of f, with time: (C) t = 10.0 milliseconds
(ms), (D) t = 33.0 ms, (E) t = 100.0 ms, (F) ¢ = 330.0 ms, (G) ¢t = 1000 ms, and

(H) t = 3300 ms.
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FIGURE 2.12. T, as defined in eq. (2.4) for nucleon-nucleon bremsstrahlung (solid
lines) and ete~ annihilation (dashed lines), for the point StarB. Each curve shows
a snapshot of I';, as f, builds from zero phase-space occupancy at ¢ = 0: for (A)
and (A’) ¢ = 10.0 us. (B) and (B’) denote ¢t = 33.0 ps. (C) marks the equilibrium
rate for bremsstrahlung at ¢ = 3.3 milliseconds. Curves (D) and (E) mark 100.0 us
and 66.0 milliseconds, respectively, for ete~ annihilation. The latter, marks the ete™
equilibrium rate. Note that the equilibrium rates cross at €, ~ 65 MeV.
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CHAPTER 3

PROTONEUTRON STAR WINDS

3.1 Introduction

The successful two-dimensional Type-II supernova simulation of Burrows, Hayes, and
Fryxell (1995) shows clearly a post-explosion neutrino-driven wind, emerging approx-
imately 150 milliseconds (ms) after bounce. The convective plumes and fingers due to
Rayleigh-Taylor instabilities that accompany shock re-ignition in the gain region are
pushed out and cleared from the area closest to the neutron star by the pressure of the
neutrino-driven wind. The last 50 ms of the simulation show that a nearly spherically
symmetric wind has established itself as the protoneutron star, newly born, begins its
Kelvin-Helmholtz cooling phase.! Although these simulations employed only crude
neutrino transport, did not address the issue of fallback, and did not study the wind
as a function of progenitor mass and structure, they are suggestive of a general phe-
nomenon that might naturally accompany many core-collapse supernovae.

Some multiple of 10°® erg will be lost via neutrino radiation by the protoneutron
star as it cools. A small fraction of that energy will be deposited in the surface layers
of the nascent neutron star, heating and driving material from its surface. Although
the wind is interesting in its own right, hydrodynamically and as a phenomenon that
attends both the supernova and the Kelvin-Helmholtz cooling phase, perhaps its most
important ramification is the potential production of ~50% of all the nuclides above
the iron group in rapid(r) neutron-capture nucleosynthesis.

In the r-process, rapid interaction of neutrons with heavy, neutron-rich, seed nu-
clei allows a neutron capture-disintegration equilibrium to establish itself among the

isotopes of each element. Beta decays occur on a longer timescale and increase the

1See 2D simulations at http://www.astrophysics.arizona.edu/movies.html.
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nuclear charge. For sufficiently large neutron-to-seed ratio, the ‘nuclear flow’ proceeds
to the heaviest nuclei, forming abundance peaks at A ~ 80, 130, and 195 (Burbidge
et al. 1957; Wallerstein et al. 1997). The neutron-to-seed ratio itself is largely set by
the dynamical timescale (7,; see eq. 3.36), entropy (s), and neutron richness in the
earlier phase of the expansion (Hoffman, Woosley, and Qian 1997; Meyer and Brown
1997; Freiburghaus et al. 1999). While the nuclear physics is fairly well understood,
the astrophysical site has not been unambiguously established. Currently, neutron
star mergers (Freiburghaus, Rosswog, and Thielemann 1999, and references therein;
Rosswog et al.1999) and protoneutron star winds (Meyer et al. 1992; Woosley and
Hoffman 1992; Woosley et al. 1994; Qian and Woosley 1996; Hoffman, Woosley, and
Qian 1997; Otsuki et al. 2000) are considered the most viable candidates.

In addition to attaining the requisite neutron-to-seed ratios, dynamical timescales,
and temperatures, the astrophysical site must consistently reproduce the observed
solar abundance pattern of r-process elements with A > 135. Recent observa-
tions of neutron-capture elements in ultra-metal-poor halo stars (Burris et al. 2000;
McWilliam et al. 1995a,b; Sneden et al. 1996; Cowan et al. 1996; Westin et al. 2000;
Hill et al. 2001) show remarkable agreement with the solar r-process abundance pat-
tern in this mass range. This suggests a universal mechanism for producing the second
and third abundance peaks, which acts early in the chemical enrichment history of
the galaxy. In this paper, beyond addressing the physical nature and systematics of
the wind, we investigate its potential as a site for r-process nucleosynthesis up to and
beyond the third abundance peak.

Duncan, Shapiro, & Wasserman (1986) were the first to address the physics of
steady-state neutrino-driven neutron star winds. Although interested in the relative
importance of the neutrino and photon luminosity in determining the wind dynamics,
they also identified some of the basic systematics and scaling relations generic to the
problem. More recent investigations have focused less on the general physics of the

wind and more on its potential nucleosynthetic yield. Woosley et al. (1994) conducted
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the first such detailed study. They followed the nucleosynthesis in a protoneutron
star wind that emerged in a one-dimensional post-supernova environment. Approxi-
mately 18 seconds after collapse and explosion, their model attained entropies of ~400
(throughout, we quote entropy per kg per baryon), long dynamical timescales, and
electron fraction (Y;) in the range 0.36 — 0.44. However, in their model the supernova
shock reached only 50,000 km at these late times. In turn, this external boundary
caused the wind material to move slowly. It remained in the heating regime for an
extended period, thus raising the entropy above what any simulation or analytical
calculation has since obtained. Although the r-process proceeded to the third abun-
dance peak in their calculation, nuclei in the mass range near A ~ 90 (particularly,
8Sr, 89Y, and %°Zr) were overproduced by more than a factor of 100.

Takahashi, Witti, & Janka (1994) conducted a similar investigation, but did not
attain the entropies of Woosley et al. (1994). In fact, they fell short by a factor of
~ 5. Later, Qian & Woosley (1996) showed that for reasonable protoneutron star
characteristics, including post-Newtonian corrections, an entropy of 400 is unrealis-
tic. Qian & Woosley (1996) also provided many analytical scaling relations that have
since framed the discussion of neutrino-driven winds. Following this work, Hoffman,
Woosley, & Qian (1997) conducted nucleosynthetic calculations in the wind models
of Qian & Woosley (1996). They concluded that the standard wind models of Qian
& Woosley (1996) did not produce third peak r-process nucleosynthesis. They also
employed an adiabatic cooling prescription to survey the parameter space relevant to
protoneutron star winds and noted several important systematics in the nucleosyn-
thesis. Particularly, they identified a low entropy (~ 120), fast timescale (7, ~ 2 ms),
and high electron fraction (Y, > 0.48) window where third peak r-process could take
place (see their Fig. 10).

Cardall & Fuller (1997) generalized some of the scaling relations presented in Qian
& Woosley (1996) to include general relativity and found significant enhancements

in the entropy and dynamical timescale of the wind in this framework. Recently,
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Otsuki et al. (2000) have sought to solve the general-relativistic wind equations and
to conduct r-process calculations in the winds they obtained. They concluded that
r-process nucleosynthesis can proceed to the third abundance peak at A ~ 195 for a
protoneutron star with radius 10 km, a gravitational mass of 2 M, and total neutrino
luminosity of 10°2 erg s™*. These conditions produce modest entropies (s ~ 140) and
fast dynamical timescales (7, ~ 2 — 3 ms). Although a significant parameter in
protoneutron star winds, Y, was fixed by hand in their calculations. Furthermore,
they employed a simple equation of state and, in the context of the transonic wind
problem, an unphysical external boundary condition.

These uncertainties and ambiguities in the conclusions of previous groups suggest
that a re-evaluation is in order. Our goal in this paper is to solve the full eigenvalue
problem of the steady-state transonic wind problem in general relativity, employing
physical boundary conditions. Using this formalism, we survey the relevant parame-
ter space, identify the major systematic trends, and explore some of the particulars of
the general-relativistic treatment. We then use these steady-state solutions to model
the whole of the Kelvin-Helmholtz cooling phase, including radial contraction of the
protoneutron star, as well as the evolution of the neutrino luminosity and average
neutrino energy. We estimate the total amount of material ejected during this cool-
ing epoch, and put significant constraints on the range of entropies and dynamical
timescales that might actually occur in Nature. In addition, for a subset of the models
generated, we calculate the total nucleosynthetic yield as a function of atomic mass.

In §3.2, we present the fundamental equations for a time-independent neutrino-
driven wind (general-relativistic and Newtonian, see Appendix A for a derivation),
including the equation for the evolution of the electron fraction. In addition, we
present the integrals of the motion and a discussion of the equation of state we employ.
In §3.3, we describe our solution to the wind problem using an iterative relaxation
procedure on an adjustable radial grid and the necessary boundary conditions. In

§3.4, we present the neutrino heating rates used in this study, review the effects of
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general relativity, discuss potential modifications to the energy deposition rates, and
explore (approximately) the effects of transport. In §3.5, we present our results for
the wind problem itself. The wind structures and general characteristics as a function
of neutron star mass, radius, and neutrino spectral character are explored. We cover
the entire relevant parameter space and include some modifications to the power laws
presented in Qian & Woosley (1996). In §3.6, we use our steady-state wind results
to construct a sequence of such models that represent the time evolution of the wind
during the protoneutron star cooling phase. We estimate the total mass ejected for
a given evolutionary trajectory and put useful constraints on possible epochs of r-
process nucleosynthesis. In §3.7, we present nucleosynthetic results from a subset
of our wind trajectories. In §3.8, we discuss reasonable modifications to our wind
models that might yield a successful r-process, including changes to the energy de-
position function. Finally, in §3.9 we review our results, summarizing the constraints
our calculations impose on the viability of the protoneutron star wind as the astro-
physical site of the r-process. Furthermore, we speculate on the effects of progenitor
structures and fallback, as well as hydrodynamical and transport considerations left

to be addressed in future work.

3.2 The Steady-State Wind Equations

The time-independent hydrodynamical equations for flow in a Schwarzschild space-
time can be written in the form (Nobili, Turolla, and Zampieri 1991; Flammang

1982)
1dvy) 1dp 2
— -——+-=0 3.1
vy dr pdr +r ’ (3:1)
1dy 1 dP

yir Texpdar

and
de e+ Pdp q
_ i 2 =0 3.3
dr p dr + 'Ovy ’ (3.3)
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where u,.(= vy) is the radial component of the fluid four-velocity, v is the velocity of
the matter measured by a stationary observer,

. (ﬂ)/ (3.4)

1—v2/c?
e (= pc® + pe) is the total mass-energy density, p is the rest-mass density, P is the
pressure, e is the specific internal energy, and ¢ is the energy deposition rate per unit
mass. These equations assume that the mass of the wind is negligible. Although not
readily apparent in the form above, eqgs. (3.1)—(3.3) exhibit a critical point when v
equals the local speed of sound. In order to make the solution to this system tractable
and the critical point manifest we recast the equations as

o _ v v; (1-¢ci/c? e 1—v?/c? N D ¢ (1-2*/c 35)
or  2r |y?2 \ 2 —? c2 — 2 CyT y \ ¢ —?

S

(3.6)

and

a_T—EB(P—Fs) U2_U§/4y2 + q (1_D/02)C%_IU2 (3 7)
or rpCy 2 Cy (vy) 2 —v? ’ ’

In the above expressions, Cy is the specific heat at constant volume, ¢ is the local

adiabatic sound speed, cr is the isothermal sound speed, v, = (2GM/r)Y/2, M is the

protoneutron star gravitational mass, and

T 8P
D=¢ orl . .
‘evPor| (3.8)

Taking the limits v/c < 1 and ¢;/c < 1 we recover the Newtonian wind equations in

critical form;

ov v [(v?—4c D q

Qv _ v (v~ 4 3.9
or 2r<c§—02)+CvTc§—v2’ (3:9)
0 2 2 _v?/4 D ]

Op _2p (v —ve/4\ _p D (3.10)
or r \ c¢z2—v? v CyT 2 —v?
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and

2 _ 2 . 2 2
g_z _ % c% <ng _v:)£4> + sz (CCTZ“_ :2> . (3.11)
In this limit, D becomes (I'/p) OP/0T|,. (Please see a more detailed discussion
and derivation in Appendix A) The differential wind equations, both Newtonian and
general-relativistic, are solved in precisely the form above, as a two-point boundary
value problem, using a relaxation algorithm described in §3.3. Note that direct inte-
gration of the continuity equation (eq. 3.1) yields the eigenvalue of the steady-state
wind problem, the mass outflow rate M = 4mr2pvy. In addition, for ¢ = 0, egs. (3.1)-
(3.3) admit a second integral of the flow, the Bernoulli integral. We impose neither as
a mathematical constraint in solving the system. Instead, we use the degree to which
each is conserved to gauge the accuracy of our converged models. In the Newtonian
case, the Bernoulli integral can be expressed by
MA (e—!—%vQ—i—;—GTM) :/i &r' pg = Q(r), (3.12)
where R, is the coordinate radius of the protoneutron star surface. In general rela-
tivity, with ¢ = 0, yhy/—goo is a constant. Here, 7 is the Lorenz factor and h is the
specific enthalpy. With a source term, the differential change in neutrino luminosity
is given by
0

e g (Lue™) = =i, (3.13)

where du/dr = 4rr?pe® and ds? = —e??dt? + e* dr? + r2dQ) defines the metric. The

total energy deposition rate is then,
o
Q= 47/ drr? pget e®. (3.14)

Using these prescriptions for the Bernoulli integral and the equation for M and em-
ploying modest radial zoning (2000 points), we typically conserve both to better than
0.1%.

In our solution to the wind problem, we couple the three wind equations in critical

form to the differential equation describing the evolution of the electron fraction, Y,
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due to the charged-current electron-type neutrino interactions with free nucleons:
ven <+ e p and p.p <+ etn. This differential equation does not contain a critical

point and can be written as

dyY,
dr

(vy) = Xu[loon + Tetn] — Xp[rﬁep + Fe‘p]: (3.15)

where X,, and X, are the neutron and proton fraction, respectively. The I'’s are the
number rates for emission and absorption, taken from the approximations of Qian
& Woosley (1996). The number rate subscripts denote initial-state particles. The
asymptotic value of the electron fraction (Y,?) is generally determined within ~10
km of the protoneutron star surface. Ignoring the details of transport and neutrino
decoupling near the neutrinospheres, Y.* is determined by both the luminosity ratio
Ly, /L, and the energy ratio {(e5,)/(c,.), where {¢,) = (E?)/(E,), and E, is the
neutrino energy. To rough (but useful) approximation (Qian et al. 1993; Qian and
Woosley 1996),

T, Ly, \ (e5) —2A +1.2A2/(e, )]
Vi~ " ~ |1 c = = 3.16
=T+ Toy [ * (L) ) TR+ 128 (e,y]  B10

The energy threshold (A = m, —m, ~ 1.293 MeV) for the 7, neutrino absorp-
tion process, Z,p — ne™, is manifest in eq. (3.16). Note the difference in sign on
the 2A term between numerator and denominator. This implies that simply having
L; /L, > 1 and (eg;,)/(e,,) > 1 is not sufficient to guarantee Y. < 0.5; the magni-
tudes of (€5, ) and (¢,,) are also important. For example, taking L; /L, = 1.1 and
(en.)/{ev.y = 13 MeV /10 MeV gives Y* ~ 0.52 Hence, if L;, and L, are correlated
with (e;,) and (g,,), respectively, then even for constant L, /L,, and {(e;,)/{c,.), Y
must increase as the total neutrino luminosity of the protoneutron star decays in
time. This phenomenon, which we refer to as the threshold effect, is important for
the viability of an r-process epoch in protoneutron star winds at late times and low
(e5,) and (g,.). Other possible effects that might bear materially on Y* include the

formation of alpha particles from free nucleons (the alpha effect) (Fuller and Meyer
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1995; McLaughlin, Fuller, and Wilson 1996), the differential redshift of 7, neutrinos
versus v, neutrinos, due to the physical separation of their respective neutrinospheres
(Fuller and Qian 1996), and charge conjugation violation (Horowitz and Li 2000).
Coupled to the wind equations and the equation for Y, evolution is a simple equa-
tion of state (EOS) well-suited to the conditions in the neutrino-driven wind (7" g 5
MeV, p < 108 gecm™3, and 0.0 Y, < 0.5). Under these conditions, to good approx-
imation, free neutrons, protons, and alpha particles may be treated as non-relativistic
ideal gases. A fully general electron/positron equation of state is employed. Photons
are also included. Past wind studies have approximated electrons and positrons as
non-degenerate and relativistic. Although 7.(= p./7T) divided by # may approach
~10 at the protoneutron surface, it drops steeply with the density so that in the main
heating region the non-degenerate assumption is justified. In contrast, however, it
is important to include the non-relativistic character of the electrons and positrons.
For a broad range of protoneutron star characteristics, the temperature drops to
~ 0.5 MeV within ~ 50 — 100 km of the neutron star surface. The dynamics and
asymptotic character of the wind, including mass outflow rate, asymptotic velocity,
and composition can be significantly affected by assuming relativistic electrons and
positrons throughout the wind profile. In addition, the important range of matter
temperatures for r-process nucleosynthesis occurs for T'(r) < 0.5 MeV. Sumiyoshi et
al. (2000) have found that using a general electron/positron EOS can decrease the
dynamical timescale in the nucleosynthetic region of the wind by as much as a factor
of two, a potentially important modification when considering the viability of the

neutrino-driven wind as a candidate site for the r-process.

3.3 Numerical Technique

Past numerical studies of steady-state protoneutron star winds have at times been

hampered by unphysical boundary conditions and ill-defined numerics not generally
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suited to the solution of the protoneutron star wind problem.

The solution to the wind equations constitutes an eigenvalue problem. For a
given set of protoneutron star characteristics and boundary conditions, there exists a
unique mass outflow rate (M = 4wr?pvy) and critical radius (R,) where the matter
velocity is equal to the local speed of sound (v(R.) = ¢5). Although egs. (3.5)-(3.7) are
ordinary differential equations, one cannot treat the wind as an initial value problem;
the critical point necessitates a two-point boundary value prescription.

Even though shooting methods determine M precisely, R, can remain uncertain
(London and Flannery 1982). In addition, although Duncan, Shapiro, & Wasserman
(1986) made effective use of this method, they were forced to employ two types of
shooting: one for high M solutions and another for low M solutions. In an effort to
circumvent these problems and to construct a robust algorithm with flexible boundary
conditions, we solve both the Newtonian and general-relativistic wind equations as a
two-point boundary value problem using a relaxation algorithm on an adaptive radial
mesh, as described in London & Flannery (1982) (see also Kippenhahn, Weigert, and
Hoffmeister 1968; Eggleton 1971; Press et al. 1992).

Both the general relativistic and Newtonian wind equations can be reduced to a
set, of ordinary differential equations, including the equation for the evolution of the

electron fraction in radius. These equations take on the simple form,

dy
= =f 3.17
Y — (), (317
and can be differenced as
1 1
Vi — Ye—1 — (T — zp—1) f 5(% + Tpy1), 5(}% +ye+1)| = Ex = 0, (3.18)

where k£ labels mesh points. This simple finite difference scheme couples pairs of
points only. Following Press et al. (1992), the solution to the set of equations, given

a guess for each yy, proceeds by iteration. Increments in each y; are obtained by
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expanding the finite difference equations in a Taylor series;
Ei(yx + Ay Ye 1+ Aygg) =~

N
Ei(¥e, yr-1) Z
1

where n labels dependent variables. The solution to the set of equations corresponds

OE;
y k-1t Yn.k»
Un,k—1 " Zaynk "

to the condition that Ei(y + Ay) = 0. Simple matrix manipulations give Ay such
that the solution is improved to within a specified tolerance. The set of equations to

be solved is then,

N 2N
> il npo1 + Y SinAynong = —Ejr, j=1,2,...,N (3.19)
n=1 n=1
where each S, is defined by (Press et al. 1992)
O0E; OE; i
Sip = 2T SN = —22. 3.20
4 ayn,k—l i ayn,k ( )

In practice, we take these partial derivatives numerically.

The relaxation algorithm, as outlined above, involves replacing the differential
equations with algebraic difference equations at each point on the radial grid. Then,
given an initial guess for each variable, at each point, the solution is obtained by
iteration. However, because the condition v(R.) = ¢, defines the outer boundary and
this point is not known a prior: - such knowledge would effectively constitute the
solution - we follow the procedure of London & Flannery (1982) and introduce a new
independent variable ¢ that labels radial mesh points by integers (¢; < ¢ < qy). The

price paid is three more differential equations:

dr _ ¥
dg  ¢(r)
aQ
d—q - wa
and
dyp

— = 0. 21
=0 (3:21)



80

In this scheme, r becomes a dependent variable, Q(r) is a mesh spacing function (e.g.,
Q(r) = logr), v is an intermediate variable, and ¢(r) is proportional to the density
of mesh points. The system is solved on the mesh of ¢ values. Hence, the outer radial
coordinate, at which the v(R.) = ¢, boundary condition is to obtain, adjusts in a
Newton-Raphson sense to simultaneously satisfy all boundary conditions. Typically,
when we begin a calculation, we start with an initial guess that extends to a radius
with Mach number of ~ 0.9. With each iteration, R, is adjusted so that the Mach
number goes to 1.

We now have three wind equations for p(q), T(q), and v(q), three extra differential
equations for the mesh algorithm, and the equation for Y,(¢). Seven boundary con-
ditions must then be imposed to close the system. The boundary conditions on the
first two of eqgs. (3.21) are simply r(¢1) = R, and Q(¢1) = log(R,) (for log spacing),
where R, is the protoneutron star radius. Two more boundary conditions obtain at
the critical point. Taking gy as the outer mesh point, we have that v(¢y) = ¢s; and
we have that the numerator of any of the differential equations for p(r), T'(r), or v(r)
must simultaneously be zero to ensure continuity of the solution through the sonic
point. Three additional boundary conditions are required to specify the problem com-
pletely. Although simply setting Y.(q1), p(¢1), and T(¢;) at R, is sufficient, we do
not use this prescription. Instead, we assume that the radius of neutrino decoupling
coincides with the coordinate radius of the protoneutron star surface. In addition,
we assume that this neutrinosphere (R,) is the same for all neutrino species: elec-
tron (v,), anti-electron (7,), and mu and tau neutrinos (collectively, v,’s). Indeed, as
the protoneutron star cools we expect these neutrinospheres to be separated by just
tenths of kilometers. As the v, neutrinos have the largest net opacity (k,,) of any

species, we set an integral boundary condition on their optical depth (7,,):

o 2
T, (Ry) = / Ky, pdr = 3 (3.22)
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Included in the v, opacity are contributions from scattering with free nucleons, scat-
tering on electron/positron pairs, ven — pe~, and alpha scattering. As a second
boundary condition, we assume that the net neutrino heating balances the net cool-
ing at R,. That is, ¢(R,) = 0. Finally, our third boundary condition assumes that
the charged-current processes are in equilibrium at the protoneutron star surface.

Explicitly,
dYe
dr |g,

= 0. (3.23)

For a given protoneutron star mass and radius and a set of average neutrino energies
and luminosities, we start with a guess for the mass density at the surface of the
protoneutron star. We use a two-dimensional Newton-Raphson algorithm to simul-
taneously satisfy the conditions on ¢ and dY,/dr at R,. This determines T'(R,) and
Y.(R,) for the first step. At each subsequent iterative step, the relaxation algorithm
attempts to satisfy the integral boundary condition on 7,,. Effectively, this procedure
results in a new T(R,) and Y.(R,). In this way, we satisfy all boundary conditions
simultaneously. Given a good initial guess for the solution (i.e., maximum deviations
from convergence in any variable of < 20%) we obtain a solution in just 5—10 itera-
tions. Once the profile for R, < r < R, is obtained, we use I’'Hospital’s rule to bridge
R, and then integrate to larger radii as an initial value problem using a fourth-order
Runga-Kutta scheme. Successfully converged models then serve as an initial guess for
the next protoneutron star model with adjacent characteristics (i.e., in mass, radius,

or neutrino spectral characteristics).

3.3.1 Tests of the Code

We do not impose dM /dr = 0 or the Bernoulli integral as mathematical constraints
on the system. Instead, we use the degree to which these conditions obtain to gauge
the precision of our method. Typically, both are conserved to better than 0.1% in

both general-relativistic and Newtonian calculations. In addition, as we increase the
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number of mesh points, the error in both of these quantities decreases significantly.

One may argue that eq. (3.23) need not hold generally. In fact, we adjusted the
code to accept a fixed Y.(R,) boundary condition to make sure this has no effect on
the asymptotic character of the wind. We find that the number rates are large enough
at the surface that Y, is forced from Y,(R,) to a value such that dY,/dr ~ 0 in the
first radial zone with no appreciable effect on any aspect of the wind. For simplicity,
then, we have chosen to enforce eq. (3.23).

Similarly, in a fully dynamical calculation, one would not expect ¢(R,) = 0,
generally. While this may certainly be true, in our solution to the steady-state wind
we encounter numerical instabilities that preclude solution of the equations with finite
g(R,). It is difficult to estimate the importance of such an assumption without

employing the full machinery of radiation hydrodynamics.

3.4 The Neutrino Heating Function

The neutrino energy deposition rate (¢) is a sum of contributions from the charged-
current v, and 7, neutrino absorption processes, neutrino-electron/positron scatter-
ing, neutrino-nucleon scattering, and the process vv <+ ee~. We describe each in

turn.

3.4.1 The Charged-Current Processes

At the entropies encountered in supernovae (g 40), the charged-current or beta pro-
cesses (ven <> e p and ep <> e™n) dominate the opacity and energy exchange
for the electron and anti-electron neutrinos. In the protoneutron star wind con-
text, at much higher entropies, we expect these processes to compete with neutrino-
electron/positron scattering in the net energy deposition. Ignoring final-state blocking

and assuming relativistic electrons and positrons, the charged-current cooling func-
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tion can be written as

F5(—n.)
F5(0)

j2
C.o ~ 2.0 x 108 T [X 5(e) | 5

ergg s !, 3.24
P F(0) ] g8 (3.24)

where

Rw=[ gt

eV +1
are the Fermi integrals, X,, and X,, are the neutron and proton fractions, respectively,

T is in MeV, and 7, = pe/T. The heating rate due to neutrino captures on free

nucleons can be written as

He ~ 93x10"® R ergg s

x [ Xa Ly (en,) + Xp Ly (er,) ] @° E(r), (3.25)
where R, is the neutrinosphere radius in units of 10° cm and both L, and {(g,) are
defined at R,. We separate L, and (&, ) in this heating rate and those below. Although
L, and (g,) are correlated, L, and the tail of the neutrino energy distribution are
generally not. We retain L, and (g,) separately so we have the freedom to change
them independently. With eqgs. (3.24) and (3.25), the net energy deposition due to

the charged-current processes is then §.. = H.. — Ce.. In eq. (3.25),

(e2) = /_11 d,u/ de e f, - {/_11 du/ de, &3 f,,]_l, (3.26)

where u(= cos ) is the cosine of the zenith angle and f, is the neutrino distribution
function. ® accounts for the gravitational redshift of neutrinos from the protoneutron

star surface and is given by

1—2GM/R,\ "
P = . 2
( 1—-2GM/rc? ) (3:27)

Also present in eq. (3.25) is the spherical dilution function, =(r), which describes
the radial dependence of the neutrino energy and number densities. In the vacuum

approximation, assuming a sharp neutrinosphere,

E(r) =1—+/1—(R,/r)%/®2 (3.28)
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and is related to the flux factor (u)(= F,/J,) by (u) = R%2/2®2Z(r)r?, where F, and
J, are the neutrino flux and energy density, respectively. In eq. (3.28), the factor ®?
accounts for the bending of null geodesics in a curved spacetime (Cardall and Fuller
1997; Salmonson and Wilson 1999). This effectively increases the neutrino number
density a given mass element sees at any radius, thus augmenting the energy deposi-
tion. In contrast, since the heating rate for any neutrino interaction is proportional
to positive powers of L, and (g, ), the gravitational redshift terms which modify these
quantities can only decrease the energy deposition rate at a given radius. As pointed
out by Cardall & Fuller (1997), the augmentation of ¢ by the bending of neutrino
trajectories and the degradation of ¢ by the gravitational redshift compete as M/R,
increases, but the latter dominates.

Qian & Woosley (1996), Otsuki et al. (2000), and Wanajo et al. (2000) have em-
ployed eq. (3.28) or its Newtonian analog in their studies of neutrino-driven winds.
In an effort to address neutrino decoupling more fully, we compared our wind so-
lutions using this spherical dilution factor to those obtained with an effective =(r)
derived from the Monte-Carlo transport results of Janka (1991) who connected (i)
with the density gradient at 10'° g cm™2 and the curvature of the opacity profile at
the radius of decoupling. The difference between the radial dependence of (i) using
this approach and the effective flux factor obtained in a vacuum approximation is
significant, as would be expected, only when the atmosphere is sufficiently extended.
That is, as the density gradient just exterior to the neutrinosphere goes to infinity,
so too should the Monte-Carlo results of Janka (1991) approach the vacuum approx-
imation. Hence, significant deviations from the vacuum approximation only present
themselves when the radius of the neutron star is large (~ 20 — 40 km) and/or the
total neutrino luminosity is very high (i.e., the temperature at R, is large). As the
protoneutron star cools and the luminosity decreases for a given R, the density gra-
dient becomes steeper (see Fig. 3.2 below), thus making the vacuum approximation

more appropriate. Over the range of models presented here, we have examined the



85

effects of using the Janka (1991) (u) in order to characterize the spherical dilution of
neutrinos for all of the relevant heating processes and find them negligible, particu-
larly for the compact protoneutron star wind models most likely to be important for
r-process nucleosynthesis.

We emphasize that this simple comparison is not a complete analysis of the trans-
port effects that might be important in determining ¢(r). While this result suggests
the vacuum approximation is appropriate in our scheme for handling the neutri-
nospheres and boundary conditions, it says nothing about actual transport effects in

the decoupling region.

3.4.2 Neutrino-Electron/Positron Scattering

At high entropies, electron-positron pairs are produced in abundance. Therefore,
neutrino-pair scattering is expected to contribute substantially to the total energy
deposition in the protoneutron star wind. The energy transfer associated with a
single neutrino-electron or positron scattering event is well approximated by w; ~
(ey;, —4T)/2, where w is the energy transfer, T' is the matter temperature, and ¢,, is
the neutrino energy of species i (Bahcall 1964). We have confirmed this approxima-
tion using the thermalization code described in Chapter 2, which employs the fully
relativistic structure function formalism of Reddy, Prakash, & Lattimer (1998). The
net heating rate due to the interaction of the neutrino fluid with the pair plasma can
be approximated by ¢ ~ cnen,,(o,..w), where n, and n,, are the number density of
electrons and neutrinos, respectively, and o,,. is the cross section for scattering. We

obtain

dn, dn,,
.u'e = vie 7 UCe - [Ze 2
G, /wcal dsedg ds,,dgl (3.29)

where 0,,.(= k; T¢,,) is the cross-section for neutrino scattering on relativistic, non-
degenerate electrons (Tubbs and Schramm 1975). k; = 0,A;/2m? is a neutrino species

dependent constant, where m, is the mass of the electron in MeV, o, ~ 1.71 x 10~ *
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cm?, and

1 2

A= (ey +ca)® + g(cv —c4) (3.30)

cy and cy are the vector and axial-vector coupling constants for a given neutrino

species. We find that the energy deposition rate can be expressed as

. _ E T3 FQ(T/e) LI/ 2 er -1 S—l
e = p<<hc>3 2 )47T7"20<6u><u> voers
K F4(77,,) F, (77U) F3(776)
[5<5">F3(nu)T (<5”>¢F3(nu> - 4TF4(ne>)} ' (3:31)

We drop the subscript i here for brevity. Note that (u)(= R%/2®?Z(r)r?) contains two
powers of the redshift. 7, is an effective degeneracy parameter obtained from fitting
the neutrino distribution function with a Fermi-Dirac distribution with an appropriate
T, and 7, (Janka and Hillebrandt 1989). Although we retain the general form here,
in the wind calculations presented below we take 7, = 0 for all neutrino species.
In eq. (3.31), the first term in parentheses is the number density of electrons, n,.
Alternatively, with the replacement 7, — —n,, it is the number density of positrons.
The next term is the number density of neutrinos, a function of radius, which depends
also on the flux factor, (). The term in square brackets is the appropriately averaged
product of the cross section for scattering and the energy transfer per scattering,
(0y,ew). We retain the form ¢ = cnen,,(0,,.w) here for clarity. Note that, for
n, = ne = 0, {¢,) equals 3.157, and the second quantity in parentheses in eq. (3.31)
is simply (7}, — T); net heating occurs if 7, > T'(r) at any r. In order to obtain the
contribution to the net heating from neutrino-positron scattering, in addition to the

change in 7., one must also make appropriate changes to A;.

3.4.3 Neutrino-Nucleon Scattering

The energy transfer associated with a single neutrino-nucleon scattering event is much
smaller than that for neutrino-electron scattering. The cross section, however, is much

larger. Using our neutrino thermalization code, which solves the Boltzmann equation
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in an isotropic, homogeneous thermal bath of scatterers, including the full collision
term, with Pauli blocking and explicit coupling between all energy bins (Chapter 2),
we confirm that the average energy transfer for neutrino-nucleon scattering, in non-
degenerate nuclear matter, for neutrino energies below ~40 MeV is well approximated
by w ~ ¢,(e, — 6T)/my, where my is the nucleon mass in MeV (Tubbs 1979). We

derive the heating rate for neutrino-neutron scattering as

cn L
.1/- :_n v (1)4 -1 —
o = amrele )y - 08T

Fy(n,) ? (&) Fs(my) () .. Fs(ne)
K ( F3(nu)<eu>) i F(my) ((eu><1> o) 67 7 (m))] . (3.32)

Kk = 0,/(16m?)(14+3¢%) for neutron scattering and k = o, /(4m?2)[4 sin* Oy —2 sin? Oy +

1

X

(1 + 3g%)/4] for neutrino-proton scattering, where sin? 8y ~ 0.231 and g4(~ —1.26)

is the axial-vector coupling constant.

3.4.4 vy <>ete

Cooling due to ete™ annihilation, assuming relativistic electrons and positrons, and

ignoring Pauli blocking in the final state, can be written as
7 T° -1 1
Cote sy~ 1.4 x 10" — f(n,) ergs g~ s, (3.33)
P8

where

F4(ne)F3(_ne) + F4(_ne)F3(ne)
2F,(0)F3(0) '

ps is the mass density in units of 108 g cm™ and T is in MeV. We employed eq. (3.33)

f(ne) = (3.34)

with and without the 7, dependence and compared it to the results using the fit given

in Itoh et al. (1996). Such a modification amounted to no more than a 1-2% change

in the entropy, dynamical timescale, total energy deposition, or mass outflow rate.
Much more uncertain than eq. (3.33) is the heating due to v — ete . The

spherical dilution of this process from the neutrinospheres is complicated. For a given
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flux, the local energy density depends sensitively on (), which can only be properly
treated by solving the full transport problem. We save such an investigation for a
later work. Instead, we compare two approaches. The first is based on the vacuum
spherical dilution approximation, written simply as (Qian and Woosley 1996)
H ~ 1.6x10" v(z) ®° erg g7t 571
ps Ry

< E I (o) + () + S8 e) (3.35)

where ¥(z) = (1—2)*(2®+42+5), z = (1— (R, /r)?/®*)'/?, R, ¢ is the neutrinosphere
radius in units of 10° cm, and L7} is the neutrino luminosity in units of 10" erg s~'.
The redshift term, ®, appearing in z, accounts for the amplification of this process
due to the bending of null geodesics in general relativity as in eq. (3.28) (Salmonson
and Wilson 1999). We compared this approximation to the heating rate obtained
by (77). Because of the extreme nature of the density gradient just exterior to the
protoneutron star, we find that the vacuum approximation adequately characterizes
the energy deposition. In addition, the fact that there is no obvious way to include

the general relativistic effects in the parameterization of (1) by Janka (1991) led us

to employ eq. (3.35) in the wind models we present here.

3.4.5 Other Possible Neutrino Processes

We were motivated to consider nucleon-nucleon bremsstrahlung, plasma, and photo-
neutrino processes by the sensitivity of the dynamical timescale and asymptotic en-
tropy to changes in the energy deposition profile (see §3.8.3 and Qian and Woosley
1996). We found that none of these processes contributed significantly. Qian and
Fuller (1995a,b) have addressed the possibility that neutrino oscillations may effec-
tively provide an extra energy source, at larger radii, beyond the point where the
mass outflow rate is determined. In §3.8.3, we include an ad hoc energy source to

test the sensitivity of our results to changes in ¢(r), but do not address the issue of
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neutrino oscillations directly.

3.5 Results: Fiducial Models

With a robust and efficient means by which to solve the wind problem, coupled with
physical boundary conditions and a well-motivated neutrino heating algorithm we
can now survey the protoneutron star wind parameter space.

Supernova and protoneutron star calculations, coupled with observations of neu-
tron star binary systems and our knowledge of the high-density nuclear equation of
state, place useful limits on the parameter space that protoneutron stars actually
inhabit. Particularly, we are interested in a range of protoneutron star masses from
1.2 to 2.0 Mg, total neutrino luminosities from 4 x 10°? to 1 x 10%! erg s, average
neutrino energies as high as 35 MeV for v, neutrinos and 15-20 MeV for v, and 7,
neutrinos with (¢,,) < (€5.) < (€,,), and a range of neutron star radii from 20 km to
perhaps 9 km.

Our main goal in this section is to map the possible protoneutron star wind pa-
rameter space, taking as input the physical ranges specified above. In what follows,
we present the basic structure of the wind and identify some of the systematics we
can use to assess this site as a candidate for r-process nucleosynthesis. Particu-
larly, we include a discussion of the dynamical timescale, the electron fraction, and
the asymptotic entropy. In identifying some of the approximate power law relations
which characterize the wind, we refer to low and high total neutrino luminosities, with
low denoting < 10°% erg s™! and high meaning > 10°% erg s~'. We write these power
laws in terms of L, and (¢,). These stand for a representative luminosity and a repre-
sentative average energy, respectively. That is, we take Ly, /Ly, , L, /Ly,, {€5.)/{€v.)
and (e5,)/(€,,) as constant.

We employ the notation L3' to refer to luminosities in units of 10! erg s~'. All

neutrino luminosities quoted throughout this paper are local quantities at the neutron
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star surface. The luminosity at infinity can be obtained from the luminosities quoted
here by multiplying the local luminosity by two powers of the gravitational redshift
(eq. 3.27). For example, taking M = 1.4 Mg and R, = 10 km, ®* ~ 0.58. In order
to keep track of our models, we use the U, neutrino luminosity (L) to label each
individual model. The total luminosity can then be obtained from the ratios L;_ /L,
and Ly, /L,,. Finally, in our expressions for ¢ we included 7,, terms for completeness.

In what follows, we take n,, = n;

€

=1,, = 0. For an assessment of this assumption,

see Janka & Hillebrandt (1989) and Myra & Burrows (1990).

3.5.1 The Structure of Neutrino-Driven Winds

Figures 3.1, 3.2, and 3.3 show the velocity, mass density, and temperature as a function
of radius for eight different neutrino luminosities. For these models, R, is 10 km and
the neutron star gravitational mass is 1.4 M. The average neutrino energies were set
at (g,,) = 11 MeV, (e5,) = 14 MeV, and (¢,,) = 23 MeV for the highest luminosity.
For each subsequent luminosity, the average energies were decreased according to
(e)) x L./*. The luminosities were held in the ratios Ly, /L, =13and L, /L,, = 1.4.
In these figures, critical points (v = ¢;) are shown as dots. Table 3.1 lists the global
properties of each of these models, including the integrated energy deposition rate, )
(eq. 3.14), and the mechanical luminosity or hydrodynamical power, Ppen = M v2/2,
where v, is the asymptotic velocity. In addition, we include the asymptotic entropy
sq and dynamical timescale defined as the e-folding time of the density at 7' = 0.5
MeV:

-1

1

_ 1o
L

S r (3.36)

Tp

Figure 3.1 shows clearly that even relatively close to the neutron star (r ~ 400
km) the flow is not homologous (i.e., v is not proportional to r). At much smaller
radii, however, in the heating region (r < 60 km, compare with Fig. 3.4) the flow

is homologous with v o< L,r. We have found that simple parameterizations of v(r),
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particularly for low neutrino luminosities, are not straightforward. Although not
readily apparent, the asymptotic velocity (v,) is a power law in L,. For high L%t
vy, o< L83, For low L, the index is ~ 0.46. The critical radius (R,) also increases
as a power of luminosity for low L,. For M = 1.4 Mg, the index is ~ 0.95, while
for M = 2.0 My R, o< L;%%. Note that if the protoneutron star cools as L, oc t7%
then we should expect R, to grow linearly with time, implying that at late times the
velocity of the critical point away from the neutron star is approximately constant.

The stiff nature of the wind equations is manifest in Fig. 3.2. The inset shows that
p drops by more than four orders of magnitude in just 1-3 km, before the neutrino
heating rate reaches a maximum. Figure 3.4 shows the total specific heating rate
for each of the eight fiducial wind models. Note that the maximum in ¢ occurs very
close to the protoneutron star surface and that the position of this maximum is not
a function of L,. At r ~ 12 km the density gradient changes dramatically, as the
slow moving material in this inner atmosphere accelerates to infinity. Concomitant
with this change in p(r) and the peak in ¢ is a rise in 7" and most of the entropy
production. Figure 3.5 shows the entropy as a function of radius. Note that the
entropy quickly comes to within a few percent of its asymptotic value (s,). We find
that s, is proportional to L;%2* for all luminosities, for 1.4 M. For M = 2.0 Mg, s,
is proportional to L;%?5. As L, decreases, the gradients in p, T', and the entropy near
R, become larger. Inspection of Fig. 3.3 shows that the 0.1 MeV < T < 0.5 MeV
region where the r-process (and preceding a-process) might take place, lies between
50 km and 500 km for L}! = 8.0 and between 25 km and 150 km for Lj! = 1.0.
Importantly, Fig. 3.1 shows that the wind is still accelerating significantly at these
radii. This calls into question the assumption of a constant velocity outflow used by
many r-process modelers (e.g., Meyer and Brown 1997).

Figure 3.6 shows a breakdown of the total energy deposition into its separate
components for the L = 8.0 fiducial model. All of the heating processes conspire

to give ¢(R,) = 0, in accordance with our boundary condition. At the surface, the
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charged-current heating rate (qd..) provides net cooling, which balances heating from
neutrino-nucleon scattering (¢,n). .. generally dominates the other heating processes
in the models we consider here. Note that heating due to neutrino-electron/positron
scattering (¢,e) does not contribute as significantly as is indicated by Qian & Woosley
(1996) and Otsuki et al. (2000), because of their simplifying assumption that the
energy transfer per scattering is ~ ¢, /2 instead of ~ (¢, —47")/2 (§3.4.2). Comparing
Fig. 3.6 with Fig. 3.7, we can see that the drop in ¢. at r ~ 35 km is due to the
formation of a particles. As the luminosity decreases this transition region moves in,
so that for L = 0.60, g.c — 0 near r ~ 22 km. As the ratio of M/R, increases, the
heating rate due to v;7; — e*e™ (§,) increases substantially relative to both ¢,. and
Gee- In fact, for M/R, = 2.0 My/10 km, the peak in ¢,; is actually slightly higher
than that for ¢,.. However, ¢.. still dominates heating at the peak in ¢;; by a factor
of ~ 1.5. Note that an increase in L,, or (g,,) increases the importance of ¢,. and
Gyy relative to g... In particular, this increases the energy deposition at larger radii.
We explore some of these effects on the asymptotic character of the wind in §3.8.3.

Qian & Woosley (1996) found that M oc L>*M~? for Newtonian gravity. We find
that the index of this power law in L, is slightly decreased in general relativity to
2.4—2.5, but that the dependence on M is stronger; M is approximately proportional
to M3 for high luminosities. The index decreases to —2.7 for low luminosities. For
the full range of luminosities and masses considered here, the mass outflow rate in
our general-relativistic calculations is approximately a factor of three smaller than in
our Newtonian wind models.

Computing the volumetric integral of ¢ as in eq. (3.14) yields the net energy
deposition rate, @ (see Table 3.1). For the heating function we employ in this paper,
Q is roughly proportional to L?* for all protoneutron star masses and luminosities.
The small variations in this power law index compliment the variation in M with L,
so that the ratio @)/ M varies by less than 2% over the whole range of L, for each
mass. In all cases Q/M ~ GM/R, to within 10%. Whereas Qian & Woosley (1996)
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found that @ o< M~!, we find a more stiff dependence on mass; for high L,, Q is
proportional to M~!9 for 1.4 Mgy < M < 1.6 Mg. In addition, we find that their
analytic expression for () consistently underestimates the net energy deposition in
our Newtonian models by as much as ~ 50%.

The wind mechanical power Ppeq, is proportional to L3* for low L, and M = 1.4
M. This index decreases to 3.2 for M = 2.0 M. At high luminosity for all masses,
Preh < L32. Although the asymptotic velocity is set by the escape velocity from the
protoneutron star and therefore increases with increasing M, it does not increase as
a power law in general relativity. In fact, it increases more rapidly. Therefore, even
though M is approximately proportional to M~2% at low luminosities, the increase
in v, as M gets large forces Py to increase.

The efficiency of energy deposition, Q/L!t, ranges from 107 to 1075 as L, de-
creases. The efficiency of conversion of neutrino energy to hydrodynamical power,
Prean/LP, ranges from only 2 x 1075 to less than 6 x 102 for the models considered
here. The efficiency for the conversion of net energy deposition to hydrodynami-
cal power, Ppen/Q, decreases with luminosity as Ll for 1.4 Mg with Ppen/Q =~
2.4 %1072 for L3! = 0.6. This means that almost all of the net energy deposition goes
into overcoming the gravitational potential. The excess energy, manifest at infinity as
the mechanical power, is very small in comparison with (). These quantities may be
potentially important if the wind is to emerge and escape to infinity in the expanding

supernova envelope.

3.5.2 The Effects of General Relativity

Over the range of masses presented here, we find significant enhancements in the
entropy per baryon using the full general-relativistic framework. Over a broad range
of luminosities for the 1.4 M protoneutron star we find that s, is 25—30 units less

in our Newtonian calculations than in our analogous general-relativistic calculations.
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Typical reductions in M and Q are of order a factor of three and two, respectively.
These differences were anticipated by Qian & Woosley (1996) and Cardall & Fuller
(1997) and more recently realized in the wind calculations of Otsuki et al. (2000).
As the latter showed, the general-relativistic effects on s, are much more the result
of using the general-relativistic hydrodynamic formulation than of incorporating the
general-relativistic corrections to ¢ expressed in eqgs. (3.27) and (3.28). The inclusion
of general relativity in the hydrodynamics makes the structure of the protoneutron
star more compact than in a Newtonian description. This makes the temperature and
density gradients steeper just exterior to R, and particularly in the heating region.
Although dT'/dr decreases rapidly, dp/dr drops much faster. This effectively increases
the specific energy deposition per unit mass and the entropy is enhanced significantly.
For comparison, we calculated several wind models with egs. (3.5)—(3.7) that
included the enhancement to ¢ due to the bending of null geodesics, but did not
include any redshift factors on L, or (¢,). For the 1.4 Mg model with L! = 8.0
(see Table 3.1) this change nearly doubled both @ and M, while decreasing 7, from
3.68 to 1.95 ms. Although more heating occurred at larger radii, the peak in ¢ also
increased so as to offset any potential gain in s,. The net enhancement was just 6
units in entropy. Conversely, keeping all the redshift terms and eliminating ® from
Z(r) in eq. (3.28) increased 7, by more than 30% and left s, virtually unchanged.
Because the bending of null geodesics increases the net energy deposition close to
the neutron star and the redshift terms act to decrease energy deposition over the
whole profile, it is clear from this comparison that only an increase in ¢(r) that does
not significantly increase @) can have large effects on s, (see §3.8.3 and Qian and

Woosley 1996).
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3.5.3 The Electron Fraction

Figure 3.7 shows the evolution of the neutron (X,), proton (X,), alpha (X,), and
electron fraction (Y;) as a function of radius for the L}! = 8.0 fiducial model (Table 3.1
and Figs. 3.1-3.6). The electron fraction profile is computed using eq. (3.15), solved
simultaneously with the wind equations. In computing the wind solutions we assume
nuclear statistical equilibrium between free nucleons and alpha particles. Y, comes
to within a few percent of its asymptotic value (Y,?) in just the first five kilometers.
This quick evolution is due primarily to the low matter velocities in the inner region.
For L;, /L,, = 8/6.15 and (&;,)/{c,,) = 14/11, eq. (3.16) predicts that Y,* ~ 0.478.
Solving the differential equation we find remarkable agreement: Y, ~ 0.477 at r = 20
km. Just beyond this, for r > 30 km, free nucleons form o particles and Y, rises
slightly as X, increases until Y, = 0.485 at r ~ 150 km. This is the « effect, whose
import in this context was first noted by Fuller & Meyer (1995) and McLaughlin,
Fuller, & Wilson (1996). The magnitude here is only of order 1%. For Y < 0.5, we
find generally that the magnitude of the « effect increases as the luminosity decreases
for a given R,. In addition, for models in which L; /L, and (e;,)/(c,.) are larger,
and, hence, Y* is naively lower (& la eq. 3.16), the magnitude of the « effect is also
enhanced. However, for a reasonable range of L, /L, and (¢;,)/{c,.) as well as total
neutrino luminosities, the « effect never increases Y. by more than ~10%. That is,
if Y, = 0.40 before « particle formation, we find that the a effect increases Y, to no
more than approximately 0.44.

Since in these fiducial models we decrease the average neutrino energies with
luminosity, the threshold effect in the charged-current reactions, manifest in eq. (3.16)
by the neutron/proton mass difference (A), becomes important. Despite the fact that
Ly, /L,, and (g5,)/(€,,) are maintained as above, Y* eventually becomes greater than
0.5. As Y,* becomes much larger (~ 0.52), it experiences what might also be termed

an « effect: because an « particle has Y, = Z/A = 0.50, the onset of X, formation
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decreases Y.*.

3.5.4 The Dynamical Timescale

In discussing our results, in order to make an apposite comparison with previous
studies, we quote 7, (eq. 3.36) at " = 0.5 MeV. However, using such a scale to
characterize the nature of the resulting nucleosynthesis is suspect. Figure 3.8 shows
7, as a function of radius for the wind models presented in Figs. 3.1-3.5. The dots
on each line of constant neutrino luminosity mark the range 0.5 MeV > T'(r) > 0.1
MeV, the temperature range relevant for neutron-capture nucleosynthesis. Although
the r-process may continue at temperatures well below 0.1 MeV, we include these dots
to guide the eye. The dynamical timescale of the wind, or the expansion timescale,
has been defined in several different ways by many researchers. No clear consensus
exists. Cardall & Fuller (1997) defined their dynamical timescale as the e-folding
time of the temperature at 7' = 0.5 MeV. Hoffman, Woosley, & Qian (1997) defined
their dynamical timescale in the same way, but then used an expansion timescale
(1.28 times the dynamical time) to discuss their results. Qian & Woosley (1996) and
Freiburghaus et al. (1999) used the ratio r/v at T = 0.5 MeV to characterize the
expansion. Finally, Meyer & Brown (1997) connect the e-folding time of the density
with their expansion timescale, 7/2v, by using the equation for M and dropping the
acceleration term. With these assumptions, they obtain

t

T P(t) =1 <1 + —) : (3.37)

27
where ¢ is the time on a Lagrangean mass element in the flow. Figure 3.8 shows
clearly that any simple parameterization of the dynamical time, using any definition,
is an oversimplification. For L]! = 8, 7, increases by a factor of three over this
range of temperatures. Equation (3.37) captures the increase of 7, with radius for
high luminosities, but overestimates the slope by about a factor of two. At low

luminosities, of course, eq. (3.37) does not capture 7,(¢) at all. At these luminosities,
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the dynamical timescale actually decreases over this range of temperatures. This
arises because a region of positive curvature in the v(r) profile of Fig. 3.1 develops
between 40 km and 200 km at low luminosities. This observation simply underscores
the danger in considering a single dynamical time that is meant to characterize an
actual wind profile.

Figure 3.9 shows tracks of constant mass in the plane of s, versus 7, for luminosities
from L;r_ji = 8.0 to Lgi = 0.70, for R, = 10 km. Although the indices vary slightly for
different masses, s, oc L, %% and 7, oc L', so that s, is approximately proportional

to 792

, - Omne can imagine that these curves represent evolutionary cooling tracks in

time in the space of s, and 7, for constant R, and M. Simple extrapolation of this
power law allows one to estimate at what 7, a given entropy might obtain, for a given
mass and neutron star radius. For example, the 1.4 Mg, trajectory in Fig. 3.9 will not
reach s, >~ 200 until 7, ~ 0.4 seconds. The corresponding neutrino luminosity at this
point is L3! ~ 0.22. Knowing that M oc L2* allows one to estimate the mass outflow
rate as M ~ 1.8 x 1078 My, s~ 1. These simple power laws and a knowledge of how L,,
might behave in time allow us to put powerful constraints on the likely wind epoch
of r-process nucleosynthesis, as we demonstrate in §3.6.

Wanajo et al. (2000) found that their dynamical timescale saturated at high neu-

trino luminosities near 2 — 3 x 1052 erg s™!.

This conclusion is an artifact of their
definition for the dynamical timescale and their numerical approach to the wind
problem. Our solution shows that for constant average neutrino energies, even up
to LI ~ 8 x 10°% erg s™!, 7, continues to decrease, roughly as 7, oc L;%. The
entropy also decreases as the luminosity increases; s, oc L;%1%. Since these power
laws are for constant average neutrino energy, we deduce from the fiducial models
that 7, oc L,%™(g,)2® and s, oc L, %15(¢,) %%, These are to be compared with the
analytic results of Qian & Woosley (1996) who did not include general-relativistic ef-

fects: Tayn o< L, '{g,) ? and s, L,/® {e,)"/3. In addition, although we find that 7,

decreases as R, decreases, for constant protoneutron star mass, neutrino luminosity,
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and average neutrino energy, using either the Newtonian or general-relativistic wind
equations, we find that 7, is generally 10%—15% shorter in the Newtonian case. This
result is owed in part to the fact that the increase in ¢ due to the bending of neutrino
trajectories is insufficient to counter the decrease in ¢ caused by gravitational redshift
of the neutrino luminosity and energy (Cardall & Fuller 1997). (See Table 3.1 for a
comparison between the Newtonian and general-relativistic calculations for the 1.4

Mg and L3 = 8.0 fiducial model.)

3.5.5 Limitations of The Steady-State Approximation

To conclude this section, we include a few words about the degree to which the pro-
toneutron star wind can be considered quasi-stationary. There are several timescales
of importance. The first is 74, the timescale for decay of the neutrino luminosity, set
by the power-law index § in the relation L, o« t~°: 7, = t/6. The second is the time
T, for matter to move from R, to the critical point R., where it loses sonic contact
with the rest of the flow. The third relevant timescale is the sound crossing time, 7y,
between R, and R.. 7, varies from just ~ 10 ms to more than 250 ms over the range
of L,s presented here. For low luminosities, 7, o< L, . 7, is proportional to L 28
for all luminosities and varies from 4 seconds to more than 5000 seconds for the same
range of L,s. However, these numbers for 7, are quite deceiving. In our models,
due to the exponential density gradient just exterior to R,, the matter is effectively
trapped for r < 12 km. In fact, for the lowest luminosity cases presented here, the
matter velocity for 7 < 10.5 km can be of order 10 cm s~!. In effect, then, the region
shown in the inset in Fig. 3.2 is an atmosphere in hydrostatic equilibrium from which
the wind emerges. From this region the matter would escape on timescales much
longer than the total protoneutron star cooling time. If, instead, we redefine 7, as
the time necessary for a Lagrangean mass element to go from the peak of the heating

profile (see Fig. 3.4) at » ~ 12 km to R, we find that 7, is of order ~ 10 ms for
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L3! = 8.0 and 7,,, ~ 1 second for L3 = 0.5. The steady-state approximation is only
valid if 7,,,, 7y < 74. For example, taking L, (t) o< t*% and high neutrino luminosities,
M drops 10% in roughly 7,. At these luminosities, 7, is approximately 20 — 30 ms.
Although both 7,,, and 7, are less than 7,4, they are not significantly so. We conclude
that the steady-state assumption might be reasonably employed, but that caution is

warranted.

3.6 The Evolution of Protoneutron Star Winds

With the eigenvalue problem solved and some of the systematics in hand, in this
section we explore possible evolutionary trajectories using the steady-state solutions.
Beyond surveying the entire relevant parameter space, we endeavor to model the
whole of the Kelvin-Helmholtz cooling phase, including radial contraction and the
simultaneous evolution of the luminosity and average neutrino energy.

Perhaps a second after core bounce, as the wind emerges, the protoneutron star
atmosphere will be extended (R ~ 30 — 50 km) and perhaps highly luminous (L ~
5x10° erg s71). As the neutron star cools it will contract quasi-hydrostatically. This
may take as many as several seconds, depending upon the nuclear equation of state.
The average neutrino energies during contraction may increase, peak near the time
at which R, settles, and then decrease roughly linearly in time (Pons et al. 1999).
The luminosity may decay quasi-exponentially or as a power law in time (Burrows
and Lattimer 1986; Burrows 1988; Pons et al. 1999).

Figure 3.10 shows the luminosity, radius, and average energy as a function of time
for our evolutionary models. This picture is merely schematic, but illustrates a repre-
sentative scenario. In the following discussion we take L' oc 709, A simple rescaling
in time can be performed for other power-law indices or exponential luminosity de-
cay. Two possible tracks for the time evolution of R, (t) are shown. The short dashed

line is linear contraction such that R,(t = 0.4s) = 20.3 km and R,(t = 1s) = 10
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km. This is the evolutionary model, which we label as ‘R, (t) o« 1 — at’. For com-

/3 This model also has

parison, the dot-dashed line has R, (¢) proportional to ¢~
R,(t = 0.4s) = 20.3 km. At ¢t ~ 3.2 seconds, R, = 10 km. The power 1/3 was
obtained from a rough fit over approximately one second of post-explosion evolution
in a supernova model of S. Bruenn. In this calculation the supernova was simulated in
one-dimension artificially for a Woosley and Weaver (1995) 15 M, progenitor starting
from the collapse calculations of Bruenn, De Nisco, & Mezzacappa (2001). We focus
on the model with R, (t) oc 1 — at instead of the model with R, (t) oc t~/3 because it
reaches a more compact configuration (i.e., maximum M/R, ) at earlier times, that is,
with higher luminosity. As we explore in the next section, large M/R,, coupled with
high luminosity and/or average neutrino energy gives short dynamical timescales and
relatively high entropies, both potentially important for r-process nucleosynthesis in
the protoneutron star context.

In order to determine appropriate numbers for the ratios (e,,)/(€s.), {€z.)/(Eve)
Ly, /Ly,, and Lg, /L, we surveyed supernova simulations (e.g., Mayle, Wilson, and
Schramm 1987; Burrows, Hayes, and Fryxell 1995; Mezzacappa et al. 2001; Liebendéorfer
et al. 2001; Bruenn, De Nisco, and Mezzacappa 2001; Rampp and Janka 2000;
S. Bruenn 2001, private communication) and protoneutron star cooling calculations
(Burrows and Lattimer 1986; Pons et al. 1999; J. Pons 2000, private communication).
The common assumption of equipartition in luminosity between the three neutrino
species is generally not realized in these calculations. In fact, L,, + Lp, + L., + Ly,
is usually of order 50—60% of L*. In addition, the ratio (e;,)/{c,,) ranges from 1.1
to 1.4 and Ly, /L,, from 1.0 to 1.4. The ratio of (¢5,) to (,,) also varies significantly.
Like the fiducial models presented in §3.5, we use L; to index our evolutionary
models in this section and set (,,)/(¢s) = 1.6, (€5.)/(ev.) = 1.3, Ly, /L,, = 1.4,
and L, /L, = 1.3. At any time, all luminosities and average energies can then be
computed from Fig. 3.10. We chose (g3,)/{¢,,) and Lz /L,, so as to accord with

the literature while also minimizing Y,* (eq. 3.16), this being potentially favorable
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for r-process nucleosynthesis (but see §3.8.1). Note that with (¢5,)/{(e,,) = 1.3 and
L3, /L,, = 1.3 and the magnitude of the average energies set by Fig. 3.10, Y.* ~ 0.46 at
early times. We feel these numbers are merely representative. We explore potentially
important modifications to our prescription in §3.8.3.

For each point along the evolutionary models represented in Fig. 3.10 we cal-
culate the steady-state wind solution. We do this for a range of protoneutron star
masses from 1.4—2.0 M. Neutrino luminosity is always quoted as the local neutrino

luminosity at the surface of the protoneutron star, not the luminosity at infinity.

3.6.1 Results: Evolutionary Models

Shown in Fig. 3.11 are evolutionary trajectories for M = 1.4, 1.6, 1.8, and 2.0 Mg
in the plane of 7, versus asymptotic entropy, s,. Note that s, does not include
contributions from S-decays during nucleosynthesis. During r-process nucleosynthesis
these processes may increase s, by > 10 units, depending on the dynamical timescale
(Meyer and Brown 1997). However, because we post-process our wind models to
obtain the nucleosynthetic yield and include only alpha particles and free nucleons
in the equation of state we employ in solving the eigenvalue problem (see §3.2), such
an entropy increase is not included in s,. Figure 3.11 is analogous to Fig. 3.9, but
for changing R, (t), (¢,)(t), and L!**(¢) using the evolution depicted in Fig. 3.10. The
evolutionary trajectories labelled with ‘R, oc 1—at’ are solid lines with small dots. For
comparison, we also show the evolution for M = 1.4 Mg, with R, (¢) o t71/% as a thin
solid line without dots. The small dots on each evolutionary track are separate L,s.
All tracks start with L3! = 8.0. The lowest luminosity shown on this plot is L}! = 0.4
for each track. The time evolution for any mass begins with high luminosity, large
R,, and, hence, low s, (~ 50 — 70) and moderate 7, (~ 9 ms). As R, gets smaller in
the first second of evolution, the trajectories with R, o< 1 —at move to much higher s,

and slightly smaller 7, before they cease contraction at R, = 10 km. The s, reached
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at this luminosity is set by M/R,, with the 2.0 Mg model reaching s, ~ 150. Our
evolutionary models contract from ~ 20 km to R, = 10 km in approximately 1 second.
At this point in the evolution, R, is fixed and each track makes a sharp turn toward
much longer 7, and only moderately higher s,. This turnoff point is marked with a
large open circle on each track and has L}! = 3.4 and Li** = 1.57 x 10°% erg s™'. At
this point the trajectories join lines of constant R,, like those in Fig. 3.9. Due to the

1/3 never exhibits such a sharp

relatively slow contraction, the model with R, (t) oc ¢~
turn in the s, — 7, plane and eventually joins the other 1.4 My evolutionary track
at 7, ~ 0.015 seconds, corresponding to ¢ ~ 3.15 seconds and L3' = 1.3. Note that
the turnoff point at L)! = 3.4 marks the point of minimum 7, for each model with
R, o< 1—at. Table 3.2 gives the global properties of our neutrino-driven wind models
at L3 = 8.0, L}! = 3.4, and L} = 0.4, including the asymptotic electron fraction,

1/3

Y. For comparison, we also include in Table 3.2 the model with R,(t) o t~%/* at

L3 =3.4.
Having solved for M at every point along these evolutionary tracks and assuming
that L,(t) oc 7% we calculate the total mass ejected in the wind as a function of

time:
My(t) = / ") ar. (3.38)

0

Figure 3.12 shows this integral for all five of the models presented in Fig. 3.11. The
dashed line shows M(t) for the model with R,(t) oc t~/3. As one would expect,
because of the slower radial contraction of the protoneutron star, this model ejects
more matter than the corresponding trajectory with R, o (1 — at). In this case,
the difference is about 30%. The small dots on each of the solid lines mark L, (t)
for each model and correspond to the luminosity points on each track in Fig. 3.11.
The large dots on each line mark L}! = 3.4, the luminosity at which each track
in Fig. 3.11 reaches R, = 10 km and turns sharply. Note that the 2.0 My model

ejects only ~ 6 x 107 My of material, about three times less than the 1.4 Mg
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model. Extrapolating the results of Fig. 3.12 we can compute the total Mefj‘)t for
t — 0o. We can then compute, at any time, the mass yet to be ejected by the wind,
AMg(t) = MZ" — Mg(t). Figure 3.13 shows AM,;(t) versus time for each track in
Fig. 3.11. The lines and dots correspond with those in Fig. 3.12. In Fig. 3.11, we plot
lines of constant log;o[AM,;(t)] in units of Mg, as dashed lines connecting big dots on
each of the four evolutionary trajectories with R, o (1 — at). The thick dashed line
on the far right side of the plot, labelled —6.0, is the line beyond which, only 10°
Mg will be ejected.

In the calculations presented here, we have arbitrarily defined the point in time
when the wind begins. The absolute magnitude of M, in Fig. 3.12 for each model
is therefore also arbitrary. Only the ratios of these ejected masses or AM,;(t) for an
individual trajectory are of real import. The —6.0 line in Fig. 3.11 is of particular
significance because if all (or most) supernovae produce r-process elements then the
total yield per supernova must be 10=° — 1075 My (e.g., Qian 2000). Therefore,
if an r-process epoch is to exist along any of the trajectories shown in Fig. 3.11,
then it must begin at or before the line labelled —6.0 in order to eject sufficient
mass. If r-processing begins to the right of this line, less than 107 Mg will be
ejected. For any L,(t) and R,(t), such a bound must exist. We have explored the
position of this boundary for a variety of relationships for L,(t). Taking reasonable
e-folding timescales (7) and L,(t) oc e ¥/ the —6.0 line moves to even shorter .
For slower power law decay, the boundary moves to longer 7,. For M = 1.4 Mg
and L,(t) o< t7%% it moves from 7, ~ 0.07 to 7, ~ 0.085 seconds. Although the
wind may eventually evolve to arbitrarily long dynamical timescales, we conclude
that the range of 7, relevant for r-process nucleosynthesis is significantly constrained
by the log;o[AM] = —6 line in Fig. 3.11. In fact, this range is smaller than previous
calculations suggest. In addition, note that even if a given wind model produces
r-process elements, only a fraction of the total mass ejected during that r-processing

epoch will be in r-process elements; much of the mass will remain in alpha particles.
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Conservatively, then, if transonic protoneutron star winds are the primary site for the
r-process, this constraint on the amount of mass ejected per supernova implies that
the epoch of r-process nucleosynthesis must occur for 7, less than ~ 0.085 seconds.

For this range in 7,, there is also only a relatively small range of s, available to
the transonic protoneutron star wind. As evidenced by the calculations of Takahashi,
Witti, & Janka (1994) and Qian & Woosley (1996) and borne out in Fig. 3.11, s,
as large as ~ 400 is simply outside what can be obtained for reasonable dynamical
timescales, even including the effects of general relativity. If we extrapolate the curves
shown here to later times (lower luminosities), even the 2.0 Mg, trajectory does not
reach 400 until 7, >~ 0.5 seconds. At this point M ~1.5x107 My s~*. If r-processing
could occur during these late stages, it would need to persist for many thousands of
seconds to yield even 107% M, of ejecta. Moreover, the survey calculations of Hoffman,
Woosley, & Qian (1997) and Meyer & Brown (1997) show that with s, ~ 400 and
7, ~ 0.5 seconds, one requires Y? < 0.3 to achieve an appreciable third peak 7-
process. A Y this low is extremely unlikely. As the protoneutron star cools, the
neutrino luminosity and average neutrino energy will be correlated. Protoneutron
star cooling calculations (Burrows and Lattimer 1986; Pons et al. 1999) indicate that
the average neutrino energies will fall throughout these late evolutionary stages as the
luminosity decreases. As the magnitude of (¢;,) and (g, ) decrease, the asymptotic
electron fraction (eq. 3.16) must increase on account of the energy threshold for the
reaction 7,p — ne’ (the ‘threshold effect’). For the 1.4 My model, these constraints
are even more severe. This track reaches s, ~ 400 only when 7, is several seconds
and M is of order 107 Mg s™L.

Note that for a given mass and 7,, s, is 10-30 units higher in Fig. 3.9 than in
Fig. 3.11 owing to the lower average neutrino energies for a given luminosity in our
fiducial models (§3.5) than in the evolutionary models we consider in this section.
One might argue that by quickly decreasing (e, ) for all neutrino species with respect

to the luminosity that the trajectory would move more quickly to higher s,, and,
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hence, be more likely to yield r-process ejecta. While such a change would certainly
drive s, higher, it would also make 7, increase faster, decrease M significantly, and
the threshold effect would drive Y* higher. Thus, such a modification can only make
the constraints tighter.

We conclude that the late-time r-process as obtained in Woosley et al. (1994)
is extremely unlikely in the context of a transonic wind. In essence, because s, is
initially set by M/R, for a given model, once each trajectory reaches R,(t) = 10
km, the wind evolves quickly to much larger 7, and only modestly higher asymptotic
entropy. That is, for constant R,, s, is roughly proportional to 70*. By the time a
transonic wind evolves to high entropy, the dynamical timescale is too long and Y*
is too high to allow for a robust r-process. The slope of the trajectories in the s, — 7,
plane shown in Fig. 3.11 guarantee that if the wind enters a regime of very high
entropy it does so with very large 7, and minute M, so as to preclude any significant
r-process yield.

Instead, we propose an r-process epoch just a second or two after explosion, co-
inciding with the end of the protoneutron star contraction phase. In this scenario,
the wind moves into an early-time r-processing regime in the s, — 7, plane and then
out of this regime at later times so that the constraint on M is satisfied. With this
in mind, the behavior of the wind trajectories during contraction, and particularly
the point in each track where 7, is at a minimum (L}! = 3.4), is suggestive and tan-
talizing. As Hoffman, Woosley, & Qian (1997) noted, a small dynamical timescale,
even for only moderate entropies, can yield a successful r-process. More recently,
Otsuki et al. (2000) have shown that a successful r-process can be realized in this
context. For these reasons we turn our attention to an early-time, high luminosity,
short-7,, and modest entropy r-process. For reference, in Fig. 3.11, we include long
dashed lines of constant Y., taken from the r-process survey calculations of Meyer &
Brown (1997), above and to the left of which, for a given Y%, production of the third

r-process peak at A ~ 195 is assured. Caution is encouraged in taking these lines too
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seriously. They were computed along specific T' and p trajectories for fixed Y, and
dynamical timescale, 7MB  given by eq. (3.37), which overestimates d7/dt by roughly
a factor of two at these high luminosities (see Fig. 3.8 and §3.5.1). These lines are

only suggestive.

3.7 Nucleosynthesis in the Evolutionary Protoneutron Star
Wind Models

Any successful r-process site must do more than simply produce nuclei with A >
195. Observations of r-nuclei in ultra metal-poor halo stars (notably, CS22892-052,
HD115444, and CS31082-001) show that the abundance pattern for A > 135 is nearly
identical to the scaled solar r-process abundance (Sneden et al. 1996; Burris et al.
2000; Westin et al. 2000; Hill et al. 2001). Simply producing the platinum peak
is no guarantee that the solar abundance distribution is reliably reproduced (Meyer
and Brown 1997). In the wind scenario, particularly, one must construct the time-
integrated yield as the neutrino luminosity decays and the global wind structure
evolves.

For each luminosity point on the 1.4 Mg evolutionary trajectory with R, o (1—at)
in Fig. 3.11 we obtained a unique M and velocity, temperature, and density profile.
For each individual profile my collaborator Bradley S. Meyer of Clemson University
used his r-process network code to compute the nucleosynthetic yield (Y') as a function
of the atomic mass, A. With Y (A) and M at every point, assuming L,(t) oc t799,
we compute the weighted sum to get the total amount of ejected material at each A,
M;(A). For the 1.4 Mg model we find no significant nucleosynthesis beyond A ~ 100.
In fact, most of the mass is concentrated at a peak in Sr, Y, and Zr. Inspecting the
yield at each luminosity (time) reveals that when the protoneutron star has contracted
to R, = 10 km, the point of minimum 7, in Fig. 3.11 denoted by a large open circle, the

nucleosynthetic flow reaches a maximum in A. That is, all the points with 7, > 0.006
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seconds on the 1.4 Mg evolutionary track, even though they have higher entropy,
produce lower average A ejecta. This can be understood simply: as the dynamical
timescale of the wind gets longer, more seed nuclei are formed. Hence, for a given
Y and s,, the neutron-to-seed ratio decreases (Hoffman, Woosley, and Qian 1996;
Meyer and Brown 1997; Freiburghaus et al. 1999). Therefore, the point of minimum
7,, when M /R, reaches a maximum, affords the best possibility for a robust r-process.
For all protoneutron star masses, the evolutionary models with R, o (1 — at) turn
sharply at L2 = 3.4 and for 7, between 6 and 7 ms. Unfortunately, although the
L;’;i = 3.4 point produced the highest average A ejecta of any other luminosity along
the 1.4 M, track in Fig. 3.11, the nucleosynthesis did not even proceed to the second
abundance peak.

We also calculated the nucleosynthetic yield for the 1.6, 1.8, and 2.0 M, tra-
jectories at L' = 3.4, assuming that these points of minimum 7, would also yield
the highest average A ejecta of any of the points in a given mass trajectory. None
successfully generated nucleosynthesis beyond the second r-process abundance peak.
Even the 2.0 Mg model, which has s, ~ 151 and 7, ~ 0.0068 seconds for L} = 3.4,
did not proceed beyond A ~ 135. Hence, for the Y*s derived and the time evolution
we have assumed, we fail to produce viable r-process nucleosynthesis in any of our

evolutionary transonic protoneutron star wind models.

3.8 What is To Be Done?

We have already ruled out the possibility of a late-time r-processing epoch at long
dynamical timescales and high entropies (s, > 400) using constraints on the amount
of material ejected, the slope of the evolutionary tracks in the s, — 7, plane, and the
inexorable rise in Y, as the protoneutron star cools.

We are left wondering what reasonable modifications might generically yield third-

peak r-process nucleosynthesis for a canonical protoneutron star with 1.4 My and
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R, = 10 km. In this section we further explore the viability of the early-time r-
process. We consider the likely range of Y*, s,, and 7, accessible to transonic neutrino-
driven winds, and present the physical conditions we require for production of the

both the second and third r-process abundance peaks.

3.8.1 The Asymptotic Electron Fraction: Y

One might argue that Y* is simply too high in these winds to yield successful nucle-
osynthesis. There are several important points in this regard. First, our evolutionary
models, which failed to produce nucleosynthesis beyond A ~ 135, all had Y* ~ 0.46
at L3! = 3.4. This Y favors the formation of A ~ 90 nuclei and produces many seed
nuclei, thus decreasing the neutron-to-seed ratio for a given entropy and dynamical
timescale. Second, both Woosley et al. (1994) and Wanajo et al. (2000) obtained
unacceptably large over-productions of nuclei near A ~ 90 in the early phase of their
wind calculations, at high luminosity and low entropy. Third, Hoffman et al. (1996)
find that this overproduction problem is solved if ¥, > 0.485. These three points to-
gether imply that if the r-process occurs generically in protoneutron star winds then
Y must be either less than 0.40 or greater than 0.48 to avoid the overproduction
problem at A ~ 90. Naively, it might seem that Y* g 0.40 is favored because this
would naturally increase the neutron-to-seed ratio by increasing the number fraction
of neutrons. However, there are several reasons why Y > 0.48 might actually be
viable. First, for Y > 0.485 Hoffman et al. (1996) found that some interesting p-
process elements were produced, which were previously unaccounted for (e.g., “>Mo).
Second, the most detailed transport studies done to date (Mezzacappa et al. 2001;
Liebendorfer et al. 2001; Rampp and Janka 2000) indicate that (g5, )/{¢,,) ~1.1—1.2
and L /L, =~ 1.1. Depending on the magnitude of (¢; ) and (¢,, ), these numbers
put Y > 0.48, as per eq. (3.16). Third, Hoffman, Woosley, & Qian (1997) find that

as Y increases from 0.48 to ~ 0.495 the requisite entropy for third-peak production



109

actually decreases for fixed dynamical timescale. The last point implies that having
a high Y might slightly relieve the constraints on s, set by an early-time, high-
luminosity r-process. The fact that some p-process elements might also be produced
in a high Y* environment is attractive. Together, we feel that the above points make
it plausible that Y. > 0.48 in protoneutron star winds. Such a conclusion, constrains
the three-dimensional space s, — 7, — Y,? significantly.

Of course, having Y ~ 0.30 — 0.35 might also cure the overproduction problem
at A ~ 90 while increasing the neutron-to-seed ratio dramatically, so as to allow
for third-peak production at the entropies and timescales obtained for the 1.4 Mg
evolutionary model in Fig. 3.11. However, to attain Y,* < 0.35 one requires L;, /L, >
1.55 for (e5,)/(ev,) = 20 MeV /12 MeV. Such conditions would be extreme in light
of the detailed transport calculations carried out to date. However, if Y* does reach
values this low in profiles like those in Fig. 3.11, there are two constraints worth
pointing out. The first is that ¥* must evolve with the neutrino luminosities and
average energies so that very little mass is left to be ejected by the time Y,* increases
to 0.40. Otherwise, the same overproduction problems at A ~ 90 may occur. The
second constraint is that if Y,* is sufficiently low to guarantee third-peak production,
it must eject not more than ~ 10~° M, of r-process material per supernova.

We conclude that Y,* may be >0.47 in protoneutron star winds. This follows from
the fact that Y below 0.40 is very unlikely and if Y is in the range 0.40—0.46,
models suffer from overproduction of A ~ 90 nuclei. With this in mind, in the next
section we consider modifications to our transonic wind models that might increase

the entropy or decrease the dynamical timescale.

3.8.2 Entropy and Dynamical Timescale

One might choose to increase s, by changing the bulk protoneutron star characteris-

tics. Increasing the ratio M /R, increases s, significantly with only modest decreases
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in 7,. However, this ratio cannot be increased arbitrarily. M > 1.5 Mg may be dis-
favored in light of neutron star binary observations (Arzoumanian 1995) and R, < 9
km seems unlikely due to constraints on the high density nuclear equation of state
(e.g., Lattimer and Prakash 2001). In order to explore this, however, we varied M and
R, at L} = 3.4 in our evolutionary models with R, o 1 — at. In Table 3.3, we sum-
marize these results for M =1.8 My, 1.6 Mg, and 1.4 M. These models should be
compared with the models with L2 = 3.4 in Table 3.2. Unfortunately, for Y,* ~ 0.46
for each model, we did not obtain third-peak r-process nucleosynthesis. Increasing
Y? artificially in our nucleosynthesis calculations to 0.48, the neutron-to-seed ratio
stays low and we fail to generate r-process elements beyond the second peak.
Although reasonable increases in M/R, are favorable for the r-process, they are
insufficient for strong third-peak nucleosynthesis. Therefore, in an effort to obtain a
robust r-process in a canonical 1.4 Mg, R, =10 km protoneutron star, we are only

left with the option of modifications to the energy deposition profile.

3.8.3 Possible Modifications to ¢

Qian & Woosley (1996) showed that an artificial energy source at radii between 20
km and 30 km, beyond the peak in ¢ could substantially increase the entropy and
decrease the dynamical timescale. In fact, any extra energy source that broadens the
energy deposition profile, thus increasing ¢ in a region of low mass density, increases
s, and decreases 7.

We noted in §3.6 the difference in entropy, for a given 7,, between the fiducial
tracks in Fig. 3.9 and the evolutionary tracks in Fig. 3.11. Comparing the M = 1.6
Mg tracks on both plots, the difference in s, between the two at 7, = 0.02 seconds is
~12 units. The fiducial model (with higher s,) has a total neutrino luminosity almost
twice that of the evolutionary model, but its average neutrino energies are more than

35% lower. The increase in entropy is caused by an interplay between the charged-
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current heating rate (g..) and the neutrino-electron scattering heating rate (g,.). The
former is proportional to Ly, (¢2 ) + L,, (€2 ), while Gy, is proportional to >, L,, (€,,)-
Clearly, for fixed neutrino luminosities, as the average neutrino energy drops, ¢y,
becomes more important relative to ¢... Because ¢.,. — 0 as the alpha fraction
increases (see Figs. 3.6 and 3.7), the fact that ¢,,. increases in importance effectively
broadens the energy deposition profile, thus increasing the entropy. Although the
heating rate due to v;7; annihilation peaks close to the protoneutron star surface, it
also contributes to the total energy deposition rate at radii larger than where ¢.. — 0.
Because gy,5 o Y, L2 (€,,), for fixed neutrino luminosity and decreasing average
neutrino energy, this process also becomes more important relative to q.., thereby
enhancing the effect on s,. Although the total effect here is relatively small, at short
T, any increases in s, are of potential significance. Small average energies coupled
with higher luminosities are one way to achieve moderately higher s, and shorter 7,,.
Note that due to the threshold effect (eq. 3.16) in the charged-current reactions, if
one decreases (¢;,) and (g,.), Y* will increase, and any potential gains in s, might
be mitigated. However, as we discussed in §3.8.1, Fig. 10 of Hoffman, Woosley, &
Qian (1997) shows that the entropy required for third-peak nucleosynthesis actually
decreases for high Y.

Similarly, one might also increase (¢,,) and L,, relative to the same quantities
for the electron and anti-electron types. Since the v,- and v -type neutrinos do
not participate in the charged-current reactions, any increase in their luminosity or
average energy effectively increases the importance of ¢,,. and ¢,,5, with respect to gc..
As we noted in §3.6, the evolution of luminosity and energy shown in Fig. 3.10 is only
suggestive. For this reason we explored modifications to the ratios (¢,,)/(es.) = 1.6,
(€.)/{€v.) = 1.3, Ly, /L,, = 1.4, and Ly /L, = 1.3. For our extreme 2.0 Mg
evolutionary model with L! = 3.4 (see Table 3.2 for comparison), we set L, =
Ly, = Ly, and (g,,) = 15 MeV, (g5,) = 22 MeV, and (g,,) = 34 MeV. This increased
Y? from 0.469 to 0.484, increased () by more than a factor of three, decreased s,
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by 17 units to ~134, and decreased 7, by 40% to 4.1 ms. These modifications were
insufficient to produce third-peak nucleosynthesis.

Following Qian & Woosley (1996), we artificially increased ¢(r) in the region 20
km <7 < 50 km for our 1.4 Mg evolutionary model at L3! = 3.4 so that @ (eq. 3.14)
went from 1.21 x 10%° erg s=! to 1.33 x 10* erg s™!, an increase of 10%. Because
Q is the volume integral of p¢ and p is small at these radii (10® — 107 g cm™2), ¢
must be enhanced substantially in order to affect a 10% change in ). With this
extra energy deposition we found that maximum increases in s, and decreases in 7,
depending on the degree of augmentation of ¢ as a function of r, were 17 units and
50%, respectively. M increased by just 8%. We made the same sort of modification
to the 2.0 Mg model with L,, = Ly, = L,, and (g,,) = 15 MeV, (g5,) = 22 MeV, and
(€4,) = 34 MeV. In this case, we increased @ by 6% and found that s, was increased
from 134 to 150 and that 7, decreased from 4.1 ms to 2.6 ms. That 7, can decrease
so significantly as a result of < 10% changes in ) demonstrates the importance of
conducting a full transport study in this context. We save such an investigation for
a future work, but emphasize that the shape of the energy deposition profile may be
the final arbiter in determining the true potential of this site as the seat of r-process

nucleosynthesis.

3.8.4 The Early-Time r-Process

Although we have described the general physics of protoneutron star winds, the result-
ing nucleosynthesis, and modifications to our models that might enhance the wind’s
entropy and decrease its dynamical timescale, none of the models we have presented
so far produces a robust, third-peak r-process. However, setting M = 2.0 My, R, =9
km, Ly, = L,, = L,, = 8.0 x 10° erg s, and (g,,) = 14.5 MeV, (g;,) = 22 MeV,
(€y,) = 34 MeV, and adding an artificial heating source between 20 km and 50 km
that increases @ by 4%, we derive a wind with s, ~ 150, 7, >~ 1.3 ms, and Y,? ~ 0.477.
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This extremely compact and luminous protoneutron star yields a wind profile that
produces third-peak r-process nucleosynthesis. We have found that for s, ~ 150 and
0.47 g Y, < 0.495, we require 7, < 1.3 ms in order to generate a significant A ~ 195
yield. These are the necessary conditions we derive from our general-relativistic wind
models for an early-time protoneutron star r-process epoch. If a wind trajectory,
like those in Fig. 3.11 were to pass into the region s, ~ 150 and 7, < 1.3 ms with
Y? less than 0.50, some third-peak material would be produced. Note that Otsuki
et al. (2000) attained third-peak nucleosynthesis for similar wind conditions. Artifi-
cially setting Y,* equal to 0.40, their model with s, ~ 140 and 7, ~ 1.2 ms successfully
produced abundance peaks at A ~ 130 and A ~ 195.

Although a full nucleosynthesis survey, using real wind profiles, is required to map
the space 100 g s, < 200, 7, < 1.5 ms, and 0.46 < Y. < 0.50, we note some features
of potential importance for the short 7,, early-time r-process. First, as we decrease
Y? from 0.495 to 0.47, for a given 7, and s,, the neutron-to-seed ratio stays roughly
constant. Hence, the ratio of the abundance yield at A ~ 130 to that at A ~ 195 is
relatively insensitive to Y. Second, r-process nucleosynthesis at very short timescales
and high electron fractions is possible because the number of seed nuclei formed is
very small. As a consequence, we expect the nucleosynthetic yield in this regime to
be sensitive to changes in the input nuclear physics and, in particular, the three-body
reactions important in seed nuclei formation (e.g., *He(an, 7)?Be; Kajino et al. 2001).

Our requisite conditions for third-peak nucleosynthesis, 7, < 1.3 ms, s, >~ 150, and
high Y*, disfavor r-process nucleosynthesis generically in neutrino-driven winds from
neutron stars with M =1.4 M. Our results in Table 3 indicate that even for R, = 8
km, s, is 35 units too small and 7, is a factor of about three too long for the r-process
to proceed to the third abundance peak. We find these gaps in entropy and timescale
very difficult to bridge. For M = 1.4 My we require R, < 6.5 km to reach this s, and
7,. It is unlikely that any high-density nuclear equation of state could accommodate

such a small radius. Even taking M = 1.6 My and R, = 9 km, without invoking
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an artificial heating source, we fail to reach 7, < 1.3 ms and s, ~ 150. Although
the importance of the distribution of energy deposition and extra heating sources
should be borne in mind, our unmodified wind models require a very massive and
highly luminous protoneutron star with small radius. Indeed, considering the fact
that our successful wind models originate from neutron stars with A/ > 2.0 Mg and
R, < 9 km, we are forced to consider the possibility that the primary site for the r-
process is not a protoneutron star at all. A neutrino-driven outflow generated near the
event, horizon of a black hole might bear many of the characteristics of our successful
protoneutron star models. Perhaps very short timescale outflows or jets originating
from the compact inner accretion disk created in the collapsar models of MacFadyen
& Woosley (1999) attain the necessary conditions for r-process nucleosynthesis. Such
outflow models would benefit by being generated in a region with high M/R,,, without
being subject to the constraints imposed on neutron stars by the nuclear equation of

state.

3.9 Discussion

We have constructed a robust and efficient algorithm for solving the neutrino-driven
protoneutron star wind problem using both general relativity and Newtonian gravity.
We employed physical boundary conditions for the transonic wind, a well-motivated
neutrino energy deposition function, and an equation of state suited to this problem.
For the first time, we included the differential equation for the evolution of Y, in ra-
dius and the proper sonic point boundary condition. Using this computational tool,
we studied the structure and systematics of neutrino-driven winds with an eye toward
assessing the suitability of this site for r-process nucleosynthesis. We have examined
a wide range of protoneutron star radii, masses, and neutrino spectral characteristics.
By positing an expression for L°*(¢), we have modeled potential contraction and cool-

ing scenarios that might exist in Nature and calculated the total mass ejected for the
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corresponding evolutionary trajectories. Employing general relativistic hydrodynam-
ics, we find significant enhancements in the asymptotic entropy of the wind, in good
agreement with the post-Newtonian models of Qian & Woosley (1996), the analytic
approximations of Cardall & Fuller (1997), and the work of Otsuki et al. (2000). In
addition, we find that modest modifications to the net energy deposition rate can
markedly improve the conditions for r-process nucleosynthesis. Indeed, we feel that
changes in the profile of energy deposition represent the most viable alterations to
our models, which might lead to robust r-process nucleosynthesis in the protoneutron
star context.

Our results indicate that only an early-time epoch of r-process nucleosynthesis at
high L,, small 7,, and modest entropy is possible. A late-time r-process, at very high
entropy (> 300), long 7,, and low L, is not viable. There are several components to
this argument. As the luminosity of the protoneutron star decays, both the asymp-
totic entropy and dynamical timescale of the wind increase. The former is conducive
to r-process nucleosynthesis. The latter is not. Hence, the inexorable rise in both
compete. Fundamentally, for the transonic wind, we find that the asymptotic entropy
does not increase fast enough to compensate for the deleterious rise in 7,. In addition,
as the luminosity decays and 7, increases, M decreases. For example, our 1.4 Mg

evolutionary model only reaches s, ~ 300 when M ~ 5 x 10710 M, s™*

and 7, ~ 5
seconds. Clearly, even if the r-process could exist under these conditions, such an
epoch would have to continue for many thousands of seconds to produce even 1076
Mg of r-process ejecta. Finally, the continued rise in Y,* at late times as (¢,,) and
(€5, ) decrease (due to the energy threshold for the reaction 7,p — net, the threshold
effect) also argues against a high-s,, long-7, r-process.

For these reasons, we conclude that if r-process nucleosynthesis occurs in pro-
toneutron star winds, it must occur at early times, at or just after the moment when

R, reaches a minimum. Our 1.4 Mg evolutionary trajectory with R, o< 1 — at in

Fig. 3.11 does not attain sufficiently high entropies and short timescales for success-
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ful third peak r-process nucleosynthesis. We have calculated the nucleosynthetic yield
at every luminosity (time) in this trajectory and at no point does the resulting nu-
cleosynthesis go beyond A ~ 100. Interestingly, however, we find that the luminosity
point that yields the highest average A ejecta corresponds to the point in time where
R, reaches a minimum. This point is also a minimum in 7, for the trajectory. We cal-
culated the nucleosynthesis at this same luminosity point for each mass in Fig. 3.11.
Even for the 2.0 M model with s, ~ 150, we did not obtain nucleosynthesis beyond
the second abundance peak. As evidenced by the survey calculations of Hoffman,
Woosley, & Qian (1997) and Meyer & Brown (1997) and the wind calculations of
Otsuki et al. (2000), these models are outside a regime of successful third-peak nu-
cleosynthesis. However, in §3.8.3 we have shown that reasonable modifications to the
spectral character of the neutrinos and the energy deposition function might conceiv-
ably shorten 7, sufficiently for the r-process to proceed in some of these models. In
§3.8.4, we found that winds with s, ~ 150, 7, < 1.3 ms, and 0.47 < Y? < 0.495 can
generate third-peak r-process elements.

If transonic protoneutron star winds are the primary site for r-process nucleosyn-
thesis, then a successful r-process wind model must enter this s, — 7, — Y? regime.
The wind, starting just after re-ignition of the supernova shock, begins with large
R, and L!* and, hence, low entropy (s, ~ 50) and short dynamical timescales (7, is
several ms). In order to avoid overproduction of A ~ 90 nuclei, Y, is high (> 0.48)
during this low entropy contraction phase (see §3.8.1; Hoffman et al. 1996). As the
protoneutron star contracts, it moves to much higher entropy and shorter 7,. Just as
R, reaches a minimum and the protoneutron star is at its most compact, s, is suf-
ficiently high (~ 150), and 7, is sufficiently short ( 1.3 ms) to guarantee successful
third peak r-process nucleosynthesis. This epoch does not persist. Because R, is now
constant in time the wind evolves quickly along trajectories like those in Figs. 3.9
and 3.11 with s, TS'Q to much longer timescales and only moderately larger s,.

This, coupled with the rise in Y due to the threshold effect, effectively shuts off
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the r-process so that no more than ~ 10™° Mg, is ejected. We emphasize that this
scenario requires the wind to move into and then out of an r-processing regime in the
space of s, — 7, — Y.

Such a picture is provocative, but not yet convincing. Simply obtaining a wind
solution that has proper s,, 7,, and Y to guarantee production of the third peak is
hardly sufficient to explain the remarkable agreement between the r-element abun-
dances with atomic masses at and beyond barium in ultra-metal-poor halo stars and
the observed solar r-process inventory. It is difficult to understand how such a sce-
nario might consistently reproduce the barium abundance, all the lanthanides, the
platinum peak, and the actinides (Cayrel et al. 2001; Hill et al. 2001). In addition,
while the data for these halo stars show remarkable consistency with the solar abun-
dances above A ~ 135, below this mass they are markedly inconsistent and there is
significant star-to-star scatter. Perhaps some subset of all supernovae account for the
region below A ~ 135 and never undergo a vigorous r-process. Perhaps others do
obtain the required s,, 7,, and Y, and account for the full range of nuclides, includ-
ing the first abundance peak and proceeding to uranium (Wasserburg and Qian 2000;
Qian and Wasserburg 2000; Sneden et al. 1996; Burris et al. 2000). As we demon-
strate in §3.6 with our R, o t~'/3 model, slow radial contraction of the protoneutron
star may preclude any significant r-process yield, as the wind would then never enter
a regime of short dynamical timescale with s, ~ 150.

The supernova progenitor structure might be important in this regard. The two-
dimensional calculations of Burrows, Hayes, & Fryxell (1995) and the one-dimensional
results from Janka & Miiller (1995) indicate that a transonic protoneutron star wind
can form just tenths of seconds after the successful re-ignition of the supernova shock.
The pressure of the wind is sufficient for it to emerge into the expanding supernova
ejecta. However, Janka & Miiller (1995) found that as the supernova shock passes
through the Si-O interface in their one-dimensional 15 Mg progenitor it causes a

strong reverse shock that slows the wind expansion from a v ~ 2 x 10° ¢cm s7! to
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a few times 10 cm s !.

It is possible that a termination or reverse shock might
generally disrupt the transonic wind as it propagates toward the protoneutron star.
Exactly how far in radius the reverse shock propagates will be a function of the
hydrodynamical power of both the wind and the reverse shock as the neutrino lu-
minosity decays, each being functions of the progenitor structure. With sufficient
power, the reverse shock may continue to the sonic point. This would put the whole
region between the protoneutron star surface and the supernova shock in sonic con-
tact, thereby converting a transonic wind into a subsonic breeze. We have conducted
preliminary hydrodynamical calculations, which suggest this could occur in certain
circumstances. Steady-state solutions to the wind problem can also be formulated in
this context, but with an outer boundary pressure set by conditions at the supernova
shock. Qian & Woosley (1996) explored the effects of an external boundary pressure
on their wind models. This increased the wind entropy by just 11 units, but increased
the dynamical timescale by more than 60%. Such a change would be detrimental to
an early-time, short-7, r-process. However, it may be that the reverse shock does not
have sufficient power to disrupt the wind interior to the sonic point. In the steady-
state, across the shock boundary, the velocity will decrease, the density will increase
so as to maintain M, and both the temperature and entropy will increase.

In order to test the effects of a termination or reverse shock on the nucleosynthesis,
we inserted a shock by hand at a radius (7g,) of 4000 km in our wind model with
M = 2.0 Mg and R, = 9 km (see §3.8.4), far outside the sonic point (r ~ 180
km). At ry, the matter velocity was 5.1 x 10° cm s™!, p was 17 g cm™3, and T
was approximately 0.023 MeV. Using the Rankine-Hugoniot shock jump conditions,
we estimate that v ~ Tv', p ~ p//7, and T ~ T'/2, where unprimed quantities
are for the wind just before the shock (r < rg,), and primed quantities are for the
flow just after the shock (r > 7). These conditions increase s, by about 10 units
in the post-shock region and increase 7, significantly, due to the sudden decrease

in v. This had subtle, but potentially significant effects on the resulting r-process
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yield. To appreciate this, one must understand that without the slowing of the fluid
trajectory by passage through the reverse shock, the r-process freeze-out in our wind
models occurs for temperatures below 0.01 MeV, because only then are beta decays
along the r-process path fast enough to compete with the rapid material expansion.
By contrast, if the material slows (and reheats) by passage through the shock, the r-
process freeze-out happens at higher temperatures, typically near 0.05 MeV. Although
the average number of neutrons captured per seed nucleus is the same for the shocked
and unshocked (but otherwise identical) trajectories, the distribution of those neutron
captures is different. In particular, for the case considered here, the shocked trajectory
had a factor of three larger yield at A~195. The reason is that, when the trajectory
slowed and reheated by shock passage, the nuclear flow changed and allowed more
nuclei to leak out of the N=82 closed shell and proceed up to N=126 (A~195) at
the expense of flow from the N=50 closed shell (A~80) to N=130. An additional
interesting effect was that, unlike the unshocked trajectory, the shocked trajectory
showed evidence of formation of a rare-earth element peak at A~165. Surman et
al. (1997) argued that this peak forms during freeze-out as the r-process path rapidly
moves through the Z~60, N~104 region of somewhat enhanced nuclear stability in
the nuclide chart. In the winds we study here, the shocked trajectories favor such a
freeze-out while the unshocked trajectories do not. We conclude that the finer details
of the r-process abundance curve may depend in interesting ways on the location and
strength of a termination or reverse shock.

These hydrodynamical issues are part of the larger question of fallback in Type-II
supernovae. It is possible that the most massive supernova progenitors, with their
extended hydrogen envelopes and dense core structures, experience significant fallback
over timescales much longer than the cooling time (Chevalier 1989; Woosley and
Weaver 1995). Even if the wind were able to emerge from the neutron star for 10-
20 seconds after explosion, it might not have sufficient power to overcome extended

fallback over minutes and hours. Even without a large overlying hydrogen envelope
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(Type Ib, Ic), the neutrino-driven wind may be hindered by any progenitor with a
large inner core and outer core binding energy. Therefore, we speculate that an early-
time r-process, unencumbered by fallback or reverse shocks, is most likely in less
massive Type-II, -Ib, or -Ic supernova progenitors. Accretion-induced collapse may
offer even more potential in this context for a fully developed, early-time transonic
wind as, in this case, there is no overlying mantle to impede the wind’s emergence

(Fryer et al. 1999).

3.10 Conclusions

Our major conclusions are the following:

e For a given mass outflow rate, we find a significantly shorter dynamical timescale

(7,) than indicated by many previous investigations.

e Because the temperature, density, and velocity gradients often used in defining
a dynamical timescale evolve on a mass element as it moves away from the
protoneutron star, employing a unique dynamical timescale to characterize the

wind is not recommended.

e For a given protoneutron star radius, the asymptotic entropy (s,) is proportional

0.2
to Ty

e A late-time, high entropy (s, > 300), long timescale neutrino-driven wind, is
not a viable astrophysical site for r-process nucleosynthesis. Although the wind
may eventually realize very high entropy, the mass outflow rate will be too
small and the dynamical timescale too long at such an epoch to account for the

galactic r-process abundance.

e The third-peak r-process elements can be produced in significant abundance in
protoneutron star winds only at early times, at modest entropy (s, ~ 150), and

very short dynamical timescale (7, ~ 1 ms).
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e Winds originating from protoneutron stars with mass 1.4 Mg, and radius R, =
10 km do not produce elements beyond A ~ 100 at any time during wind

evolution.

e We derive that third-peak r-process arises naturally in the context of spherical,
transonic protoneutron star winds only in the unlikely case of protoneutron

stars with M > 2.0 Mg and R, <9 km.

e Shocks in the protoneutron star wind, exterior to the sonic point, caused by
the wind’s interaction with the inner supernova can significantly influence the

third-peak and rare-earth r-process element abundances.

All of these conclusions hold for the generally high Y.’s (0.46-0.49) derived in this
work. Only in the unlikely case that Y, in the wind is < 0.35 are our conclusions
dramatically altered. In this case, third-peak r-process nucleosynthesis might be
obtained in our transonic models for protoneutron star masses less than 2.0 My and
radii greater than 9 km, at early times in the wind evolution. The uncertainty in the
spectral characteristics of the electron and anti-electron neutrinos in determining the
asymptotic electron fraction during wind formation and evolution is primary on our

list of unresolved issues. Others include:

e the character of the energy deposition profile as obtained from detailed neutrino

transport in a self-consistent calculation,

e the high-density nuclear equation of state, which would elucidate the range of

protoneutron star masses and radii relevant,

e the hydrodynamical interaction of the wind and shocks in the expanding post-

supernova environment,

e the effects of rotation and magnetic fields,
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e exactly how, even given successful third-peak nucleosynthesis for a given model,
the universality of the observed r-process distribution for A > 135 can be ac-
counted for generically by the progenitor-dependent parameter space of neutrino-

driven winds.

These last points leave the prospect of the r-process in this context an open
question. We conclude from this study that if the r-process occurs in protoneutron
star winds, it most likely occurs at early times after the preceding supernova, in winds
with very short dynamical timescales (< 1.3 ms), moderate entropies (~ 150), and,
possibly, high electron fractions (0.47g Y* < 0.495). In contrast to the early-time
scenario, because protoneutron star winds only enter a high entropy (s, >300) regime
with very low M (£ 107 Mg s~') and extremely long timescales (7, > seconds), a
late-time r-process is simply not viable. Conditions suitable for an early-time 7-
process are realized in our models only by very compact protoneutron stars with
M = 2.0 Mg and R, < 9 km. The conditions necessary for third-peak r-process
nucleosynthesis are not realized in neutrino-driven transonic winds from canonical
neutron stars with M = 1.4 Mg and R, = 10 km. In fact, for this neutron star
mass, we require R, < 6.5 km. Although such neutron star masses and radii are not
entirely excluded by current high density equations of state, such radii seem unlikely
to obtain in the early post-supernova phase. The short-timescale jet outflows from
the dense inner accretion disk around a black hole formed in the collapsar models of
MacFadyen & Woosley (1999) might attain the necessary entropies and timescales
for the r-process, since in that context M/R, can be significantly larger than in
the protoneutron star context. Importantly, it should be noted that we consistently
produce r-process nucleosynthesis below A ~ 135. Perhaps protoneutron stars of
canonical mass and radius (1.4 Mg, 10 km) produce elements in this mass range
generically, thus accounting (due to progenitor structure and temporal characteristics

of the neutrino spectrum) for the variations in abundance observed in these elements
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in ultra-metal-poor halo stars.



TABLE 3.1. Fiducial Wind Models: 1.4 Mg

Lt

M

e Ljet Q Prech Tp Sa
(10t ergs=1) (Mg s~!)  (10*8 ergs—!) (10%® ergs~!) (ms)
8.0 37.0 9.05 x 10~5 35.1 0.848 3.68  83.9
7.0 32.4 6.56 x 105 25.1 0.561 4.24  86.4
6.0 27.6 4.47 x 1075 17.1 0.346 501  89.5
5.0 23.1 2.84 x 1075 10.9 0.194 6.14  93.4
4.0 18.5 1.63 x 1075 6.28 0.0929 7.93  98.4
3.0 13.9 8.03 x 10~ 3.09 0.0346 11.29  105.4
2.0 9.25 3.74 x 1076 1.14 8.59 x 1073 19.19  116.2
1.0 4.63 5.44 x 10~7 0.211 8.24 x 10~%  49.54 137.6
0.6 2.78 1.58 x 10~7 0.062 1.50 x 104 100.9  156.3
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TABLE 3.2. Evolutionary Wind Models: L3! = 8.0, 3.4, and 0.4

Mass  L5! L tot R, M Q Preeh Tp sa Yo
(Mg) (105! erg/s) (km) (Mg s~!)  (10%8 erg/s) (10*8 erg/s) (ms)

2.0 8.0 37.0 20.3 2.19 x 10~4 53.3 1.27 10.45 67.08 0.467
1.8 8.0 37.0 20.3 3.03 x 10—¢ 67.2 1.67 9.87 59.05 0.465
1.6 8.0 37.0 20.3 4.38 x 10~4 83.8 2.27 9.27 51.39 0.463
1.4 8.0 37.0 20.3 6.69 x 10~ 108.2 3.25 8.63 44.02 0.460
2.0 3.4 15.7 10.0 9.80 x 10~ 5.94 0.0826 6.83 151.61  0.469
1.8 3.4 15.7 10.0 1.39 x 1073 7.34 0.108 6.78 129.43  0.467
1.6 3.4 15.7 10.0 2.04 x 10~5 9.29 0.148 6.56 109.70  0.465
1.4 3.4 15.7 10.0 3.14 x 10~5 12.1 0.213 6.21 91.78 0.462
1.4¢ 3.4 15.7 14.7 9.03 x 10~4 21.8 0.424 9.98 64.01 0.457
2.0 0.4 1.85 10.0 1.24 x 1077 0.0757 1.97 x 10~4 75.49  234.20 0.492
1.8 0.4 1.85 10.0 1.72 x 1077 0.0923 2.48 x 10~ 75.21 198.88 0.491
1.6 0.4 1.85 10.0 2.46 x 10~7 0.114 3.23 x 10~ 72.92 167.40 0.490
1.4 0.4 1.85 10.0 3.67x10°7 0.144 4.44 x 10~4 69.14 138.92 0.489

@ The 1.4 Mg trajectory in Fig. 3.11 with R, o« t~1/3, for L3! = 3.4,
© Ve
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TABLE 3.3. Fiducial Wind Models: 1.4 Mg

Mass Lot R, M (Mg s 1) Q Prech Tp Sa
(Mg) (km) (105! ergs™1) Mg s~ 1) (10%8 ergs—1) (108 ergs™!)  (ms)

1.8 15.7 9.0 1.01 x 105 6.18 0.092 5.63 146.44
1.6 15.7 9.0 1.48 x 10~3 7.79 0.122 5.61 122.98
1.4 15.7 9.0 2.29 x 1075 10.2 0.174 5.39 102.15
1.4 15.7 8.5 1.94 x 10~3 9.25 0.157 4.97 108.48
1.4 15.7 8.0 1.62 x 1073 8.35 0.141 4.54 115.86
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FIGURE 3.1. Matter velocity (v) in cm s~ ' as measured in the Schwarzschild frame

as a function of radius (R) in km for a 1.4 M, (gravitational) protoneutron star
with L, = 8,7, 6,5, 4, 3, 2, and 1x10° erg s~ !. For L, = 8 x 10° erg s !, we
set (e,,) = 11 MeV, (g5,) = 14 MeV, and (¢,,) = 23 MeV. For each subsequent
luminosity, the average neutrino energy for each species was decreased according to
(e,) o L/*. The luminosities were set in the ratios Ly, /L,, = 1.3 and Ly, / L, =14
The dots mark the critical point for each wind profile, where the matter velocity is
equal to the local speed of sound. The neutrinosphere radius is held fixed at 10 km.
For all profiles, for r < 60 km, the flow is nearly homologous with v o< L, .
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FIGURE 3.2. Logi of the mass density (p) in g cm™ versus radius (R) in km for
the same range of neutrino luminosities as in Fig. 3.1 and for the same protoneutron
star characteristics. Dots mark the critical point. The inset shows log;, p versus R
for the region close to the protoneutron star. Note the steep density gradient, which
drops precipitously over as much as five orders of magnitude in just over a kilometer.
As the neutrino luminosity decreases, p(R,) increases in order to maintain our inner
integral boundary condition on the v, neutrino optical depth (eq. 3.22).
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FIGURE 3.3. Matter temperature (T) in MeV versus radius in km for the same
profiles as in Fig. 3.1. Dots mark the critical point. Note that the important regime
of possible r-processing lies between 0.5 MeV and approximately 0.08 MeV, a region
extending out to 700 km for the highest luminosities and to less than 200 km for
the lowest luminosities shown. Comparing the temperature in this range of radii to
those in Fig. 3.1, it’s clear that the assumption of constant outflow velocity (Meyer
and Brown 1997) is a poor approximation during nucleosynthesis in neutrino-driven
winds. The inset shows the structure of the temperature as a function of radius
very close to the neutrinosphere. The bump in T is caused by the onset of heating
(compare with Fig. 3.4).
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FIGURE 3.4. Energy deposition rate (q) in units of 10?! erg g=! s™! as a function

of radius (in km) for the wind models in Figs. 3.1-3.3. ¢ profiles for 7, neutrino
luminosities from 8 x 105! erg s=! to 1 x 10°! erg s~! are depicted. The total heating
rates (Q; eq. 3.14) for each of these models are given in Table 3.1.
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FIGURE 3.6. Contributions of specific neutrino processes to the energy deposition
rate for L, = 8x10% ergs™!, R, = 10 km, and M = 1.4 M. The solid line shows the
total heating rate due to all processes, the short-dashed line is the net contribution
from the charged-current reactions (q..) (egs. 3.24 and 3.25), the long dashed line
is neutrino-electron/positron scattering (q,e; eq. 3.31), the short dot-dashed line is
the net energy deposition rate due to v;7; <> ete™ (4,5; eqs. 3.33 and 3.35), and the
long dot-dashed line is for neutrino-nucleon scattering (4, n; eq. 3.32). Note the fairly
rapid decrease in ¢.. at r ~ 35 km is due to the recombination of free neutrons and
protons into « particles. As the neutrino luminosity decreases in these models, this
transition moves inward in radius so that, for the lowest luminosities, the charged
current processes end abruptly at ~ 25 km. For models with larger M/R,, §,. and ¢,
become more important relative to ¢... However, even for M = 2.0 Mg and R, = 10
km, ¢.. dominates at the peak in ¢;.
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FIGURE 3.7. The electron fraction (Y, solid line), proton fraction (X, short dashed
line), neutron fraction (X, long dashed line), and alpha fraction (X,, dot-dashed
line) for the highest luminosity wind model (L;, = 8 x 10°! erg s7') in Figs. 3.1-
3.5, corresponding to the heating profile in Fig. 3.6. Note the transition at r ~
35 km where « particles form and effectively shut off the charged-current heating
rate. The asymptotic Y, is set very close to the neutron star (r ~ 15 km) and only
undergoes small subsequent change as a result of the a-effect (Fuller and Meyer 1995;
McLaughlin, Fuller, and Wilson 1996)). In this case, Y, changes by ~1% beyond
r = 20 km. The asymptotic electron fraction, Y,?, is well-approximated by eq. (3.16)
in the text.
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FIGURE 3.8. Dynamical timescale (7,) defined in eq. (3.36) versus radius for the
eight models shown in Figs. 3.1-3.5. On each line, the first point marks the radius at
which T'(r) = 0.5 MeV. The second point marks where T'(r) = 0.1 MeV. Note that for
high luminosities, 7, increases by more than a factor of three over the range of radii
and temperatures relevant for r-process nucleosynthesis. For the lowest luminosities
dr,/dr changes sign and 7, actually decreases by ~30% between the two points on
the Ly, =1 x 10%! erg s=! curve.



135

[ [

i L, =0.7x10°! erg s™! |

L 2.0%6 i

250 — —

=7 200 —

c L i
0
>

> - |
©

’Q — -

T - |
Y

~ 150 — —

o - ,
N

100 — —

- R, =10 km |

| T~ L. =8x10% erg s! i

60 | | ‘ | | | ‘ | | ‘ | | ‘
0 0.02 0.04 0.06 0.08

FIGURE 3.9. Tracks for constant protoneutron star mass in the plane of asymptotic
entropy (s,, per kg per baryon) and dynamical timescale (7,, eq. 3.36) in seconds.
R, is held constant at 10 kilometers. Each track covers a range in luminosity from
L, =8.0x10 ergs! to L,, = 0.7x10% ergs~!. Small dots are the points for which
a model with a given luminosity was calculated. All masses are gravitational masses.
In these models, we take (g,,) = 11 MeV, (g5,) = 14 MeV, and (¢,,) = 23 MeV for
Ly, = 8.0 x 10°! erg s™'. For each subsequent luminosity, the average energies were
decreased according to (¢,) o LY*. In Table 3.1, we summarize the global properties
at several luminosities along the 1.4 M, trajectory in this figure.
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FIGURE 3.10. A schematic showing total neutrino luminosity in 10° erg s~! (thin
solid line), average 7, neutrino energy in MeV (long dashed line), and neutrinosphere
radius (R,) in km. Two possible evolutions for R,(t) are shown. Linear contraction
such that R,(t = 0.4s) = 20.3 km and R,(t = 1s) = 10.0 km, which we label as
‘R,(t) o< 1 — at’, is shown as a short dashed line. Contraction with R, (t) oc t~'/3
is shown as a dot-dashed line. The thick solid line denotes 10 km, the final R,
for the protoneutron star. LI is proportional to t™%. We set (¢,,)/(€s) = 1.6,
(€v.)/{ev.) = 1.3, Ly, /L,, = 1.4, and Ly, /L,, = 1.3.
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FIGUure 3.11. Evolutionary wind models in the plane of asymptotic entropy (s,
per kg per baryon) and dynamical timescale (7,, eq. 3.36) in seconds. Tracks with
R,(t) o< (1 — at) (see Fig. 3.10) for M = 1.4, 1.6, 1.8, and 2.0 M, are shown as solid
lines with small dots. The solid line without dots is the track with R, (t) oc t~%/3 for
1.4 M. All tracks start with R, ~ 20.3 km and L}! = 8.0 and end at L}! = 0.4. The
large open circles mark Lgi = 3.4 for each mass trajectory. Dashed lines are lines of
constant log; [AM,] (see eq. 3.38, Fig. 3.13, and text for details). The dashed line,
marked with —6.0, delineates the time when only 107% Mg of material is yet to be
ejected. For given Y?, the dash-dotted lines indicate production of the third-peak
r-process nuclei in the calculations of Meyer & Brown 1997. See §3.6 for discussion.
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FIGURE 3.12. The log of the integrated total mass ejected M,; (eq. 3.38) in units
of M as a function of time in seconds, assuming L, (t)*" oc ¢7%9 for the tracks
of constant mass shown in Fig. 3.11. Evolutionary models with R,(t) o (1 — at)
(see Fig. 3.10) are shown as solid lines with small dots, which correspond to the
dots in Fig. 3.11, indicating luminosity (time). Me; for the track in Fig. 3.11 with
R,(t) « t7'/3 and M = 1.4 Mg, is shown here as a long dashed line without dots.
The large dot on each of the solid curves at ¢ ~ 1 second shows the point at which
the model has contracted to R, = 10 km. This corresponds to the point on Fig. 3.11
where a given track of constant mass with R,(¢) o (1 — at) takes a sharp turn at
7, ~ 0.006 seconds.
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FIGURE 3.13. Logi[AMj(= M — Mj(t))], in units of Mg, versus time in seconds
for the models in Fig. 3.12. The long dashed line is for the model with R, (t) oc ¢/,
The four solid lines with dots correspond to those in Figs. 3.11 and 3.12 for the 1.4,
1.6, 1.8, and 2.0 M, evolutionary models, which we label with ‘R, (t) o 1 —at’. Lines
of constant log;o[AM,;] are shown in Fig. 3.11 as dashed lines connecting big dots on
the evolutionary models with R, (t) & (1 — at).
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CHAPTER 4

DYNAMICAL MODELS OF CORE-COLLAPSE
SUPERNOVAE

4.1 Introduction

In the last few years a new milestone in the modeling of core-collapse supernovae
has been reached. Rampp (2000), Rampp & Janka (2000), Rampp & Janka (2002),
Liebendérfer et al. (2001), Liebendérfer, Mezzacappa, & Thielemann (2001), Mezza-
cappa et al. (2001), and this work represent the next generation in precise, dynamical
models of core-collapse supernovae in one spatial dimension. Although supernova
simulations including a realistic equation of state and state-of-the-art hydrodynam-
ics have been around for several decades (e.g. Bowers & Wilson 1982; Bruenn 1985;
Mayle, Wilson, & Schramm 1987), only the work of the last few years includes a
more precise treatment of neutrino transport, which does not appeal to approximate
techniques like flux-limiting or diffusion.

In §4.2, we review the necessary components of any supernova model and present
the methods we have employed. We review our implementation of the high-density
nuclear equation of state, our neutrino transport algorithm, and our hydrodynamical
scheme. In §4.4 we present results from a set of core-collapse supernova simula-
tions; we present a prototypical simulation of an 11 My progenitor from Woosley &
Weaver (1995) and we then compare the hydrodynamical structures and neutrino
spectra obtained with the 11 My progenitor to those for 15 Mg and 20 M progeni-
tors (§4.4.2). In §4.4.3 we recalculate our fiducial 11 My progenitor with changes to
the high-density nuclear equation of state and in §4.4.4 we vary the input physics to
show the importance of particular neutrino processes and corrections to the standard

neutrino opacities. In §4.4.5 and §4.4.6 we emphasize the role of nucleon-nucleon
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bremsstrahlung and inelastic neutrino-electron scattering, respectively, in shaping
the emergent neutrino spectra. Throughout, we focus particularly on the neutrino
breakout phenomenon and the early post-bounce epoch. As a final step, we convolve
our time-dependent spectra with terrestrial neutrino detectors in order to make pre-
dictions about the neutrino signature of breakout and the first 250 milliseconds of

post-bounce evolution from the next galactic supernova.

4.2 Ingredients

Ingredients in simulations of core-collapse supernovae include a thermodynamically
consistent high-density nuclear equation of state, a hydrodynamics solver coupled
to a radiation transport solver for all neutrino species, and all the relevant micro-
physics, which enters in the collision terms of the transport equation. We discuss our

implementation and the particulars of each below.

4.2.1 Equation of State

Essential in the modeling of core-collapse supernovae is a physically reasonable and
thermodynamically consistent equation of state. We employ the equation of state due
to Lattimer & Swesty (1991) (the LSEOS), based on the finite-temperature liquid drop
model of nuclei developed in Lattimer et al. (1985). It treats the matter in nuclear
statistical equilibrium (NSE) and is valid only for temperatures above 7' ~ 0.25
MeV and densities between 5 x 106 g cm™3 and 1 x 10'® g cm=3. In this EOS, NSE
is maintained between free neutrons, protons, alpha particles, and a representative
heavy nucleus specified by an atomic mass, A, and proton number, Z - both of which
may take non-integer values. Photons are also included, as are electrons and positrons
of arbitrary degeneracy and relativity.

We have designed an efficient three-dimensional tabular version of this EOS, tak-

ing the matter temperature (7'), mass density (p), and electron fraction (Y) as
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variables. The table consists of 180 equally spaced zones in log;[p (g cm™2)] with
6.4 < logp[p (g em™2)] < 15.1, 50 equally spaced zones in Y, with 0.05 < Y, <
0.51 and 180 equally spaced zones in log,,[7 (MeV)]. The table is not cubic. For
logolp (g cm™3)] = 6.4, —0.8 < log,,[T (MeV)] < 1. At logyy[p (g cm™®)] = 15.1,
0 <logy[T (MeV)] < 1.6. We find this range of temperatures and densities sufficient
for all calculations we perform. At each point in the table we save the specific internal
energy (F), the pressure (P), the entropy per baryon (s), the specific heat at constant
volume (Cy ), the neutron, proton, alpha particle, and heavy nucleus fractions (X,
Xp, Xo, X, respectively), A and Z/A for the heavy nucleus, the electron chemi-
cal potential (p), I's = 0ln P/0Inp|s, OP/OT|,, ft = pn — pp, and the derivatives
0f1/OT and 0f1/0Y,. In total, our tabular LSEOS takes up ~200 Megabytes of mem-
ory. Given T, p, and Y,, the EOS performs three six-point bivariant interpolations
(Abromowitz & Stegun 1972) in the T — p planes nearest to and bracketing the given
Y, point. A quadratic interpolation is then executed between Y, points to obtain the
desired thermodynamic quantity. This procedure is employed for all quantities in the
table except the mass fractions of neutrons, protons, alpha particles, and the heavy
nucleus. Two four-point bivariant interpolations in the 7'— p plane are combined with
a linear interpolation between Y, planes for these quantities. The table uses integer
arithmetic to find nearest neighbor points, thus alleviating the need for time-intensive
search algorithms. Because most hydrodynamics routines update specific internal en-
ergy, we include a Newton-Raphson/bisection scheme which iterates on temperature,
given a fixed internal energy, until the root is found to within a part in 108. Similar
iteration routines are employed if one wishes to iterate on entropy or pressure.

We have performed an extensive set of tests of our tabular implementation of the
LSEOS to ensure that thermodynamical consistency is maintained during dynamical
simulations. It is through these tests that we have determined the number of T, p,
and Y, points to employ. As a first test, we compressed a single fluid element (zero-

dimensional hydrodynamics) adiabatically over eight orders of magnitude in density
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using the first law of thermodynamics;
E,yn=E,—P (Vn+1 - Vn) ) (41)

where V! = p, n denotes the timestep number, and we tested P = P,, P = (P41 +
P,)/2, and P = P,,;. Given an initial p (~ 107 g cm3) and a variety of initial
temperatures and Y.s, we studied the degree to which adiabaticity was maintained
in increasing the density of the fluid element up to ~ 10 g cm™3. Since, ds = 0
in eq. (4.1), the total fractional change in entropy in compressing the fluid element
([sf(p = 101) =s;(p = 107)]/si(p = 107) = As/s;) is a measure of the thermodynamic
consistency of the EOS. For constant fractional changes in the density (or V') of 1%
at each step, our table gives As/s; ~ 0.5%. This is to be compared with the actual
analytic LSEOS, from which the table was composed, which yields As/s; ~ 0.25%.
The number of temperature and density points used in the table does effect As/s;.
For example, using just 100 7', 100 p, and 50 Y, points over the same ranges as the
larger table raises As/s; to about ~ 1.25%. In all our calculations we opted for
the larger table. However, it is important to mention that each of these results for
As/s; (for the large and small tables and the analytic LSEOS) are dependent on the
hydrodynamics scheme employed. In this case, a Crank-Nicholson pressure update
(P = (P41 + P,)/2) requiring iteration to get P,1; was used and found to give the
smallest As/s; for a given fractional density change per timestep. For comparison,
a fully explicit scheme using P = P, gave larger As/s; by a factor of 2 — 3 for an
otherwise identical compression calculation.

As a second set of tests, we coupled the LSEOS to several different one-dimensional
Lagrangian hydrodynamics schemes. Without heating and cooling due to neutrinos
and before any hydrodynamical shocks form, each mass zone should remain isentropic
during the collapse of a massive progenitor star. Using a variety of zoning schemes
with both artificial-viscosity and Riemann solvers for shock capturing and resolution,

we found that higher-order EOS interpolation schemes as described in Swesty (1996)
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are not needed to maintain adiabaticity to within 1% during collapse and bounce.
An important conclusion from these calculations is that in assessing the degree of
thermodynamic consistency of a given EOS by performing adiabatic compression and
collapse tests, one must pay particular attention both to the hydrodynamics algorithm
itself and to the coupling between hydrodynamics and EOS through the first law. In
this sense, a thermodynamically consistent EOS is only as good as the hydrodynamics
routine it is coupled to.

Figures (4.1-4.4) show several views of the tabular Lattimer-Swesty EOS we have
constructed. Figure (4.1) shows the atomic mass (A) of the representative heavy
nucleus as returned by the LSEOS in the plane of log,, 7" and log;, p, for Y. = 0.204.
Note the phase transition between heavy nuclei and free nucleons at high temperatures
and densities. Figure (4.2) shows the specific heat at constant volume (Cy) for
Y., = 0.31. Figure (4.3) shows I’y = dIn P/dInp|s for Y, = 0.50. The very steep
increase in 'y above p ~ 10'* g cm™2 reflects the stiffening of nuclear matter above
nuclear densities, which causes the shock that eventually becomes the supernova.
Also note that in the LSEOS T’ drops into an unphysical regime (I'; < 1) right at
the high-density phase transition. Although in a realistic core-collapse simulation the
matter which reaches such high densities does so at considerably lower Y,, we have
found it necessary to put a firm, physical, lower bound on I'y during our dynamical
calculations. A number of quantities saved in our LSEOS table are important only
for neutrino transport. One such quantity, shown in Fig. (4.4) for Y, = 0.35, is (=
Hn — 1), an important quantity in defining the equilibrium phase-space distribution
functions for v, and 7, neutrinos.

The LSEOS extends down to only ~ 5 x 10° g cm™ and its validity in this den-
sity regime is guaranteed only for fairly high temperatures - the assumption of NSE
being thereby satisfied. For calculations in which an explosion occurs, the shock
will quickly evolve down the progenitor density gradient to regions where the LSEOS
breaks down. For this reason we have coupled the Helmholtz EOS (Timmes & Arnett
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1999; Timmes & Swesty 2000), which contains electrons and positrons at arbitrary
degeneracy and relativity, photons, nuclei and nucleons as non-relativistic ideal gases,
and Coulomb corrections to our tabular version of the LSEOS. At p = 6x 107 g cm ™
we assume the LSEOS is valid. At p =4 x 10" g cm~2 we employ only the Helmholtz
EOS. For densities between the two, we quadratically interpolate all relevant ther-
modynamic quantities. Because the LSEOS assumes NSE and the Helmholtz EOS
takes non-NSE abundances, there is no thermodynamic consistency between the two
EOSs. Fortunately, in thermodynamical regimes relevant for core collapse at these
densities, the electron-positron/photon component of the matter dominates the pres-
sure. Therefore, one expects few hydrodynamical artifacts in piecing together these
two equations of state. In fact, given a realistic composition for the Helmholtz EOS,

at a density of p = 5 x 10" g cm™®

, pressure differences between the LSEOS and
Helmholtz EOS are ~ 1% in the stellar profiles we employ in this study. Differences

in entropy, however, are of order 5-10%.

4.2.2 Neutrino Transport

The mass densities, temperatures, and compositions that obtain during core-collapse
conspire to produce regions in the very core of a supernova where the mean-free-path
for neutrinos is just meters and the transport may be handled using simple diffusion
theory. The escape time from these regions can be many seconds for high-energy
neutrinos. Simultaneously, there are regions at larger radius where each neutrino
species decouples from the matter and free-streams to infinity. In between, at modest
optical depth, where the neutrino mean-free path may be a modest fraction of the size
of the object as a whole, the full transport problem must be solved in order to obtain
accurate values of the local neutrino flux and energy density - both being crucial to
the energy deposition profile and the subsequent evolution.

Our general Boltzmann transport solver is due primarily to Eastman & Pinto
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(1993), who developed an algorithm for solving the comoving Lagrangean transport
equation using the Feautrier variables, the tangent-ray method for spatial and angular
discretization, and Accelerated Lambda Iteration (ALI) to speed convergence (see
e.g., Mihalas & Mihalas 1984). The method, as applied to neutrino transport and
the supernova problem, is described in Burrows et al. (2000). For details on the
transport algorithm itself, see Eastman & Pinto (1993). Below we summarize the
basic equations and approximations employed.

From Mihalas & Mihalas (1984) and Mihalas (1980) the time-dependent, spher-
ically symmetric (one spatial dimension), comoving transport equation, correct to
order (v/c), can be written

Y (e T ca I

0 20 1+ 40
o [ |-t B8 ]+ e e S 4,

Os, cr cr c Or
= Xol, + :—W o(Q, Q) L(Q) dSY (4.2)
where
A, = % [zm —(1- NQ)% - ey(%} L, (4.3)

a is the matter acceleration, I, is the specific intensity, 4 = cos 8 is the cosine of the
zenith angle, r is the radial coordinate, ¢, is the neutrino energy, D/Dt = 0/0t+V -v
is the advective derivative, and 7, is the emissivity of the medium. ®(€2,€) is a
phase function for neutrino scattering into the beam. Although we include it here
for completeness, in practice we do not include the acceleration term A,. The total
extinction coefficient, y,, is the sum of the absorption and scattering terms: x, =

Kq + ks. Each is the sum of a number of individual processes;

ks = Z n; o; and K, = Z n; oy, (4.4)

2

where o; is the cross section for process 7 in cm® and n; is the number density of

absorbers or scatterers, respectively. Following Eastman & Pinto (1993) and Mihalas
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& Mihalas (1984), and dropping the acceleration term, we may rewrite eq. (4.2) as

1DI, 0, 1-— ;2 oI, B ) 0
P T G . (1—BQu)8u+ (1+Qu) (3 L,

r B Olne,,

=n,—x, 1, + :—5 / O(Q, Q) () dQY (4.5)
T

where () = Olnv/0lnr —1 and B, is the blackbody radiation distribution. Because the

specific intensity is related directly to the neutrino phase-space distribution function

(f,) by

I,,(,u, 51/) _ cg
g3 (2mhc)? fulmer) (4.6)

where ¢ = 1 for massless neutrinos, we may rewrite the transport equation as a
Boltzmann equation for the time and space evolution of f,. From egs. (4.2) and (4.6)

we have that

1Dfu 8f1/ 1_/1'2 8f1/ ﬂ afu
¢ Dt TH or + r (1= 5Qp) ol 7 (1 + QMZ) Olne,
- Ks ’ / ’
:nu—xl,f,/—i-E/(I)(Q,Q)f,,(ﬂ)dﬂ, (4.7)

where 7, = (2whic)®n,/e3c. Our transport algorithm assumes isotropic scattering.
The full anisotropic angular redistribution implied by the integral term in eqgs. (4.2),

(4.5), and (4.7) is approximated by assuming the form

for the scattering angular phase function. This is equivalent to a first-order Legendre
expansion in the scattering angle for elastic scattering. The sign of J; determines if
the process is peaked in the forward or backward direction. That is, if §; > 0 the
neutrino has a higher probability of scattering into the forward hemisphere. With
eq. (4.8), the differential cross section for a scattering process i is written in terms of

the total scattering cross section:

do? ol
T 47T( + dipt) (4.9)
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This implies that the angular redistribution term in egs. (4.2), (4.5), and (4.7) be-

comes
K KsOp
= ®(Q, Q) L(Q)dQY = Ky, "~ Q-F, 4.1
= [ o@0) 1,@)d =k, J, + L0 F, | (410
where
Z~ n; 0; 0;
op = =——— 4.11
T ZZ n; o; ) ( )
F, is the neutrino flux defined by
! F,=H, _1 /1 I, pnd (4.12)
dr 2 1 v R aR: '

H, is the first moment of the radiation field and .J, is the zeroth moment;

1 [t c
J, == I,dyu=—EFE,, 4.13
2/1 a dr ( )

where FE, is the neutrino energy density. In practice, we drop the term proportional
to - F, in eq. (4.10), but employ eq. (4.9) to derive the scattering opacity k.
Integrating eq. (4.5) and Q X eq. (4.5) over df2 yields the zeroth and first moment

equations, respectively:

1DJ, 10 BRQ
et g ) =SB =)
—|—é 3 - 0 (J, + QP,) =k,(B, — J,) (4.14)
r Olne, ) 7" v/ = RalBy = dy '
and
1DH, 0P, 3P,—J, pQ o]
¢ Dt + or + r _—(4N _QH)+?<3_81n6U> (H, +QN,)
1
=— (liz + ks — g/{séT) H,=—(k,+ k) H, , (4.15)

where P, and N, are the second, and third angular moments of the specific intensity,
given by

1 1
P, = 5/ I, 2 dp (4.16)
-1
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and

1 1
N, = 5/ L, i3 dp. (4.17)
-1

In egs. (4.14) and (4.15), &, is the absorptive opacity corrected for stimulated emission
(see §B.1). In eq. (4.15) Ky, is the total transport cross section, defined in terms of
the individual transport cross sections as ki = Y. n; o!". For a particular scattering

process 1,
do; 1
?" = —Z 1 _ Q = i ]_ — 04 . 41
ot = [ G- da=o(1- 35 (118

Integrating eq. (4.14) over neutrino energy we obtain the neutrino energy equa-

tion:

DE 190, , v v ©

2 2 ey Y p—1)QE+42(1 E=4 “(B,—J,)de, , (4.1
B ) = Sy = QE+42(1+ QE = dx [ Ki(B,~ 1) de, , (419

where F and F are the integrated neutrino energy density and flux, respectively. p is
the energy-integrated spectral Eddington factor (p, = P,/J,). This equation gives us
the energy update used in our solution to the first law of thermodynamics in coupling
to the equations of hydrodynamics. In addition, the integral over ¢, of eq. (4.15) for
all neutrino species gives the momentum deposition due to neutrinos and is included
as a force term in the hydrodynamical momentum equation. To complete the coupling
of the radiation field to matter, we must account for compositional changes due to
the charged-current neutrino interactions. This is accomplished by solving for AY,

at each timestep using the set of equations

DY, o de,
pN,—= = i47r/ ki(B, — J,,)j[i
0

a 4.20
Dt + @ ( )

v

where N4 is Avogadro’s number, and the + is for the 7, and v, equations, respectively.
The moment equations (eqs. 4.14 & 4.15) are solved simultaneously with the

transport equation, which is rewritten in terms of the Feautrier variables:

Uu(u)=%(fu(u)+lu(—u)) and  V,(u) = S(L(p) = L(-p).  (4.21)
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The equations for U, and V,, are then obtained from eq. (4.5) which, in the isotropic

scattering limit (07 = 0), are simply

1 DU, ov, 1—u? ov, B

I 9 2
- - Pls—-2 )
¢ Dt T or r e o + r (3 8lns) (14 @),
=1, — xoU, + ks, (4.22)
and
1DV, ou, 1-—pu? ov, § 0 v,
EDt+“&__7«ﬁ@%u+?6_5§)0+@”%__mw‘(“$

More details on the technique for solution and the implicit coupling to matter with
the Accelerated Lambda Operator can be found in Burrows et al. (2000).

Inelastic Neutrino Scattering: The scattering phase function, ®(£2,€’), in
egs. (4.2), (4.5), and (4.7) represents the probability that a neutrino described by
the angular coordinate €2 will scatter into €'. The source, in eq. (4.7), for a given
angle yu, is represented by a sum over contributions from all other angles. In that
sense, a neutrino with any £’ may contribute to the phase space occupation at €2
simply by scattering into the beam of 2. Analogously, one may also include inelastic
neutrino scattering. In this case we might specify a phase function that represents
the probability for scattering from ¢!, into the beam described by the neutrino energy
e,. In fact, one may conceive of a general phase function, I(¢,, ¢!, cosf), where cos
is the cosine of the scattering angle, which connects points in energy and momentum
space through a collision term on the right hand side of the Boltzmann equation. This

term, analogous to the case of pure elastic scattering, takes the form (e.g. Bruenn

1985)

d3pl ! i ' d3p' ! t '
=(1—-1f, — v, & 0)— f, [ —22 (1 — I (e, ¢ 0).
( f )/ C(27Th6)3fu (6 £,,COS ) f / 0(277'77,6)3( fy) (5 €,,CO0S )
(4.24)
The first term is the source. That is, the contribution to f, at y and ¢, depends on

the distribution f] at u' and €!,. Note that Pauli blocking in the final state is taken
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into account explicitly. The source term is comparable, then, to the integral term in
eq. (4.7). The second term, the sink, is equally transparent when compared with the
—Xvfy term in eq. (4.7). Taking I°%(e,,e!,, cos 0) x n;0;6(c, —€!)), ignoring neutrino
blocking, and integrating over d®p!, trivially, we arrive at —x, f,. (See Appendix B.3
for a detailed discussion of our numerical implementation of the inelastic scattering

source and sink terms.)

4.2.3 Hydrodynamics

The coupling of the neutrino radiation to matter is done implicitly in operator-split
fashion, using the Accelerated Lambda operator to obtain ‘0.J/0S’ after each hydro-
dynamic update (Burrows et al. 2000). A version of the hydro code of Fryxell et
al. 1989, itself a realization of the piecewise parabolic method (PPM) of Colella &
Woodward (1984), was originally used to handle the hydrodynamics. It is automati-
cally conservative, second-order accurate in space and time, and employs a Riemann
solver. Although this technique resolves shocks well, there is no natural way to in-
clude the radiation pressure term in the solution to the Riemann problem. During
most epochs in supernova evolution, this term is negligible. During breakout, how-
ever, when electron neutrino luminosities approach 103* erg s~ ! locally, this term can
be important and can even dominate the other purely hydrodynamical terms in the
Riemann problem. For this reason, we decided to couple our transport algorithm to
schemes that employ artificial viscosity for shock resolution.

For the results presented in this thesis, which focus on only the early phase of post-
bounce evolution, we employ an explicit Lagrangean hydrodynamics scheme devised
for this project by Adam Burrows. The drawback to explicit schemes is that they
are Courant-limited. In effect, the maximum timestep at each step must be less than
the minimum single-zone sound-crossing time on the computational grid. In the core

at bounce the zone size in our calculations is ~ 200 meters. The sound speed at
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nuclear densities approaches ~ ¢/3. Hence, our explicit timestep is ~ 107 seconds.
In order to adequately address the delayed mechanism of supernovae we must evolve
the calculation for ~ 1 second post-bounce. This would require ~ 10° timesteps. The
solution to the transport equation for all species is computationally expensive and
on current single processor machines 10® timesteps is prohibitively large. In order to
circumvent this problem we sub-cycle the hydrodynamics after shock breakout and
shock stall. After these most dynamical phases are over we take 2 — 4 hydro steps

per transport step, thus cutting the total computational load significantly.
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4.3 The Fiducial Model Configuration

We take as a reference model a 11 Mg progenitor from Woosley & Weaver (1995).
The model employs 300 mass zones out to M= 1.45Mg, where M is the interior
mass so that at » = 0, M=0 and in this progenitor at M= 1.45Mg, r ~ 2500 km.
For the models presented here, which focus on collapse and the early (~ 100 — 200
ms) evolution, we find this zoning sufficient. The angular zoning for the neutrino
radiation field is handled automatically by the tangent-ray algorithm. For a given
radial zoning, angular bins at each radius are constructed by casting tangent rays
onto the concentric circles of each interior radial zone. Therefore, at the nth zone
we have n — 1 angular bins so that throughout the regions important to transport
we maintain exquisite angular resolution, the outermost zone having 299 angles in
each quadrant of the unit circle. Because of our Lagrangean formulation, at every
timestep the grid changes in radius and the angular grouping changes accordingly. We
solve the transport equation for v, neutrinos, 7, neutrinos, and v, neutrinos, where
‘v, stands for v,, v,, v,;, and ;. Although in principle the neutrino microphysics
is different between v, ¥,, v,, and 7; we make the assumption standard in the field
that they can be treated identically. The energy grouping is different for each species.
For v, neutrinos, 1 < ¢, (MeV) < 320. For 7, neutrinos, 1 < ¢;, (MeV) < 100. Both
are grouped logarithmically. For v, neutrinos, 1 < ¢,, (MeV) < 100 with constant
grouping in energy. Our fiducial models employ 40 energy groups for each species. In
§4.4.1 compare our results with calculations employing just 10 and 20 energy groups.
Although in §4.4.3 we explore the effects of changes in the nuclear compressibility
modulus, our fiducial models use k = 220 MeV in the LSEOS. For all of the results
presented below, we employ the equation of state described in detail in §4.2.1.

Our standard set of microphysics includes all of the emission/absorption and
scattering processes described in Appendix B, including the inelastic treatment of

neutrino-electron scattering. However, in our fiducial models we do not include in-
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elastic neutrino-nucleon scattering, but include it only as a purely elastic scattering

opacity source.

4.4 Results

1. upper left panel), log;4[p] (in g cm™2, upper

Figure (4.5) shows velocity v (in cm s~
right panel), entropy s (in kg baryon—!, lower left panel), and temperature T (in
MeV, lower right panel), as a function of mass coordinate in My at five snapshots
in time in our 11 M fiducial model. Fig. (4.5) is to be compared with Fig. (4.6),
which shows the electron fraction (Y;) as a function of mass in the same model. The
thin solid line in Figs. (4.5) and (4.6) is the initial configuration. The thick solid line
is at hydrodynamical bounce (approximately 200 ms after we start the calculation).
Bounce coincides with the core density reaching ~ 2 x 10'* g cm=3, where the EOS
stiffens dramatically, as indicated by the large increase in 'y near nuclear densities
in Fig. (4.3). Note that Y, in the very core reaches its minimum value before bounce.
At core densities of ~ 2 x 10'2 g cm™ the electron-neutrino outward diffusion speed
becomes smaller than the the inward collapse speed and the neutrinos are effectively
trapped. Soon afterwards, the process primarily responsible for the preceding decrease
in Y,, e"p — nv,, is balanced by its inverse. This balance is called beta equilibrium.
Although we have included inelastic neutrino-electron scattering in our fiducial model,
the long dashed line in Fig. (4.6) shows the bounce Y, profile if one turns off this
equilibration process. Because small changes in the Y, profile at bounce can affect
the shock energetics significantly (Burrows & Lattimer 1983) and because inelastic
neutrino-electron scattering affects the approach to beta equilibrium by modifying
the neutrino phase space occupancy, inelastic neutrino-electron scattering should be
included in a full treatment (Bruenn 1985; Mezzacappa & Bruenn 1993abc). We
discuss this process and its effects more fully in §4.4.6.

At bounce, a strong sound wave is formed deep in the core, which propagates down
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the density gradient set up by the infalling outer stellar material. The sound wave
steepens into a shock near M~0.6My, just ~ 0.5 ms after bounce. The dotted line in
Fig. (4.5) shows the shock fully formed and at maximum positive velocity (1.9 x 10°
cm s71). Note the attending generation of entropy and increase in temperature. As
the shock moves outward in mass and radius it dissociates nuclei into free nucleons.
Although the matter is hot in this region, the electrons are still quite degenerate and
the process e”p — nu, builds a sea of electron neutrinos that are trapped and advected
with the matter. Figures (4.7) and (4.8) show the luminosity as a function of mass
for several post-bounce times. The former shows the whole evolution of L, (M, 1)
from bounce all the way through breakout. Although the shock does not form until
M=~0.6M, a phase-transition front moves with the wave generated at bounce. This
causes the initial luminosity peak seen in Fig. (4.7) at M~0.5Mg, or, in this model,
at a radius of just 11 km. The sudden drop in L, at M~ 0.6 — 0.7 Mg comes from a
sharp decrease in X),, coincidentally nearly simultaneous with shock formation. Just
as the shock is forming, but before the temperature rises dramatically as shown in
the lower right panel of Fig. 4.5 (dotted line), a region of heavy nuclei persists and
causes the decrease in L,, at M~ 0.6 — 0.7 M. Figure (4.8) shows specific snapshots
between the 1 ms (dotted) line and the 17ms (short dashed) line in Figs. (4.5) and
(4.6). At 2.4ms after bounce the spike reaches a local maximum at M~ 0.85Mg,
with L,, exceeding 1.4 x 10%* erg s~!. This spike roughly denotes the position of the
shock. It is at this moment that the shock crosses the v, neutrinosphere (R,,). The

neutrinosphere for any neutrino species (R,) is set by the following integral criterion:

T,(Ry,€,) = /00 Ky(ey,m)p(r)dr = = (4.25)

where £, is the total opacity. At just 3.2 ms after bounce, one can see clearly that the
breakout pulse of electron neutrinos is beginning to move ahead of the shock. Having
moved into a region where the optical depth is below ~ 2/3, the neutrinos begin to

free-stream. Both Figs. (4.7) and (4.8) show a marked decrease in the breakout v,
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luminosity pulse just as it begins to propagate ahead of the shock, between the lines
labeled ‘t=2.4ms’ and ‘t=4.7ms’ in Fig. (4.8). The local maximum of L, at 2.4ms
occurs at a radius of approximately 7peac ~ 41km. We expect the peak luminosity
(LK) to be attenuated by an amount ~ exp(—7,) in propagating to infinity (L3°),
where 7, is the total absorptive optical depth exterior to Tpeax. From the results
presented here, we find 7,(7peax) ~ 1.9 at ¢, ~ 12 MeV. This simple estimate shows
that we should expect LP®* to decay by ~ 85%. With LP®* ~ 1.45 x 10> erg s~ ! we
expect L ~ 0.22x10° erg s * and find from the simulation that L ~ 0.25x10°* erg
s ! in good agreement with our estimate. This asymptotic luminosity is shown clearly
as the bump in the last line in Fig. (4.8), labeled ‘Breakout Pulse’, which has moved
out to 1.35 M. Behind the pulse, at M~ 1.08 M, , is a sharper peak in the luminosity
that denotes the shock position. During this breakout phase of shock evolution, much
of the shock energy is sapped by the neutrino losses that attend electron capture
on free protons. This process also creates a characteristic deleptonization trough
manifest by the marked decrease in Y, in Fig. (4.6) near M~0.8 M. The shock
stalls quickly and in just a few milliseconds after bounce all velocities are < 0. Note
the negative entropy gradient between M~ 0.75 M, and M~ 0.95Mg. Depending
upon the compositional gradients in this region, in a multi-dimensional simulation
this region might be convectively unstable.

Although the shock continues to move outward in mass as matter flows through
it from the free-falling outer core, all matter velocities are <0 as the shock reaches at
r ~ 80—90km. The short dashed lines in Figs. (4.5) and (4.6) show the configuration
of the model 17ms after bounce and ~ 10 ms after the shock has stalled. The dot-
dashed line shows these basic hydrodynamical quantities 200 ms post-bounce. The
shock has consumed another 0.2 M, of infalling material and the entropy behind the
shock has increased dramatically. The temperature over the whole post-shock profile
has increased as a result of the compressional work done on these zones by the infalling

stellar material. In particular, at the peak in the temperature profile at M~0.7 M,
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T increased by ~4 MeV between t = 17ms and ¢ = 200ms. In these hundreds of
milliseconds after bounce, the shock moves outward in radius to ~ 175 km. Although
it is in this epoch that neutrino heating behind the shock is thought to revive it, no
explosion is seen in our simulations at this time. Figure (4.9) shows the evolution of
selected mass zones in our 11 My model as a function of time. Small oscillations are
visible just after bounce and the shock position is made clear by the change in the
infalling matter velocity between 100 km and 200 km during the 280 ms of evolution
shown here. Although the neutrino-driven mechanism is not the focus of this work,
from this figure and from many similar calculations we see no evidence of impending
explosion.

In Fig. (4.8) we showed L,, as a function of mass at various snapshots in time. The
last snapshot shows the v, breakout pulse at 1.35M and propagating at the speed of
light to the edge of the grid. Complementary to Fig. (4.8), the time evolution of L,,
at infinity is shown in Fig. (4.10) (thick solid line). The luminosity of anti-electron
neutrinos (L;,, thin solid line) and the combined luminosity of v,, v,, v, and v,
(collectively, L,,, dotted line) are also shown for the first 250 ms of evolution. Note
that just before the major breakout pulse of electron neutrinos, there is another small
peak that reaches ~ 0.72 x 10% erg s—!. This peak results from the deleptonization
of the core as the Y, drops in Fig. (4.6) from the initial model to Y, ~ 0.27. There
is a small dip in L, just after this initial rise. This dip in the asymptotic luminosity
signals the end of the infall/collapse phase of the supernova. After the initial increase
in L,, due to deleptonization, L, decreases because of the increased opacity in the
dense collapsing core. The high opacity decreases the local luminosity at small radii
and isolates a peak in luminosity at larger radii caused by deleptonization. If it
were not for shock formation, L, at infinity would continue to decline. The main
breakout pulse just after the small downturn in L, results from the dissociation of
nuclei and subsequent electron capture on free protons, as described above and shown

in Fig. (4.7).
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In Fig. (4.11) we show the corresponding average neutrino energy for each species
over the same time interval as Fig. (4.10). There are many ways one might present
the average neutrino energy. The literature does not consistently employ a unique
prescription and considerable confusion exists. The average energy we present in our
figures is the rms average energy, defined by:

[ de,e2d,(e0) 1/2
[ de,Ju () } '

We use this definition in order to make comparisons with other recent work (Liebenddrfer

€= | (4.26)

et al. 2001; Rampp et al. 2002). After approximately 50 ms, the average energies show
a nearly linear increase with time. Mezzacappa et al. (2001) and Liebendorfer et
al. (2001) find similar behavior. In addition, although we employ a different progeni-
tor, the values for the average neutrino energies they obtain compare well with those
presented in Fig. (4.11). For example, 250 ms after bounce in their 13 M, progenitor,
Mezzacappa et al. (2001) obtain (¢,,) ~ 21 MeV, (e5,) ~ 16 MeV, and (¢,,) ~ 14
MeV. We find that (g,,) ~ 20 MeV, (e5,) ~ 15.5 MeV, and (g,,) ~ 13 MeV.

Figure (4.12) shows the luminosity spectrum of electron neutrinos at infinity in
units of 10°2? erg s~! MeV 1. The thick solid line denotes the maximum peak breakout
pulse luminosity and corresponds to the 2.55 x 10°® erg s~! peak in L,, in Fig. (4.10).
The thin solid lines in this plot show the rise up to the peak and the simultaneous shift
in (¢,,) depicted in Fig. (4.11). The dashed lines show the evolution of the luminosity
spectrum after the breakout pulse. The pre-breakout lines show the spectrum at 11.6,
5.1, and 1.3ms before the peak in the breakout pulse. The dashed, post-breakout,
lines show the spectrum at 4.2, 9.6, and 40.5 ms after the v, breakout pulse. Although
the peak energy is dropping in this figure as the luminosity decays, the high energy
tail becomes broader and with our definition of the average energy (eq. 4.26) (g,,)
increases. Figure (4.13) shows the emergent spectrum much later (at 210 ms after
bounce) and for all three neutrino species. The thick solid line shows the v, spectrum,

the thin solid line shows the 7, spectrum, and the dotted line shows the combined v,
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spectrum. The post-bounce energy hierarchy one expects from simple considerations
of the opacity sources for the various species, (¢,,) < (€5.) < {(€,,), is evident in both
Figs. (4.11) and (4.13).

Although this exact progenitor model has not been used in any of the recent super-
nova modeling done by groups employing sophisticated neutrino transport (Rampp
2000; Rampp & Janka 2000, 2002; Liebendorfer et al. 2001; Liebendorfer, Mezza-
cappa, & Thielemann 2001; Mezzacappa et al. 2001), we find that the basic structures
and systematics are similar between groups. In particular, our core entropy (Score)
drops slightly at the beginning of the calculation and then climbs during bounce to
Score =~ 1.32 kg baryon~!. We observe similar behavior for our 15 M progenitor with
Score =~ 1.33 kg baryon~!. Without inelastic neutrino-electron scattering we obtain
Score =~ 1.16 kp baryon~!. The absolute magnitude of these results and the effect
of neutrino-electron scattering on scr. are duplicated in the work of Rampp (2000)
whose Figs. (5.3a) and (5.6b) shows that with and without neutrino-electron scatter-

! respectively.

ing in their 15 Mg model they obtain s¢o. ~ 1.3 and 1.14 kg baryon™
A recent collapse calculation by Liebendorfer et al. (2002b) of a 13 Mg progenitor also
shows Score ~ 1.3 kp baryon™!. Core Y, (Y ") in our 11 My model drops to 0.266
and 0.293 at bounce in our models with and without neutrino-electron scattering,
respectively. Both numbers from Rampp (2000) are slightly higher; his Fig. (5.3b)
gives the corresponding numbers as approximately 0.28 and 0.30 — 0.31, respectively.
Liebendorfer et al. (2002b) have Y™ ~ 0.30, including neutrino-electron scattering.
Peak positive velocities in all calculations reach ~ 2 x 10? cm s™' at M~ 0.7M - in
very good agreement with previous work. However, one important difference bears
mention. Our peak breakout electron-neutrino luminosity is slightly lower than that
obtained in other work. Both Liebendorfer et al. (2001) and Rampp & Janka (2000)
obtain LP%* of ~ 3.5x10% erg s~! with comparable progenitors. Indeed, Liebendérfer

et al. (2002a) present the breakout pulse for several different progenitors and finds

virtually identical LP®* for all models. We obtain LP®* ~ 2.55 x 10°® erg s™' in
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our 11Mg and virtually the same number with the 156Mg and 20M; models we
present in §4.4.2. Our results consistently give lower L,f’eeak by about 30%. Because
this luminosity pulse results from the most dynamical phase in supernova modeling,
it is important to note that no full supernova simulations have been constructed that
match our results in angular and spectral resolution. For comparison, the work of
Mezzacappa et al. (2001) and Liebendorfer et al. (2001), typically employ just eight
angular bins at each radial point and twelve energy groups. In particular, we sus-
pect that poorer angular resolution may change the formation and propagation of
the breakout pulse. The recent work of Liebendérfer et al. (2002b) has shown that
they experience significant numerical diffusion of their breakout pulse as it propaga-
toes from the point of decoupling to the edge of their computational grid. The peak
asymptotic luminosity they quote, L2 ~3.5x10% erg s, is sampled at 500 km in

their calculations. This peak drops to ~2.6x10% erg s=*

in propagating to ~2000 km
(see their Fig. 14 and Fig. 20). Our LF®* does not experience the same numerical
degradation. For example, we find that the electron-neutrino breakout pulse decreases
from ~2.7x10% erg s~! at 500km to approximately 2.55x10% erg s~ at 2500 km in
our fiducial 11 M model.

Two hundred milliseconds after bounce, the shock has moved out to about 200 km
in radius. A region of net heating called the gain region, has formed between the
gain radius Ry, ~100km (where heating balances cooling) and the shock. Between
the v, neutrinosphere (R, ~ 60km for ¢,, = 10.7 MeV) and R, is a region of
net cooling. Figure (4.14) shows the angular distribution of the radiation field (the
specific intensity, [,) in this epoch. The outer near-circle (thick solid line) in this
figure shows the normalized radiation field for ¢,, = 320 MeV. Because the neutrino
opacity is proportional to 2, the radiation field I, (6) is isotropic at this high energy
and the flux is virtually zero. Also shown is I,(f) for other neutrino energies down

to 1 MeV (also a thick solid line). Only every other neutrino energy calculated is

shown. Going from high to low energies, one sees that the radiation field becomes
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less isotropic, the lowest energies being the most forward-peaked. The ¢,, = 10.7 MeV
point is highlighted (middle thick solid line) to show the angular distribution of the
radiation field at the neutrinosphere for that energy. A glance at Fig. (4.14) shows how
forward-peaked the radiation field is at the point of decoupling (the neutrinosphere),
for a given energy (in this case, 10.7 MeV). Note that in this calculation, R, occurs
at our 270th radial zone, so that in each quadrant of the polar plot there are 269
angular bins.

Also of interest is the dependence of the angular distribution on radius for a given
energy. Figure (4.15) shows how I, (6,¢,, = 10.7 MeV) evolves from the neutri-
nosphere radius (~60km, outer thick solid line) to the shock radius (R, ~ 200 km,
inner thick solid line). Also shown is I, (f) at R,, where heating balances cooling,

and I, (0) at larger radii, where heating dominates.

4.4.1 Spectral Resolution

Our fiducial model employs 40 energy groups for each neutrino species, with the
actual grouping described in §4.3. In an effort to understand the effects of degrading
the spectral resolution, we have run the same 11Mg model, with the same spatial
zoning and the same physics as the fiducial model, but with 20 and 10 energy groups.
All three calculations were carried out to 250 milliseconds after bounce.

We observe only small quantitative differences and virtually no qualitative differ-
ences in the overall evolution of all quantities in comparing the run with 40 energy
groups to that with only 20. Over the whole post-bounce evolution, (g,,) is ~0.05
MeV higher in the 20-group calculation, a difference of just 0.5% at 250 ms. However,
L,, is higher by 2% in the model with just 20 energy groups. Differences in the average
energy and luminosity of 7, and v, neutrinos amount to less than ~ 1% overall, with
each of these quantites lower in the 20 group calculation than in the model run with

40 energy groups. The basic hydrodynamical quantities were similarly unaffected.
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The core entropy was reproduced in the the 20-group model to within 0.5%, with the
higher resolution model having slightly lower entropy. The core Y, at bounce was just
0.5% lower in the model with 20 groups. The only qualitative difference observed
between the two models was a slight oscillation in the velocity versus mass profile
inside 0.5Mgjust before bounce.

We find significant qualitative and quantitative differences between our 10-group
model and our models with higher spectral resolution. The small oscillations observed
in the matter velocity in the 20-group model are much more pronounced with just 10
groups on infall. There are similar and seemingly correlated oscillations in Y,. Oscil-
lations very similar to these have been observed in Rampp (2000) and Mezzacappa
& Bruenn (1993c). The oscillations result from insufficient spectral resolution of the
Fermi surface of electron neutrinos. In addition to the oscillations, many components
of the hydrodynamic and neutrino spectral evolution are affected by the use of only 10
energy groups in our calculation. At bounce, the core entropy, which had come within
5% of that obtained in the 20- and 40-group calculations (Score ~ 1.35 kg baryon™'),
dropped to 0.8 kg baryon—!. This, of course, also manifests itself in the temperature
profile. The core temperature after bounce reaches only 7.5 MeV, as compared with
the 11 MeV obtained in the calculations with 20 and 40 energy groups. Despite the
fact that the core Y, was slightly higher in the 10 group calculation, the peak positive
shock velocity just after bounce was 15% lower. The v, breakout pulse was 10% lower
in the 10-group model than in the 40- or 20-group models. L, was ~ 0.03 x 10
erg s—! higher in the low-resolution model throughout the post-bounce evolution, this
difference amounting to ~ 8% at 250 ms. In addition, we find that L, (t) is qualita-
tively different in the 10 group model. It peaks faster and higher than the 40-group
model, but drops off more quickly in time. Although L;, at 250 ms is just 9% lower
in the 10-group model than the 40-group model, the slope of the luminosity is steeper
and that difference will grow in time. The average energy for all species is higher in

the 10-group calculation than in the 40-group calculation, but not by more than a
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few percent over the whole post-bounce evolution.

In sum, we conclude that 10 neutrino energy groups are insufficient for resolving
the neutrino radiation field. We see the largest differences in the emergent spectrum
for the electron neutrinos. This is likely due to the fact that the €,, grouping must
extend to ~ 300 MeV in order to resolve the Fermi energy of the electron neutrinos
within the core. Because v, transport, through the charged-current interaction (see
§B.1.1), affects the dynamics so significantly, failure to resolve the v, radiation field
affects most observables. Our model employing 20 energy groups comes quite close
to reproducing our results with 40 energy groups. Differences are no larger than 2%
and, for most quantities, the fractional differences are closer to 0.5—1%. Considering
the large decrease in computation time (a factor of 2), 20 groups is probably sufficient
for all but the most detailed models. In comparison, with 21 energy groups Rampp
(2000) finds that the v, Fermi surface is under-resolved, as the large oscillations he sees
in the trapped lepton fraction demonstrate. Typical recent calculations by Rampp
& Janka (2002) employ 20 — 30 energy groups spaced geometrically. Mezzacappa et
al. (2001) and Liebendoérfer et al. (2001) employ 12 energy groups.

4.4.2 Other Progenitors: 15 M, and 20 M; Models

A complete theory of core-collapse supernovae must hope to understand the detailed
dynamics and neutrino signatures of all possible supernova progenitors. If successful
neutrino-driven supernova models were obtained, one might hope to find systematic
trends between, for example, the progenitor mass and the peak neutrino luminosity,
final supernova energy, or mass of the nascent protoneutron star. We begin such an
investigation by first considering the dynamics and emergent neutrino characteristics
of two more massive progenitors.

1

Figures (4.16) and (4.17) show the neutrino luminosity in erg s=' at the outer

edge of the grid, as a function of time for three different progenitor masses: 11 Mg
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(thick solid line), 15 Mg (thin solid line), and 20 Mg, (dotted line). Figure (4.16)
shows L,, and Fig. (4.17) shows both L and L,,. Note in Fig. (4.16) that the
breakout pulse is remarkably similar in magnitude and structure for each progenitor,
a result recently obtained in the work of Liebendorfer et al. (2002a). Interestingly,

1. whereas

as discussed in §4.4, our v, breakout pulse reaches ~ 2.55 x 10° erg s~
Liebendorfer et al. (2002a) obtain a characteristic peak L,, of ~ 3.5 x 10° erg s™.
Note that our 20M, model, which also employs 300 spatial zones, 40 neutrino energy
groups, and the tangent-ray algorithm for angular binning, reaches a somewhat lower
peak luminosity at ~ 2.225 x 10° erg s .

In Fig. (4.17) L, and L,, are virtually identical in both the 11Mgy and 15Mg
models over the first 100 ms of post-bounce evolution and only later develop small
differences. In marked contrast, the 20 M model exhibits higher neutrino luminosi-
ties for all species after electron-neutrino breakout. For L, and L, the difference
between the 11Mg model and the 20M; model is a factor of two at 200 milliseconds
after bounce. For L, , the difference is a factor of 1.5. In addition, L,, and L;, peak
approximately 100 ms later in the 20M model than in the 1My progenitor.

In Figs. (4.18) and (4.19) we show the evolution of the average neutrino energy
for each species (defined by eq. 4.26), and progenitor. One hundred milliseconds
after bounce the differences become significant. Not only are the spectra for the
20M model harder, but the average energies are increasing faster than those for the
11Mg and 15M models. Some of these systematics can be understood by inspecting
Fig. (4.20), which shows the mass flux (M) as a function of radius in units of Mg
s~! for the 11M, (thick solid line), 15Mg (thin solid line), and 20M, (dotted line)
models. Also shown are the positions of the neutrinosphere for the average emerging
neutrino energy. Open triangles correspond to R, , whereas filled squares and open
circles denote Ry, and R,,, respectively. In the steady-state, the total luminosity of

a given neutrino species should be given approximately by the accretion luminosity,

written in terms of M and R, L3¢~ GM,,M /R,, where M, is the mass enclosed by
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R,. This reflects the role of the neutrino luminosity in carrying away the energy of
infall. To zeroth order, the higher mass flux in the 20 M, model in Fig. (4.20) explains
the higher luminosity at that epoch in Figs. (4.16) and (4.17). This conclusion is
modified slightly by the actual radial positions of the various neutrinospheres for
each progenitor in this epoch and the mass enclosed within R,. Given the simple
expression for L2°°, the ratio of the total neutrino luminosity of the 20 M model to

that of the 11 M model should be approximately

L'2/0M@ B MV20M@ M20M@ RVllM@ 25
LMo — \ Vo M 1Mo R20Vo ~ 8.9,

We find that the actual ratio, as obtained by solving the full problem, is ~ 1.9.

Although we obtain higher average neutrino luminosities and energies for the
20 M progenitor, there is no sign of explosion or developing explosion in this model.
In fact, approximately 200 ms after bounce the shock in this progenitor has reached
r ~ 190km and begins to recede; at approximately 250 ms, it has dropped to r ~
150km. In contrast, both the 11 M and 15 Mg progenitors maintain shock radii
of 180-190 km throughout this epoch. Although none of these simulations yields an

explosion, the lower mass models seem more promising.

4.4.3 Changes in the Nuclear Equation of State

One might expect that large modifications to the nuclear equation of state could
have a significant impact on the collapse and bounce dynamics, as well as on the
emergent neutrino spectra. We have not yet studied nuclear equations of state based
on finite-temperature mean-field theory, nor have we incorporated with exotic particle
species and phase transitions. Such equations of state are of considerable interest,
but are not always easily incorporated into existing dynamical codes. In addition, the
neutrino microphysics would have to be made consistent with the presence of exotic

constituents (e.g., neutrino-meson and neutrino-quark interactions).
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Performing an albeit limited exploration of the parameter space available to high-
density equations of state, we have constructed three tabular versions of the LSEOS
(see §4.2.1) with different nuclear compressibilities: x = 180, 220, and 375 MeV.
For all of our fiducial models we have taken x = 220 MeV. In order to illustrate
the role of the nuclear compressibility, we have run collapse and bounce simulations
with all three ks, evolving each to 200ms after bounce. Figure (4.22) shows the
temperature profile in an 11Mg progenitor for calculations with k = 180 (dashed
lines) and xk = 375 (solid lines) ~2ms and ~100ms after bounce. The model with
k = 180 reaches a higher core temperature, but has a steeper negative temperature
gradient, reaching a minimum at M~ 0.4 M. The peak temperature at M~ 0.65 M
is also higher for the lower compressibility model. Overall, however, the two models

L at

are remarkably similar. Peak velocities in both calculations reach 2 x 10° cm s~
M~ 0.7 Mg. In addition, the entropy and Y, profiles are qualitatively identical for all
three ks. Although the v, breakout luminosity pulse for the model with x = 375 is
1ms delayed compared with the corresponding pulse for both x = 180 and xk = 220,
the shape and magnitude of the pulses are identical. The evolution of the luminosity
and average neutrino energy for all neutrino species (apart from the 1 ms offset for
k = 375) is similarly identical for the first ~ 30 ms after bounce (see Fig. 4.23).
After 50 ms, the differences between the models with x = 180 and x = 375 in
the neutrino luminosities and spectra become discernible. Figure (4.23) shows the
luminosity of each species at the edge of the grid as a function of time for both
models. The post-bounce neutrino luminosity for all species is lower in the k = 375
model. At 200ms after bounce the fractional difference is approximately 4%, 5%,
and 9% for L,,, L;,, and L,,, respectively. The model with x = 375 also produces
characteristically softer spectra with the average energy for each species being ~3%
lower. Although (g,.) and (g;,) are lower by a few percent in the model with x = 375,
(€,,) is not evolving to higher energies as quickly as in the model with x = 180. For

all models, (g,, evolves linearly in time, but the model with the softer EOS evolves
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with a larger slope than the model with xk = 375.

These differences in spectra and some of the basic hydrodynamical quantities
are not large enough to affect the post-bounce dynamics significantly on 100 ms
timescales. In fact, 200 ms after bounce, there is very little difference between the
shock position, gain radius, or neutrinosphere positions in these two models. Perhaps
larger differences between models with different compressibilities develop on one- and
ten-second timescales in the post-explosion protoneutron star cooling epoch. This
might be important both for detectability of the neutrino signature at late times and
the evolution of the neutrino-driven protoneutron star wind, as detailed in Chapter

3.

4.4.4 Modifications to the Standard Cross Sections

The work of Burrows & Sawyer (1998,1999), Raffelt & Seckel (1998), Janka et al. (1996),
and Reddy, Prakash, & Lattimer (1998) all point to a reduction of the dominant
neutral- and charged-current opacity sources for neutrinos at high density due to
nucleon-nucleon correlations caused by the strong interaction and Fermi statistics.
Such modifications to the standard neutrino opacities are discussed in Appendix B
depend on the model for strong interactions employed. Ideally, they should be in-
cluded consistently in constructing the nuclear equation of state (Reddy, Prakash, &
Lattimer 1998). Although they did not take into account these changes to the nuclear
EOS, Rampp et al. (2002) have recently investigated the role of nuclear correlations
in their dynamical models. They found modest enhancements in L,, and L,, and
considerable enhancements in L;, (~ 20%). Although inclusion of these processes
did not lead to explosions, they did affect the dynamics and it seems they should not
be absent from a full treatment of the problem.

In a future work we will incorporate the dynamical structure function formalism

of Burrows & Sawyer (1998,1999) and Reddy, Prakash, & Lattimer (1998). For now,
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we provide a set of simple tests, varying some of our cross sections and reaction rates
in order to test the sensitivity of the observables and the dynamics.

Artificial Opacity Reduction: In Liebendérfer (2000), erroneous explosions
were obtained in one-dimensional models of supernovae because of an artificially de-
creased neutral-current neutrino-nucleon opacity. As a simple test, we have decreased
the neutrino-neutron (o,) and neutrino-proton (o,) cross section (see §B.2.1) by a
factor of 10 everywhere, for all neutrino energies. Despite the violence done to our
cross sections, because the dynamics during collapse and bounce are dominated by
neutral-current scattering on nuclei and the charged-current process v.n <> e p, the
breakout phenomenon is only modestly affected; the peak v, breakout pulse is just

10% higher than in our fiducial model and reaches 2.85 x 10° erg s—!.

Two hun-
dred and fifty milliseconds after breakout, L,, ~ 0.25 x 10° erg s~! in our fiducial
model. In our model with o,,,/10, we obtain L, =~ 0.35 x 10°® erg s~!. Figure (4.21)
shows L,, and Lj at infinity as a function of time for the fiducial model and the
model presented here. Both L, and L, are increased by ~40—50% in the calcula-
tion with lower opacity. These changes, however, are modest compared with those
for L,, and (g,,). Two hundred and fifty milliseconds after bounce, L,, ~ 2.4 x 10%
erg s™', a factor of four larger than in the fiducial model. For v, neutrinos, there
is no charged-current absorption process on free nucleons to contribute to the total
opacity, as there is for the v, and 7, neutrinos. For the v,s, the neutral-current scat-
tering dominates the opacity and so changing that opacity source so dramatically has
significant consequences for L,, and (g,,)-

Importantly, because of the increase in the L, and L; we obtain a larger gain
region in this calculation, higher entropy behind the shock, and a larger shock radius
250 ms after bounce. In the fiducial model, at 250 ms post-bounce the shock is sitting
at 180 km, whereas in the model with reduced opacities, R; ~ 210 km. Still, although

the dynamics are affected by this drastic decrease in neutrino opacity, we do not

obtain an explosion in this first 250 ms of post-bounce evolution.
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The Weak Magnetism/Recoil Correction: Our fiducial 11 Mg model in-
cludes the weak magnetism /recoil correction (see §B.1.1, §B.1.2, and §B.2.1) to the
charged-current opacities for v, and 7, and to the neutral-current scattering opaci-
ties off of nucleons for all neutrino species (Vogel 1984; Horowitz 2002). The weak
magnetism /recoil correction lowers the cross section for all processes; the terms are
largest for anti-neutrinos (7, and 7,). We ran our fiducial model (see §4.4) without
these corrections and found only small differences in the first 250 milliseconds of post-
bounce evolution. L,,, L,,, (€,.),and (g,,) are all lower at the 0.5% level without
the weak-magnetism correction. (g, ) and L; are less by 4% in this representative
11Mg calculation. This slight softening and dimming of the emergent spectra can
be understood simply as the result of increasing the total opacity for all species by

removing the small weak magnetism correction.

4.4.5 The Role of Nucleon-Nucleon Bremsstrahlung

The effects of bremsstrahlung on the v, and 7, spectra are negligible at virtually all
times because for them the charged-current processes v,n <+ pe and 7,p <> net
dominate. In Chapter 2, we showed that nucleon-nucleon bremsstrahlung might have
important consequences for the emergent v, spectra and that it dominates ete™ —
v,7, as a production process. Figure (4.24) shows the effect of bremsstrahlung on
the average energy of v,s. The plot itself shows the average energy (in MeV) as a
function of radius approximately 230 ms after bounce. The inset shows R, (¢,,), the
neutrinosphere radius defined by eq. (4.25) as a function of energy. The solid line
is the fiducial model, with neutrino-electron scattering redistribution and nucleon-
nucleon bremsstrahlung. The short dashed line is the same model run through the
full evolution, but without nucleon-nucleon bremsstrahlung. The long dashed line
shows the same model without neutrino-electron scattering energy redistribution, but

with nucleon-nucleon bremsstrahlung. One can see immediately from the inset that
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at low energies, bremsstrahlung increases the opacity significantly. It is also clear
from the main figure that inelastic neutrino-electron scattering profoundly effects the
emergent v, spectrum.

Figure (4.25) shows L,, and (e,,) at infinity as a function of time for the fiducial
model (thick solid line), which includes nucleon-nucleon bremsstrahlung, and the same
model computed without bremsstrahlung (thin solid line). With bremsstrahlung, the
average energies of the mu neutrinos are lower and the luminosity is significantly
higher. Chapter 2 showed that we could expect these results based on comparisons
between the bremsstrahlung and ete -annihilation neutrino production rates. Near
the v, neutrinosphere, the bremsstrahlung emission spectrum is peaked at low neu-
trino energies (< 10MeV) compared with eTe™ annihilation. For this reason, we
concluded in Chapter 2 that the emergent v, spectra have both higher luminosity
and lower average energy. As evidenced by Fig. (4.25), this prediction is borne out

in our dynamical models.

4.4.6 The Effects of Inelastic Neutrino-Electron Scattering

Figure (4.26) shows the luminosity at infinity as a function of time for all species
in the 11 My models with (thin solid line) and without (thick solid line) inelastic
neutrino-electron scattering, using the prescription described in detail in Appendix
B.3.1. Figure (4.27) shows the rms neutrino energy for each species for the model
without inelastic e~ scattering and should be compared with Fig. (4.11). The main

v, breakout pulse is enhanced slightly and reaches 2.73 x 10° erg s=*

, compared with
2.55 x 10% erg s™! in the fiducial model. Also noticeable in L, is the decrease in
the pre-breakout pulse associated with the deleptonization of the core on infall as
described in §4.4. Shown here at ¢ ~ 0.007s, the pre-breakout peak reaches 0.75 x

1

105 erg s~! with neutrino-electron scattering and only 0.52 x 103 erg s—! without.

By down-scattering neutrinos during collapse and bounce via ve.e~ scattering, more
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neutrinos are able to escape before the core becomes opaque. Thus, there is a tradeoff.
Including inelastic scattering off electrons makes the collapse luminosity peak larger,
but the main breakout luminosity peak smaller. Although the breakout phenomenon
is slightly affected, the spectra of v, and v, neutrinos at 200 ms is dominated by the
charged-current interactions and so the effects of ve™ scattering on L, , L;,, {€.,.),
and (e5,) are modest. v, neutrinos are more significantly affected. Throughout the
evolution, L,, is decreased by ~30% by including v,e™ redistribution. (e,,) is also
profoundly altered. Comparing Fig. (4.27) with Fig. (4.11), we see that (,,) is ~ 6
MeV higher without v,e™ redistribution.

Figure (4.6) shows that there is significantly more deleptonization of the core at
bounce with inelastic neutrino-electron scattering (thick solid line) than there is with-
out it (long dashed line). The magnitude of the difference in core Y, at bounce is in
keeping with other recent models (e.g., Rampp 2000; see §4.4). The fact that Y™ is
higher at bounce in the latter case has important consequences for the shock energy
and the early post-bounce neutrino characteristics. In the model without neutrino-
electron scattering, the peak positive velocity after bounce is higher (~2.5x10° cm
s~!, compared with ~2.0x10° cm s™!) and peaks at larger mass (0.85 M, compared
with 0.7Mg). In both models, as the shock stalls and the briefly positive velocities
achieved become negative, the matter behind the shock, the protoneutron star, oscil-
lates in radius on 5 — 10 millisecond timescales. As the protoneutron star pulsates,
pressure waves move through the neutrinosphere of each species. These waves act
to modulate the luminosity and average neutrino energy. The amplitude of these
near-periodic variations in neutrino luminosity and energy are damped on ~10ms
timescales. They are smaller for the model with neutrino-electron scattering because
the shock in this model has less energy and the corresponding post-bounce oscillatory
mass motions (‘ringing’) are thereby smaller at the neutrinosphere for each species.
The smaller the local changes in temperature and density near the neutrinosphere,

the smaller the changes in the local emission and absorption. Hence, we should
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expect smaller amplitude temporal modulations in the emergent neutrino spectral
characteristics.

Also potentially important is the fact that L, rises later in the model with
neutrino-electron energy redistribution than in the model without such redistribution.
Twenty milliseconds after bounce, Fig. (4.26) shows that L; with v;e” scattering is
approximately half that for the model without this thermalization process. This has
important implications for the detection of the v, breakout pulse in terrestrial light-
water Cerenkov neutrino detectors like SuperKamiokande. In §4.5.1, we show that in
such detectors, if one is to identify the v, breakout signature uniquely, one must do
so within 5 — 20 milliseconds of bounce, but before the 7, signal becomes apprecia-
ble. Hence, because neutrino-electron scattering suppresses the 7, signal during this

epoch, it has consequences for the observation of the next galactic supernova.

4.5 Neutrino Detector Signatures

In the winter of 1987, a blue supergiant in the Large Magellanic Cloud, a satellite
galaxy to the Milky Way approximately 50 kpc (1 kpe~~ 3.1 x 10?*cm) away, exploded
as a supernova. It became known as SN1987A and is famous both as the most
studied supernova and as the first (and only) supernova whose neutrino signature has
been observed. A total of just 19 neutrino events were observed in the IMB (Irvine-
Michigan-Brookhaven) and Kamioka IT detectors. The signal lasted ~10 seconds and
confirmed the basics of our theoretical understanding of core collapse; the amount of
energy radiated in neutrinos was comparable to that expected in protoneutron star
cooling models at the time (Burrows & Lattimer 1986) and the inferred 7, neutrino
spectra had average energies of ~10—15MeV (Fig. 4.11).

However, the current generation of neutrino detectors might collectively see thou-
sands of neutrino events from the next galactic supernova (Burrows, Klein, & Gandhi

1992). Such a supernova would provide exquisite neutrino luminosity and spectral
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information that would put severe constraints on the physics of the core during col-
lapse and explosion. Besides elucidating supernova physics, much information on the
mass hierarchy of neutrinos and the high-density nuclear equation of state would be
collected. Indeed, the neutrino signature might clearly reveal whether a black hole
or a neutron star had been created (Burrows 1988). If the former is born, direct
eV-scale measurements of mu- and tau-neutrino masses could be made by the current
generation of detectors (Beacom, Boyd, & Vogel 2000).

Using the models presented in the preceding sections, we have made predictions
about the dynamics and neutrino signals expected from a class of supernova progen-
itors, with reasonable variations in microphysics and the details of the models. In
this section, we go a step further and fold our emergent neutrino spectra with the
thresholds and sensitivities of a subset of modern neutrino detectors.

In underground light-water detectors such as a fully-repaired Super Kamiokande
(SK), we can expect ~5000 neutrino events from the next galactic supernova at a
distance of 10kpc. In such detectors the primary mechanism for neutrino detection
is the 7,p — ne’ process. The positron secondary emits Cerenkov radiation. For
an electron or positron secondary, the differential number detected can be written
(Burrows, Klein, & Gandhi 1992)

do(e,,€e)

Nr
dN —Lnum tl y
v ( ) € ) dse

. _H !
= 1D’ E(e.)d(t — t' — At) dt' de. de,, dt, (4.27)

where ¢, is the electron or positron energy, E(e.) is the detection efficiency, Ny is
the number of targets, L™ is the number luminosity of neutrinos, t' is the source
time, ¢ is the detector time with D/c subtracted, At(~ D/2c(m,c?/¢,)?) is the time
delay of a neutrino with mass m,, and do/de, is the differential cross section for
neutrino capture and electron or positron production. For most purposes do/de, ~
o(e,)0(e, —€e — A), where A is the reaction threshold (in the case of the reaction

Uep — net, A = m, —m,+m, ~ 1.804 MeV). Taking this approximation for do /de.,
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E(e.) =1, and m, = 0, we obtain

dN Nr
= L™ (t,e,)o(ey)- 4.28
dt dgy 47TD2 v ( ’8 )0-(8 ) ( )

Using eqs. (4.27) and (4.28), it is a relatively simple matter to fold our time-dependent
spectra with terrestrial detectors, including efficiency and threshold corrections, in
order to obtain the observed neutrino signal. We consider three different detectors
and the early neutrino signal that could be observed from the next galactic supernova.
Although eq. (4.27) includes the effects of time-delay due to a finite neutrino mass,

in what follows we assume massless neutrinos and employ eq. (4.28).

4.5.1 SuperKamiokande

The SuperKamiokande (SK) neutrino observatory in a light-water Cerenkov detector
whose fiducial volume for supernova neutrino detection is ~32 ktonne (Totani et
al. 1998). We take as a threshold ~5 MeV (Beacom & Vogel 1998). The background
is typically of order several x0.1 s™! if the full detector volume is considered (Beacom
& Vogel 1998) and will not figure into our discussion here.

Light-water Cerenkov detectors offer several different channels for detection of
the various neutrino species. The dominant reaction is charged-current absorption of
U, neutrinos on free protons (7,p — net). The positron secondary emits Cerenkov
radiation, which is detected directly. Neutrino scattering on electrons, v;e” — v;e~
also contributes for all neutrino species. For this process, we use the neutrino-electron

scattering cross section (Sehgal 1974):
o\ 2

A; + (1 - —e> B;
Ev

1 1
Ai=7 (Ai + §Bi> , Ai=(Cyv+Ca)®, Bi=(Cv—Ca),

and Oy = £1/2 + 2sin? Oy for electron types and muon types, respectively. Cy4 =

1 € 1
- i — = oAi — P 429
7i=35° (mec2 * 2) (429)

do; 1 o,
2

de,  2mec

where

+1/2 for v, and 7,, and C4 = —1/2 for 7, and v,. Note that the neutrino-electron
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scattering cross section is 6 — 7 times less for the mu- and tau-type neutrinos, owing
to the fact that for them the reaction can proceed via only the neutral current. Other

important reactions include

Ve +190 =1 F 4 e (e = 15.4MeV), (4.30)
Ve +8 0 =B F4 e (e = 1.66 MeV), (4.31)
7. +°0 = N+et (e =11.4MeV), (4.32)
and
vi+1%0 = 1 +1°0* - v + v+ X, (4.33)

where ¢, is the energy threshold for the reaction. For the neutral-current excitation
of %0 (reaction 4.33), the  secondary has an energy in the range 5 — 10 MeV and,
hence, is visible by SK. Note that energy resolution for the secondary electron or
positron in reactions (4.30), (4.31), and (4.32) is good to no better than ~10—20%
(Burrows, Klein, & Gandhi 1992; Totani et al. 1998). For the study carried out here,
we calculate event rates in SK due to only v,p — ne™ and neutrino-electron scattering
for all neutrino species. In the results presented here we assume 100% efficiency above
the detector threshold.

Figure (4.28) shows the event rate (dN/dt in Hz, thin solid line) via charged-
current absorption on free protons and the total integrated number of 7, events in
SK for an 11 My progenitor supernova at a distance of 10kpc. Also included for
comparison is the computed 7, luminosity (dotted line). The figure shows the first
900 ms after bounce. In order to evolve to such late times, we modified our fiducial
11 Mg model to include only v, and 7, and just 20 energies per species. Nearly 550
events accumulate in the first second after collapse. Because 7,p — ne®™ dominates
the signal so completely, we neglect v°0 —!¢ Ne* in this figure.

Figure (4.29) shows the integrated number of v, and 7, neutrino events detected

in SK, but using our fiducial 11 My progenitor and only over the first ~ 250 ms
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after bounce. The inset shows the first 80 ms of the signal. One can distinguish
clearly the v, signal due to the scattering process vee~ — e~ (thin solid line).
For comparison, we include the 7,p — net number count (thick solid line) , which
eventually overwhelms the signal due to v.e™ — v.e~. The combined neutral-current
v, and 7, . signal due to scattering off of electrons is smaller than that due to the
process v.e~ — ve.e~, and does not contribute significantly until after ~ 30 ms after
bounce. Figure (4.29) implies that the v, breakout signal itself may be observable in

SK for a supernova at 10 kpc.

4.5.2 Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory (SNO) in Sudbury, Ontario, is a light- and heavy-
water neutrino detector. It is a spherical acrylic vessel 12 meters in diameter, con-
taining 1 ktonne of D50, that is surrounded by a cavity filled with light water. The
fiducial light-water mass is approximately 1.6 ktonne. SNO is most sensitive to v,

and 7, neutrinos via breakup reactions on deuterons:
vi+d—=n+p+v (en =2.22MeV) (4.34)
v; + d—n+ p+ U (Gth =222 MGV) (435)

The liberated neutron secondary is thermalized in the heavy water and is then de-
tected via capture on other nuclei within the detector volume. Currently, the neutrons
from neutral-current events are detected via deuteron capture with an efficiency of
~30% (SNO Collaboration 2002). Several schemes are currently proposed and in de-
velopment for improved neutron-capture efficiency. The first is to lace the DO with
two tonnes of NaCl. The thermal neutron absorption cross section on *3Cl is large
(~83% efficiency) and would result in a 7 cascade peaked at 8 MeV. The 7s would
be detected by the ~9600 inward-looking photomultiplier tubes outside of the acrylic
vessel. The second proposed neutron detection method involves hanging *He propor-

tional counters in the acrylic vessel, which would detect the neutrons directly (SNO
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collaboration webpage'). Because the neutrons would have a ~5ms mean capture
time if the **Cl capture mechanism is employed (which would spread the v, turn-on),
the neutral-current signal might be partially compromised with the 3°Cl approach.
The neutral-current deuteron breakup reactions (reactions 4.34 and 4.35) also con-
tribute to the v, and 7, signal in SNO, but for them the charged-current deuteron
capture processes,

Ve+d—p+p+e (egn=144MeV) (4.36)
Vet+d—n+n+et (en =4.03MeV), (4.37)

are more important above g, ~ 10 MeV (Burrows, Klein, & Gandhi 1992). Process
(4.37) can be used to observe 7, neutrinos uniquely via the simultaneous detection
of the secondary neutron and the Cerenkov emission from the final-state positron.
Although we include the threshold energy in our calculations of the total signal, as
with SK we assume a 100% efficiency for SNO above the detector theshold.

In Fig. (4.30) we show the integrated number of v, neutrinos detected in SNO via
the processes v.d — ppe~ (dotted line), v.d — npr, (solid line), and vee~ — vee~
(dashed line) in the first 250 ms after bounce. The total v, signal is the thick solid
line. For comparison, we provide the contribution to the total number of detected
events from all other neutrino species (long dashed line). This signal includes the
Ved — npv,, Ved — nnet, and v.p — ne’ processes in the light-water portion of
the detector, as well as the processes v, ,d — npv, ,, v,,d — npy, ,, and neutrino-
electron scattering throughout the entire detector volume. Note that it might be
possible to exclude the charged-current absorption process v,d — nnet by cutting
events that have simultaneous neutron and positron detection. This would lower
somewhat the line labeled Total(other) and make the early v, breakout signal easier
to see. However, such a procedure requires accurate signal timing, which would be

mitigated by employing the 3°Cl neutron capture mechanism mentioned in §4.5.2. As

Thttp:/ /www.sno.phy.queensu.ca/sno/sno2.html#nc



178

it stands, one might expect to get ~5 events in SNO from the v, breakout burst in

the first ~10ms after bounce.

4.5.3 ICARUS

Although it has not yet reached its goal mass, [CARUS is designed to be a 3.6-ktonne
drift chamber of pure liquid “°Ar that will be sensitive primarily to electron neutrinos

through electron-neutrino capture on Ar:
ve +0 Ar 50 K* + €.

Recent shell-model calculations have shown that this process can proceed through
super-allowed Fermi transitions to the 4.38 MeV excited isobaric analog state, as
well as through several Gamow-Teller (GT) transitions to other lower-lying states
in K (Ormand et al. 1995). This has recently been investigated experimentally
by studying the BT —decay from “°Ti (Bhattacharya et al. 1998). Employing isospin
symmetry, Bhattacharya et al. (1998) inferred the transition strengths of 9Ar —40 K
from “°Ti —%0 Sc. These theoretical and experimental results indicate that the GT
transitions enhance the total v, capture cross section by a factor of three over the
pure Fermi transition cross section. We take the super-allowed Fermi transition cross

section from Raghavan (1986);

or ~ 1.02 x 107%(¢,, — 5.365)? cm? (e = 5.885 MeV) (4.38)

and we assume that the total v, absorption cross section is given by o}%} . = 30p.

The ICARUS detector is currently at 600 tonnes and has recently been approved
to expand to 3 ktonnes (ICARUS ETH/CERN webpage?). Because of its sensitivity
to v, neutrinos, ICARUS is of particular importance in detecting the early breakout
pulse so prominent in Fig. (4.10). In the results presented below, we assume that the

detector efficiency is 100% above threshold and that the detector mass is 3 ktonnes.

Zsee http://www.aquila.infn.it /icarus/



179

The v, breakout signal in ICARUS is very likely detectable. Figure (4.31) shows
N(< t) for the ICARUS detector (with 3 ktonnes of Ar). We plot the two dominant
detection channels for v, neutrinos: v,Ar absorption (thick solid line) and v;e~ — v;e~
(thin solid line). We also include the event rate, dN/dt (in units of 50s7!), so that
the width of the v, breakout spike can be compared with the detector signal in the
very early phase. Note that the other neutrino species will contribute to the total
signal through only the v;e” — ;e process and that the combined signal amounts
to only two events in the first 250 ms shown in Fig. (4.31). Combining the ve-electron
scattering and v,-Ar absorption rates, ICARUS should expect to detect approximately

10 v, events from the breakout pulse alone.

4.6 Summary and Discussion

We have constructed fully dynamical models of supernovae in one spatial dimension.
We employ a newly developed algorithm for radiation-hydrodynamics, which gives
a full solution to the neutrino transport problem using the Feautrier technique, the
tangent-ray method, and Accelerated Lambda Iteration. The code very good angular
and spectral resolution of the radiation field. In addition, we have incorporated realis-
tic neutrino microphysics and explored the effects of nucleon-nucleon bremsstrahlung
and inelastic neutrino-electron scattering. Our algorithm for incorporating the latter
explicitly as a source and a sink in the collision term of the Boltzmann equation is
both efficient and robust (see §4.4 & §B.3.1). We have coupled this scheme for radi-
ation transport to an explicit Lagrangean algorithm for Newtonian hydrodynamics,
which uses artificial viscosity for shock resolution. Finally, we have constructed and
tested an efficient tabular version of the Lattimer-Swesty high-density nuclear equa-
tion of state. We have verified the thermodynamic consistency of our implementation
and have explored the effects of modifications to this EOS on the emergent neutrino

signature and collapse dynamics.
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With this tool we have computed the collapse, bounce, and post-bounce evolution
of a variety of progenitors. We have varied the microphysics employed and conducted
a series of resolution studies for code verification. Also, we have compared key quan-
tities such as core entropy and electron fraction at bounce, peak neutrino breakout
luminosity, and the evolution of the neutrino spectra over hundreds of milliseconds
with other recent supernova simulations that employ comparably sophisticated al-
gorithms. We evolve most models to several hundred milliseconds after bounce and
although all of our models form regions of net neutrino heating behind the shock,
none yield explosions in the first 250 milliseconds.

Finally, we have folded our neutrino spectra with the sensitivities and thresholds
of several terrestrial underground neutrino detectors. We have focused on those de-
tectors most likely to observe and uniquely identify the electron-neutrino breakout
burst. We find that SuperKamiokande, the Sudbury Neutrino Observatory, and the
ICARUS detector might all see this signature of core collapse.
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FIGURE 4.1. The atomic mass (A) of the representative heavy nucleus as a function
of log,, p and log,, T" in our tabular version of the Lattimer-Swesty nuclear equation of
state for Y, = 0.49. Note the phase transition between heavy nuclei and free nucleons.
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FIGURE 4.2. The specific heat (Cy) as a function of log;, p and log;, T in our tabular
version of the Lattimer-Swesty nuclear equation of state for Y, = 0.10. Note the phase
transition between heavy nuclei and free nucleons. Also note the critical point at high

temperatures and densities at the point of inflection in the ridge of Cy along the phase
transition.

182



183

Ye =050 ——

|

|

J

Ul

Ww‘

g
,,I,,,,I
;w;'/ il
""ul’,l,,

/’:,':’: o

%
i

FIGURE 4.3. Gamma (I'; = dIn P/dInpl,) as a function of log;, p and log,, 7" in
our tabular version of the Lattimer-Swesty nuclear equation of state for Y, = 0.50.
Note that 'y as returned by the Lattimer-Swesty EOS drops below 1, an unphysical
value, at several points along the phase transition, particularly at high densities, right
before the EOS stiffens significantly.
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FIGURE 4.4. Muhat (4 = p, — pp) as a function of log;, p and log,, 7" in our tabular
version of the Lattimer-Swesty nuclear equation of state for Y, = 0.42.
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5. Velocity v (in cm s™!, upper left panel), log;o[p] (in g cm™2, upper right
panel), entropy s (in kg baryon~!, lower left panel), and temperature 7' (in MeV,
lower right panel) in the 11M progenitor, as a function of mass coordinate in Mg
for five snapshots in time. The thin solid line shows the initial configuration and the
thick solid line shows the model at bounce. The dotted, dashed, and dot-dashed lines
are snapshots at 1.5 ms, 17ms, and 200 ms after bounce, respectively.
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FIGURE 4.6. The electron fraction Y, in the 11Mg progenitor, as a function of
mass coordinate in Mg for five snapshots in time. The thin solid line shows the
initial configuration and the thick solid line shows the model at bounce. The dotted,
short-dashed, and dot-dashed lines are snapshots at 1ms, 17ms, and 200 ms after
bounce, respectively. For comparison, we include the bounce Y, profile with inelastic
neutrino-electron redistribution turned off (long dashed line). Compare this figure
with Fig. (4.5), which shows the basic hydrodynamical evolution for this same model.
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FIGURE 4.7. Snapshots of L, in 10%* erg s~! as a function of mass for the fiducial
M= 11 Mg progenitor, showing the whole envelope of luminosities realized in this
progenitor from bounce through electron-neutrino breakout. For comparison, the
line labelled ‘Breakout Pulse’ is identical with that in Fig. 4.8. The initial rise in
L, at ~ 0.3Mg comes from electron capture on newly liberated free protons before
the shock forms, but just after hydrodynamical bounce. The second, larger peak
forms after shock formation. The temperature and density increase across the shock
dissociates nuclei into free nucleons. Subsequent electron capture on free protons
generates the breakout pulse, which reaches L,, ~ 1.5 x 10%* erg s~! locally.
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FIGURE 4.8. Snapshots of L, in erg s~! as a function of mass for the fiducial M= 11
My progenitor. Time is measured relative to bounce. Compare with Fig. 4.7, which
shows more snapshots for the same model.
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FIGURE 4.9. The radial position (in km) of selected mass shells as a function of time
in our fiducial 11Mg model.
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FIGURE 4.10. L,, (thick solid line), Lp, (thin solid line), and L,, (dotted line)
measured at the outer edge of the grid in erg s=! as a function of time for the fiducial
M= 11 Mg progenitor. Time is measured relative to bounce. Note that we define
t = 0 as the time of hydrodynamical bounce. The finite light travel-time to the edge
of the grid creates a ~ 7ms offset between hydrodynamical bounce and the initial
dip before the large v, breakout pulse.
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FIGURE 4.11. (g,,) (thick solid line), {(e5,) (thin solid line), and (g,,) (dotted line)
at the outer edge of the grid in MeV as a function of time for the fiducial M= 11
Mg progenitor. Averages are computed using eq. (4.26). Compare with Fig. (4.10),
which shows the corresponding luminosities: L,,, Ly, and L,,.
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FIGURE 4.12. Luminosity spectrum of v, neutrinos at infinity at various pre- (thin
solid lines) and post-breakout (dashed lines) times. In this figure, time is measured
relative to the peak breakout spectrum (thick solid line). The thin solid lines cor-
respond to 11.6, 5.1, and 1.3 ms before the peak and the dashed lines denote the v,
spectrum 4.2, 9.6, and 40.5 ms after the peak.
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v, neutrinos (dotted line) at infinity at ¢ = 210 ms after bounce. The actual energy
groups are denoted by triangles, squares, and circles for v,, 7., and v, neutrinos,
respectively.
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FIGURE 4.14. Polar plot of the normalized specific intensity, constructed from the
Feautrier variables at the neutrinosphere for ¢, ~ 10.7 MeV for v, neutrinos. This
plot shows only every other energy grid point (solid lines). There are 269 angular
bins in each quadrant. At the largest energies, the radiation field is nearly isotropic
and the flux is quite small. At the lowest energies, the radiation field is beginning to
decouple from the matter and I, is forward-peaked.
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FIGURE 4.15. Polar plot of the specific intensity (I,,) as a function of 6 for v,
neutrinos with £, = 10.7 MeV at selected radii. We maintain the same scale as in
Fig. 4.14 for the line labelled ‘60 km’ and normalize the absolute value I, for all
other radii to that reference I,,. Thick solid lines denote I, (#,¢, = 10.7 MeV) at the
neutrinosphere (R, ~ 60km), at the gain radius (R, ~ 100km), and at the shock
radius (R; ~ 200 km) 200 ms after bounce. Thin solid lines show the specific intensity
at various intermediate radii.
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FIGURE 4.16. Electron neutrino luminosity (L,,) measured at ~ 1500 km in erg s*

as a function of time, for three different progenitors with masses M= 11 Mg (thick
solid line), M= 15 M, (thin solid line), and M= 20 M (dotted line). Compare with
Fig. 4.17, which shows L;, and L,, for the same models. Time is measured relative
to the beginning of the 11Mg model v, breakout pulse.
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FIGURE 4.17. L;, and L,, in erg s~! measured at ~ 1500 km as a function of time,
for three different progenitors with masses M= 11 M, (thick solid line), M= 15 M
(thin solid line), and M= 20 M, (dotted line). Compare with Fig. 4.16, which shows
L,, for the same models.
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FIGURE 4.18. Electron neutrino average energy ({(¢,.)) of the emergent spectrum
in MeV as a function of time, for three different progenitors with masses M= 11
Mg (thick solid line), M= 15 M (thin solid line), and M= 20 M (dotted line).
Compare with Fig. 4.16, which shows L,, for the same models and Fig. 4.19, which
shows (e5,) and (g,,). Time is measured relative to the beginning of the 11Mg model
v, breakout pulse.
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FIGURE 4.19. (¢,,) & (g,,) of the emergent spectrum in MeV as a function of time,
for three different progenitors with masses M= 11 M, (thick solid line), M= 15 M
(thin solid line), and M= 20 M, (dotted line). Compare with Figs. 4.17 and Fig. 4.18.
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FIGURE 4.20. Mass flux M in Mg s7! as a function of radius for our 11Mg (thick
solid line), 15My (thin solid line), and 20M (dotted line) models, all at 200 ms
after bounce. Open triangles mark the v, neutrinosphere (R,,) at {(¢,,) ~ 12, 12, and
13.5MeV for the 11My, 15My, and 20M; model, respectively. Filled squares and
open circles mark Rp, ({¢5,) ~ 15, 15, 16 MeV) and R,,({e,,) =~ 20, 20, 21 MeV) for
the 11Mg, 156Mg, and 20M models, respectively.
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FIGURE 4.21. L,, and Ly, in erg s~ at infinity as a function of time, for the fiducial
model and for the model with artificially decreased neutral-current neutrino-neutron
and neutrino-proton cross sections.
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FIGURE 4.22. Temperature (7)) in MeV as a function of mass coordinate in units
of M at two snapshots in time (~ 2ms and ~ 100 ms post-bounce) for the 11 M
progenitor, using two different nuclear compressibilities, K = 180 (dashed lines) and
k = 375 (solid lines).
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FIGURE 4.23. L,,, Ly,, and L,, in units of 10°® erg s™" at infinity for x = 180 (dotted
lines) and k = 375 (solid lines).
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FIGURE 4.24. (g,,) as a function of radius for 11 M models with bremsstrahlung and
inelastic neutrino-electron scattering (solid line), without bremsstrahlung and with
inelastic neutrino-electron scattering (short dashed line), and with bremsstrahlung
and without inelastic neutrino-electron scattering (long dashed line), approximately
220 ms after bounce. The inset shows the neutrinosphere R, , defined by eq. (4.25)
as a function of energy in the same models.
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FIGURE 4.25. (¢,,) and L, of the emergent spectrum at infinity as a function of time,
for 11 M models with (thick solid line) and without (thin solid line) nucleon-nucleon
bremsstrahlung.
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FIGURE 4.26. L,,, Lp,, and L,, at infinity for the 11 M, progenitor with (thick solid

lines) and without (thin solid lines) inelastic neutrino-electron scattering as described
in Appendix §B.3.1.
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FIGURE 4.27. (g,,) (thick solid line), {(e5,) (thin solid line), and (e,,) (dotted line)
at infinity for the 11 My progenitor without inelastic neutrino-electron scattering.
Compare with Fig. (4.26), which shows the corresponding luminosities and Fig. (4.11),
which shows the average energy evolution in our fiducial model (including inelastic
neutrino-electron scattering).
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FIGURE 4.28. The event rate (dN/dt, thin solid line) in Hz, and total number
detected N(< t) (thick solid line) in SK via charged-current absorption of 7, neutrinos
on free protons for a supernova at a distance of 10 kpc. Also shown for comparison
is the luminosity of anti-electron neutrinos (dotted line) as obtained from our 11 Mg
progenitor model.
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FiGURE 4.29. Integrated number of v, events in SK for our fiducial 11 My model
via the vee~™ — v.e” process (thin solid line), as compared with the number of 7,
events from the process 7,p — me™ (thick solid line). The inset shows the same
thing, but focuses on the v, breakout signal. Note that SK should see a distinct and
observable v, signature in the first ~ 30ms. Nearly 20 v, events accumulate before
being swamped by the dominant 7, signal.
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F1GURE 4.30. Integrated number of v, neutrinos detected in SNO for a supernova at
10kpc as a function of time. The individual contributions to the detected signal via
the v.d — ppe~ (dotted line), v.d — npv, (solid line), and v.e~ — v.e~ (dashed line)
processes are shown. The sum is the thick solid line. The sum of all other processes,
including v,d — npv,, v.d — nnet, v,p — met in the light-water portion of the
detector, as well as v, .d — npv, ,, v, .d — npv, r, and V.-, v, -, and v, -electron
scattering throughout the entire detector volume, is shown as the long dashed line.
This signal corresponds to our fiducial 11 M, core-collapse model.
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FiGURE 4.31. Integrated number of v, events as a function of time via absorption
on Argon (veAr — K* 4 e, thick solid line), including the Fermi and Gamow-Teller
transitions to “°K* (see §4.5.3), and via v.-electron scattering, labeled ‘v.e™ — v e’
(thin solid line).
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CHAPTER 5

THE FUTURE

5.1 The r-Process Problem

In Chapter 3, we developed the first self-consistent models of general relativistic
steady-state transonic neutrino-driven protoneutron star winds. With this tool we
explored the parameter space of these outflows and focused on their potential as a site
for rapid (r) neutron-capture nucleosynthesis. For the first time, we have folded mass
outflow constraints with the canonical set of nucleosynthetic constraints: entropy,
electron fraction, and dynamical timescale. In short, we have more fully connected
speculation on the conditions appropriate for the r-process with the actual physics
of protoneutron star winds. Like the supernova problem, the r-process problem is
itself unsolved. The models we constructed in Chapter 3 failed to yield a robust
r-process for realistic protoneutron star properties. Despite circumstantial evidence
that the production of heavy elements is connected with supernovae, it is difficult
to understand how the seemingly universal r-process abundance pattern observed in
ultra-metal-poor halo stars can originate from the multi-dimensional parameter space
of just-post-supernova environments.

Several improvements to the models presented in Chapter 3 should be made at the
next level of refinement in order to more fully understand this important component
of the protoneutron star cooling epoch.

Neutrino Transport: The success or failure of the r-process to produce the
heaviest nuclei in wind models depends sensitively on the neutron fraction as seed
nuclei begin to form. This depends on the local anti-electron and electron-neutrino
energy density and flux. In Chapter 3 these quantities were calculated using a simple

spherical dilution prescription. Instead of positing such quantities, they should be
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derived from more complete simulations. For this reason, models that consistently
produce neutrino-driven winds from full supernova simulations employing sophisti-
cated neutrino transport should be constructed.

Rotation and Magnetic Fields: The effect of rotation and magnetic fields
on outflows and the angular momentum evolution of stars is a classic problem in
theoretical astrophysics. The angular momentum evolution of the sun, for example,
is affected significantly by the joint action of these two effects. Rotation and magnetic
fields might play an important role in the just-post-supernova environment. Both have
been largely unexplored. If the wind dynamics are affected by such phenomena very
near the protoneutron star, then the matter entropy and dynamical timescale - both
so crucial in determining the r-process yield - will likely be affected as well. The
one-dimensional models presented in Chapter 3 should first be extended to include
rotation and magnetic fields to model the equatorial region (Weber & Davis 1967).
Beyond that, however, multi-dimensional magnetohydrodynamical simulations will
likely be required to asses the influence of these effects on the wind dynamics.

Hydrodynamics: In Chapter 3 we explored the effect of a reverse shock in the
wind on the resulting nucleosynthesis. We can expect reverse shock generically, engen-
dered by the interaction of the supernova shock with the overlying shell-structure of
the progenitor as it explodes. Do these shocks bury the wind? If a successful r-process
is generated very near the protoneutron star just after explosion, does that matter
escape to infinity? A series of hydrodynamical studies with simple parameterizations

of the wind development might begin to answer such questions.

5.2 Dynamical Models

Although we focused in Chapter 4 on the early post-bounce evolution and the neutrino
breakout phenomenon, our models do not seem to yield explosions in the first 250

milliseconds. This result is in agreement with all other one-dimensional models of
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supernovae that do not employ ad hoc neutrino luminosity enhancements mechanisms.
Nevertheless, one-dimensional models are an important tool for testing the effects of
changes in the microphysics and for understanding the problem in detail. There are
several improvements to the models presented in Chapter 4 that should be made in
our next effort.

Neutrino Microphysics: Source terms such as v,7, <> 1,7, (Buras et al. 2002)
should be included, as well as the full structure function formalism of Burrows &
Sawyer (1998,1999) and Reddy, Prakash, & Lattimer (1998).

Implicit Hydrodynamics: The explicit hydrodynamics scheme we currently
employ is Courant-limited, as described in §4.2.3. We will soon couple our transport
scheme to implicit hydrodynamics, which will allow us to take much larger timesteps
after bounce and shock-stall. This will facilitate extending the calculations of Chapter
4 to ~ 1 second after bounce and beyond, allowing us to more completely address

the delayed explosion mechanism.



215

5.3 Acknowledgments

It is a pleasure to thank several scientific collaborators who contributed in part to the
research presented in the preceding chapters. In particular, Jorge E. Horvath general-
ized the simple non-degenerate nucleon-nucleon bremsstrahlung formalism presented
in §2.3.4 for nucleons at arbitrary degeneracy. Sanjay Reddy contributed to Chapters
2 and 4 by providing tables for calculation of the polylogarithmic integrals necessary
in evaluating the relativistic structure functions for neutrino-electron scattering. The
r-process network calculations necessary to assess the composition of the protoneu-
tron star wind ejecta in Chapter 3 were carried out by Bradley S. Meyer of Clemson
University. Evonne Marietta also contributed to the protoneutron star wind study
by making her electron-positron equation of state available. Ron Eastman and Phil
Pinto provided the basic transport algorithm used in our dynamical simulations of
Chapter 4. Adam Burrows has provided an algorithm for explicit hydrodynamics and
the scheme for implicit coupling of the radiation field to matter through the Lambda
operator. Eli Livne has provided explicit and implicit schemes for hydrodynamics.
Itamar Lichtenstadt has provided an invaluable service in comparing weak interaction

rates and the Lattimer-Swesty equation of state with our own implementation.



APPENDIX A

THE STEADY-STATE WIND EQUATIONS

A.1 Some Simple Thermodynamic Identities

Expanding the pressure (P) differentially in p and 7', we have that

This implies that

Defining (D) as

we obtain

where

dp + 8_P
. or

ap =

5T
dp

p
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(A.4)

(A.5)

the specific heat at constant volume. These manipulations yield a convenient expres-

sion for the adiabatic sound speed (¢, = 0P/0dp|,) in terms of the isothermal sound

speed (cy = 0P/0p|;):

D2
Cy T

2 _ 2
c,=cr+

Note that from eq. (A.1) we may also write that

ap _op
dr  0Op

dp OP| dT

Tdr+8Tp%.

(A.6)

(A7)
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A.2 Steady-State Hydrodynamics

Assuming time-independent wind solutions, the equation for mass conservation sim-
plifies to
V- (pv) =0, (A.8)

implying that the mass-outflow rate (M) of a wind is a constant in radius. In spherical
symmetry, M = 47r? pv = constant. This expression yields a differential equation for

the evolution of the matter velocity in radius,

1dv ldp 2
——— = — - A.
vdr pdr r (4.9)

The equation for momentum conservation, neglecting the mass of the wind itself, is
simply
dv 1dP GM

dv_ _Lab GM . o Al
Vdr p dr r? * (A-10)

where M is the total mass of the protoneutron star. Although we include it here
for completeness, the radiation force due to the neutrinos (F,) is neglected in the
present wind study. This approximation is justified because the neutrino Eddington
luminosity (LE4 = 47GMc/k,) is much larger than the neutrino luminosities we
assume following the supernova and accompanying protoneutron star cooling. &, is
the total neutrino opacity and is dominated by v.n — pe~ and 7,p — ne™ for the
electron and anti-electron neutrino, respectively. The mu and tau neutrino opacity
is dominated by neutral-current scattering off free nucleons, the wind heating region
being unpopulated by nuclei. Including these processes, one finds that LE4d ~ 105
erg s L.

Lt < 5 x 10%2 erg s L.

We are thus safe in taking F,, = 0 because we consider winds with only

Because neutrinos contribute both heating and cooling to the flow, we must couple
to these equations into the first law of thermodynamics. We define the net heating

rate; ¢ = Heating — Cooling. That is, we have

de . Tds Pdp

de _ . _pds  Pdp A1
FrAR A TR T (A-11)
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where p = V=" and d/dt = [0/0t+v-V]. In the steady state, d/0t = 0 and we obtain
§=Tv—=Cww— — — —=| - (A.12)
T T

Taking eq. (A.7) and dropping F,,, we can rewrite eq. (A.10) as

dv 1|0P| dp 0P| dT GM
= || L] 2 -2 A13
Vr p| op Tdr+ or|, dr r? ( )
We can now eliminate dT'/dr using eq. (A.12)
dv 1 foP| dp OP T dP| dp q GM
— == —| —+ == — — - A.14
Var p{ op Tdr+ or|, | Cvp? dTpdr+CVv r? ( )

The terms dp/dr can be eliminated using the equation for mass conservation, eq. (A.9).
Using eq. (A.6) and combining terms proportional to dv/dr, we obtain an expression
for dv/dr in terms of thermodynamic quantities returned by the equation of state (D,
P, Cy, cs, etc.), the basic dependent hydrodynamical variables (p, v, and T'), and the
neutrino energy deposition function (¢). Equation (A.14) is then easily cast in the
form of eq. (3.9). With eq. (3.9) in hand, eq. (3.10) easily follows from eq. (A.9) and
eq. (3.11) then follows from eq. (A.12).

A.3 The General-Relativistic Wind Equations

Thorne, Flammang, & Zytkow (1981) and Flammang (1982) present a derivation of
the hydrodynamical equations for steady-state accretion in a Schwarzschild spacetime.
We begin with the form presented by Nobili, Turolla, & Zampieri (1991). The general
form is presented in egs. (3.1), (3.2), and (3.3). Simple thermodynamic and algebraical
manipulations analogous to those presented for the Newtonian case yield egs. (3.5),

(3.6), and (3.7). The reader is referred to these papers for a more detailed explication.
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APPENDIX B

NEUTRINO MICROPHYSICS

Below we describe the input physics necessary to evaluate the source and sink terms
in the interaction term of the Boltzmann or transport equation. The fundamental
cross sections, derived from the Standard Model of electroweak interactions, are pre-
sented, as are the necessary embellishments and additions to such formulae required
for application in the supernova context. In addition, we highlight our technique for
incorporating inelastic neutrino scattering in time-dependent solutions to the trans-
port equation.

Many of the cross sections we discuss below can be written in terms of a charac-
teristic neutrino interaction cross section (o,);

_ 4G?(mc?)?

—a4 2
O = ()t ~ 1.7x 107" cm” . (B.1)

In what follows, we take the axial vector coupling constant (g4) =—1.26 and sin” Oy ~
0.231 (Particle Data Group 1998).
B.1 Absorption and Emission

The interaction term for absorption and emission, which appears on the right-hand

side of the Boltzmann equation, may be written as

Eint[fu] = 771/(1 - fl/) - Xllfw (BQ)

where 7, is the emissivity and x, is the inverse mean-free path, uncorrected for stimu-
lated absorption. In local thermodynamical equilibrium, the emission and absorption

must balance and

L™[f]=0. (B.3)
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This implies that

eq
M = Xyﬁ, (B4)
Substituting into eq. (B.2) we have that
Eint[fu] = Xuﬁ(l - fll) - Xufu
= (157'/?1) L% = 1]
= KL= 1, (B.5)

where the last two relationships define the absorptive opacity, &, corrected for stimu-
lated absorption, in terms of x,,, the pure absorption inverse mean-free path. Equation

(B.5) manifestly drives f, to its equilibrium value,

729 = lexp ey — ) /T + 117" (B.6)

Writing eq. (B.5) in the form
LEf,] = 7 — K3 fo (B.7)
and employing eq. (B.3), we derive Kirchhoft’s Law, 7, = &} 5% Kirchhoff’s Law
saves us from the need to evaluate both 7, and & separately. In practice, we compute
Xv, Which is generally of the form No,, where N is the number density of absorbers
and o, is the cross section for absorption. We then compute x* = (1 — &)1y,
and use Kirchhoff’s Law to get 7,. For electron neutrinos, the production process
ven <+ e~ p implies i, + pn, = pe + 11p- For a given local matter temperature, density
and composition, the equation of state returns fi = p, — p, and p.. For a given
neutrino energy, taking p,, = pe — fi, eq. (B.6) gives fe9. Similarly, ps, = —pe + fi-
For production of v, neutrinos, we neglect the analogous charged-current process
v,n — p~p because of the very large energy threshold and because the number
density of p~ is very small at the temperatures and densities encountered in most
regimes of the supernovae. Since other processes like eTe™ > 1,7, and nn <> nny,7,
do contribute to the luminosity of v, neutrinos, p,, = 0 and f,f:} is a function of €,,

and T alone.
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B.1.1 v.n<<ep

The absorption of electron neutrinos by neutrons and the inverse process, by which
electrons capture on protons, dominate much of the collapse dynamics. As the pro-
genitor becomes unstable, e”p — nv, robs the core of electron degeneracy pressure.
In the early phase, at core densities below 10'2 g cm™3, the matter is transparent to
the final state electron neutrino and they escape. As a consequence, the electron frac-
tion in the core decreases from about ~ 0.42 to ~ 0.30 as the mass density increases
from about 10 g cm 3 to above 5x10'2 g cm 3. At these higher densities, the core
becomes opaque to electron neutrinos and the process v.n — e p begins to compete
with its inverse, resulting in a (beta) chemical equilibrium that halts the decrease in
the electron fraction. The core electron fraction and, indeed, the total trapped lepton
fraction, are essential in determining the total energy of the shock. This, in turn,
effects the core structure after the shock has stalled. Hence, this balance between
e p — nv, and v,n — e p has consequences for the subsequent evolution.

After the core collapses to nuclear densities and the equation of state stiffens,
driving a hydrodynamical shock into the free-falling outer core, this absorption and
emission process plays an equally important role. As the shock sweeps up nuclei it
dissociates them into free neutrons and protons. The high electron number density
throughout the entire regime leads to copious v, production via e”p — nv,. The
neutrinos, however, are still in an optically thick regime and so their local luminosity
swells as they are advected with the matter behind the shock. Eventually, the shock
traverses the 7,, ~ 2/3 surface for the electron neutrinos and the neutrino pulse,
formerly trapped behind the shock, can escape to infinity. The process e™p — nv, is
thereby central to the breakout phenomenon.

Ignoring proton blocking in the final state, and assuming stationary nucleons, the
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total v, — n absorption cross section is given by (e.g. Bruenn 1985)

b o 1+ 3% v+ Anp\’ - me® \°
ven ? 4 M2 Eve + Anp

where A,, = m, —m, ~ 1.2933 MeV, e.- =¢,, + Ay, and f,- is the electron phase-

1/2
(1= fe)Wn, (BB)

space occupation, a Fermi-Dirac distribution function. W}, is the weak magnetism
correction; Wiy ~ (1 — 1.01e,/m,,) (Vogel 1984).

In transport calculations we require the inverse mean free path. Thus, account-
ing for stimulated absorption and assuming non-degenerate nucleons, the absorptive

opacity for use in our transport solution is given by
Ko = 0% XapNa(l = f29) 7, (B.9)

where N, is Avogadro’s number, X,, is the neutron fraction, and fSd is given by
eq. (B.6) with p, = pe — fi. Note that if the equation of state employed is ther-
modynamically consistent, the quantity (1 — fe-)(1 — f$9)~' can be replaced by
fe-(ev + App)/f53. At high densities, nucleons are no longer non-degenerate and

X, pN4 should be replaced by

Bp,,
Nnp = 2 / ﬁfn(l — fp), (B.10)

which takes into account the effects of final state nucleon blocking.

B.1.2 up<+<etn

After collapse, bounce, and shock breakout, the process v.p <> etn together with
ven <> e p constitute the dominant heating and cooling mechanisms. Ignoring nu-
cleon blocking in the final state (Bruenn 1985),

a 1 + 39124 8173 - Anp 2 1 m602 2
ol =o, - —
veP 4 meC? €p, — App

1/2

(1 = for )Wy, (B.11)
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where .+ = ¢,

€

— App, €5, > App +me, and Wy ~ (1 — 7.1¢,/m,) (Vogel 1984).
Although we include it here for completeness, the final-state positron blocking term
is rarely important given the degeneracy of the electrons in nearly every regime im-

portant in the supernova dynamics. The opacity is easily constructed from o2 ;

Uep’
Ky =05, XppNa(l — )71 (B.12)
where f7 is given by eq. (B.6) with y, = —p. + . As in §B.1.1, the quantity X,pN4

should be replaced at very high densities with an expression analogous to eq. (B.10)

to capture the effects of final-state nucleon blocking.

B.1.3 v A« Ae”

From Bruenn (1985) the total v, — A absorption cross section, is approximated by

o e +Q\? mec® \° &
= 2 AN N (2 )[1—( e )] (1 f,) et

MeC2 g, + Q'
(B.13)

Q' = My —Mys+A ~ pp,—pp,+A, Alis the energy of the neutron 1f5,, state above the
ground state and is taken to be 3 MeV (Fuller et al. 1982), and the quantities N,(Z)
and N, (N) are approximated by: N,(Z) =0, Z—20, and 8 for Z < 20, 20 < Z < 28,
and Z > 28, respectively. N,(N)=6,40— N, and 0 for N < 34, 43 < N < 40, and

N > 40, respectively. The opacity, corrected for stimulated absorption, is then
Ky = Xpg pNaoG(1— fi)~1 (B.14)

Figure (4.1) shows the atomic mass of the representative heavy nucleus in the Lattimer-
Swesty equation of state as described in §4.2.1. One can see clearly that since
N,(N) = 0 for N > 40, this absorption and emission process plays a role only
during the very early phase of collapse. Typically at densities near p ~ 10'2 g cm 3

Ky — 0.
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B.1.4 vyiy; <> ete”

Both neutral and charged current Feynman diagrams contribute to the matrix element
for the process e"e~ — vw. From Dicus (1972), the total matrix element, after a Fierz

transformation, can be written as

M= i%ﬂu(qw“(l ~7°)0,(¢") 0 () 7a(Cv = Cavs)ue(p), (B.15)

where p and p' are the four-momenta of the electron and positron, respectively, and ¢
and ¢’ are the four-momenta of the neutrino and anti-neutrino, respectively. Squaring
and averaging over final spin states and taking the extreme relativistic limit in which

me = 0,
1
1 > IMP =16G°[(Cy +Ca)’p-q'p' - q+ (Cv — Ca)’p-qp' - 4. (B.16)

The production kernel is defined by

1 dép &Pp 1
» ] _ ) 1 Z 2 4c4
R?(ev, &5, cos0) 2e,€p / (2m)32¢ (271')325’fe Jer (4 . M| > (2m)°0°(P),
(B.17)

where € and &’ are the electron and positron energy, respectively, and §*(P) is the total
four-momentum-conserving delta function. f.- and f.+ are Fermi-Dirac distribution
functions for the electron and positron, respectively. The differential production
spectrum for final state neutrinos can then be written as (Bruenn 1985)

dQ el d3py
de,dQ (1=F) (27)3 / (27)3

RP(e,,ep,c080) (1 — f3) , (B.18)

where df) is the differential solid angle for the neutrino. Expanding the produc-

tion kernel in a Legendre series in the scattering angle, cos = up' + [(1 — p?)(1 —

W22 cos g,

1
RP(g,,ep,c080) = 3 Z(Ql + 1)@V (g,,e5)P(cos )
I

1 3
~ §<I>g(s,,, £p) + 5(1311)(6,,, £p) cosf. (B.19)
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®F, in egs. (2.29) and (B.19), is given by (Bruenn 1985; Yueh & Buchler 1976)

2 Eytep
®h(e,,e5) = ?/ de fe- fer Ho(ev,€5€), (B.20)
0

where f+ is a function of ¢'(= ¢, + &, — ¢) and
Hy(ey,€0,6) = (V 4+ A)? I} (e, €0,8) + (V — A2 T (e, 65, €) - (B.21)

Each J; in eq. (B.21) is a polynomial in €,, €5, and € of dimension [energy]. They

are related to each other by (Bruenn 1985)
J(en,e0,¢) = I (es,60,6) . (B.22)

Both J! and J! can be found in Bruenn (1985) (correcting for the typo in their eq.
C67). From eqgs. (2.29) and (B.21) we see that the differences between the spectra
for v,s and 7,s for a given temperature and electron degeneracy (7.) arise solely from
the relative weighting constants (V + A)? and (V — A)? in eq. (B.21) for J{ and J{/,
respectively. Indeed, in this approximation the same can be said for the difference in
the spectrum between v, and v, neutrinos.

Ignoring phase space blocking of neutrinos in the final state and taking the rel-
ativistic limit (m, — 0), the total electron-positron annihilation rate for electron or
mu- and tau-type neutrino production can be written in terms of the electron and
positron distribution functions (Dicus 1972):

1 \?/1)\°
QVeDe = KZ (W) (%) //fefe+(5i€2+ +€278§+) dEef d€e+ y (B23)

where K; = (1/187%)co,(C% + C%). Cy = 1/2 + 2sin® Oy, for electron types, Cy =
—1/2 + 2sin? Oy for mu and tau types, and C% = (1/2)%2. Rewriting eq. (B.23) in
terms of the Fermi integral F,(n):

Que = K0T (0 ) (k—T) Fune) Fy(—n0) + Fi(—n)Fy(n)] . (B24)

M2 hc
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where 1, = p./kT and

o :I/,’n
F,(n) = ——dx . B.25
= s (B.25)
For v,.7, production, eq. (B.23) can also be written as
kT 17 ergs
e 2 97615 x 102 | 2| f(n) (s ) B.26
Qe a0 [ ] o (25 (B.26)
where
Fy(n)Fs(=n.) + Fiy(—n.) Fs(n,
) = 4(e) F3(—1e) + Fi(—1e) F3(7e) (B.27)
2F,4(0)F5(0)
For v,v, and v, v, production combined,
kT 1° ergs
e = AT X 10P | ol f () (e ) B.28
Q w, Y, X [Mev} f(n ) CIII3S ( )

In the limit of high temperatures and ignoring electron phase space blocking, the

v;7; annihilation rate can be written (Janka 1991):

1 4\
Quif/i = 4Ki7r4 ( 2) <_7T) / Jl/z‘Jﬂi (El/i + Eﬂi) @ (qyi: qupl/i:pﬂi) dgui d(‘:l—,i ’
meC c
(B.29)
where J, is the zeroth moment as defined in eq. (4.13), ¢, is the neutrino energy and

K; is defined as before, i.e. K; = (1/187%)co,(CZ + C3). In eq. (B.29)

3 1
@ (qllia qﬂiapl/ppﬂi) = Z |:1 - 2%2'%71- +pu1'pl7i + 5(]— - pllz)(]- - pIZ,) ) (B30)
where ¢, = (u,) = H,/J, and p, = (uZ.) = P,/J,. Eq. (B.29) can be rewritten in

terms of the invariant distribution function f,:

1
MeC?

2 6
1
) (%> / foifoi(En s +€3e0) @ (au;, G, Puys o) dev, dew,.
(B.31)

Quiﬂi = KZ (

Note that when the radiation field is isotropic (® = 1) and 7. = 0 the total rate for
ete” annihilation given in eq. (B.23) equals that for v;7; annihilation given in eq.

(B.31), as expected.
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B.1.5 Nucleon-Nucleon Bremsstrahlung

Refer to §2.3.4 in Chapter 2 for a complete discussion of our bremsstrahlung for-
malism. Although we derive general expressions, accurate for arbitrary nucleon de-
generacy, we employ the simpler and computationally less expensive non-degenerate

approximation given in egs. (2.56) and (2.57).

B.2 Scattering Opacities

Elastic scattering enters the interaction term of the transport equation as a purely
isotropic scattering opacity, ;. Particularly for neutrino scattering on free alpha
particles and nuclei, all that is needed is a cross section for scattering and a number
density of scatterers. The product is the inverse mean-free-path for scattering and

enters x, as kK, in eq. (4.5).

B.2.1 y(n,p) < vi(n,p)

Neutrino-nucleon scattering contributes significantly to the total opacity for all neu-
trino species during much of the post-bounce evolution. Although neutrino-nucleon
scattering may be modified significantly at high densities, due both to blocking ef-
fects in the final state and correlations induced by strong interactions (Burrows &
Sawyer 1998), we neglect such effects here and present the simple scattering opacity
due to neutral-current neutrino-neutron and neutrino-proton scattering. The total

v;n scattering cross section is

2 2

O, €y 1+ 3g%
= — . B.32
In 4 (mCCQ) ( 4 ) (B.32)

From eq. (4.9) we obtain the differential cross section

dan_ﬁ
dQ  4rw

(1 +6np1) (B.33)



where, from Schinder (1990),

1-44
" 1+3¢%

The transport cross section as defined by eq. (4.18) is simply

I 2 (14542
4\ mec? 6 '

Similarly for v;p scattering we have that

2 2
Oo €y . . 1+3
op = " (mec2> (4 sin* Oy — 2sin? Oy + 7( 1 gA)> )

which, in terms of C{, = 1/2 + 2sin® @y, and C'y = 1/2, is simply

7= (2 )2[<c'v—1>2+3gz<c:4—1>2}.

MeC2
The differential cross section is then

do, 0y
0 - E(l + Opi)
where, from Schinder (1990),

(Cy —1)* — ga(Cy — 1)?
(Cy —1)2 +3g5(C —1)*

0p =

and the transport cross section is

2
r Oy &y ! !
oy =% (25) [(Cy =17+ 30— 17
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(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

Horowitz (2002) has recently derived expressions that include a weak magnetism

correction analogous to those previously discussed for the charged-current absorption

rates v,n <> pe~ and T.n <> net. We take the following form for the weak magnetism

correction, a fit to the actual correction factor for the transport cross sections:

Uf;:p — Uzp(l + CWM‘SV/mn,p)a

(B.41)

where, for neutrino-neutron scattering Cy,, ~ —0.766, for neutrino-proton scattering

Cw,, ~ —1.524, for anti-neutrino-neutron scattering Cy,, ~ —7.3656, and for anti-

neutrino-proton scattering Cy,, ~ —6.874.
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B.2.2 e & ye”

The opacity due to neutrino-electron scattering can be large compared with that of
other processes at low neutrino energies (¢, < 5 MeV) and at high matter tempera-
tures. When we do not calculate the scattering opacity explicitly using the formalism
of §B.3, we employ the following expression from Bowers & Wilson (1982), which
interpolates between analytic limits derived in Tubbs & Schramm (1975):

. 1
o, = gao (mee®)? &, (T+ 1) [((JV +Ca) +3(Cv = Ca)’|, (B.42)

where Cy = 1/2+ 2sin? Oy for electron types, Cy = —1/2+ 2sin? fy for mu and tau
neutrino types, C4 = +1/2 for v, and 7,, and Cy = —1/2 for 7, and v,,.

B.2.3 o< ya

Because of the high temperatures achieved throughout during collapse, bounce, and
shock propagation, alpha particles exist in significant abundance only near the shock.
Even so, they exist over a very small region in radius. That said, the scattering cross
section and corresponding opacity in this regime are relatively large. The total and

transport scattering cross sections for v; — « scattering are simply

2
cv ) sin? Oy . (B.43)

3
tr
o, = =0, =40,
2 ¢ mec?

B.24 l/iA — VZ'A

During infall, the dominant opacity for all neutrino species is coherent scattering off
nuclei. The cross section, which is proportional to the atomic mass (A) of the rep-
resentative heavy nucleus squared, increases rapidly in the core as the star collapses,
since A may reach several hundred. The differential transport cross section for v; — A

scattering may be written as

doa 0, €y
A 64m \ mec?

) A2 {QCrr +Crosl (Sun) (L4 (1 =), (Budd)
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where Z is the atomic number and Q = [1 — (2Z/A)(1 — 2sin? 6y )]. Leinson et

al. (1988) investigated the polarization correction Crog and found that

c . g 1+ 4sin? 6y,
LOS = A\ 1+ (krp)?

| wh2c
=) B.46
D 4apFEF ) ( )

k* = |p-p'> = 2(,/c)*(1 — p), a ~ 13771, and rp is the Debye radius of the

(B.45)

where

medium. Note that rp ~ 10%/pp for the ultra relativistic limit (pp >> mec). Follow-
ing Tubbs & Schramm (1975) and Burrows, Mazurek, & Lattimer (1981), the form

factor term Cpp in eq. (B.44) is written as
Cpp = e Y1-1W/2 (B.47)
where y = 4be2, b = £(r?)/(hc)?, and r is the radius of the nucleus.

e, 9 A 2/3
~ — . B.48
J (56Me\/) (100) (B-48)

The ion-ion correlation correction, (S;,,), in eq. (B.44) was investigated by Horowitz

(1997) who approximated it with the expansion

1+ exp (— Z Bi(F)ei)] , (B.49)

(Sion(€)) =

where

/3
(Ze)* 1 Ev; 3 '

— N ;= N , = , B.50
a kT ’ “= hea “ AT o ( )

a is the interparticle spacing, n;,, is the number density of ions, I' is the ratio of

Coulomb potential between ions to the thermal energy in the medium, and §3; are
specified functions of I' for each neutrino species.
Setting Cros = 0, Crr = 1, and (S;on) = 1 in eq. (B.44) and denoting the total

v; — A scattering cross section under these assumptions we have that
2

oo [ &\’ 9 2Z . 9
Oo,A A% |1 — 7(1 — 2sin“ Oy )| . (B.51)

~ 16 MeC?
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Following Burrows, Mazurek, & Lattimer (1981), assuming that (S;,) = 1 and

Cros = 01in eq. (B.44) we derive a transport cross section:

+1

o, 1

Oy = QA/ 1+ p)(1— e M dy = 0,4 f(y) (B.52)
-1

where
s+ —(—e)

Note that in the limit of small y, f(y) may be expanded and yields the desired result

(B.53)

to zeroth order:
fly) ~ (2/3) = (2/3)y + (6/15)y* + ... . (B.54)

In practice, we evaluate the total scattering cross section by integrating eq. (B.44)

with four-point Gauss-Legendre quadratures.

B.3 Inelastic Neutrino Scattering

Many authors have addressed the issue of inelastic neutrino-electron scattering as
an important energy redistribution process, which helps thermalize the neutrinos
and increases their energetic coupling to the matter in supernova explosions (Bruenn
1985; Mezzacappa & Bruenn 1993). Comparatively little attention has been paid to
inelastic neutrino-nucleon scattering. Chapter 2 showed that, at least for mu and tau
neutrinos, this process cannot be ignored. Here, we review the Legendre expansion
formalism for approximating the angular dependence of the scattering kernel, detail
our own implementation of scattering terms in the Boltzmann equation, and include
a discussion of neutrino-nucleon energy redistribution.

The general collision integral for inelastic scattering may be written (Bruenn 1985)
as

sca dgp;J ! pin !
E,, tt[fu] = (1 _fu)/WfVR (EV,EV,COSQ)

d3p/ .
—Jv . 1- y o 2] ,: B.
o[ s = ) B e pcost)  (B55)
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— ﬁls/catt o xicatt » (B56)

where cos@ is the cosine of the scattering angle, ¢, is the incident neutrino energy,
and ¢!, is the scattered neutrino energy. Although we suppress it here, the incident
and scattered neutrino phase space distribution functions (f, and f), respectively)
have the following dependencies: f, = f,(r,t,u,e,) and f, = f/(r,t, ', €!). p and u'
are the cosines of the angular coordinate of the zenith angle in spherical symmetry

and are related to cosf through

cosf = pp' + [(1 — p*) (1 — p'®)]"/? cos(¢ — ¢'). (B.57)

R™ is the scattering kernel for scattering into the bin (¢,, ) from any bin (g, u')

and R°" is the scattering kernel for scattering out of the bin (¢, i) to any bin (g,
i'). The kernels are Green functions, correlation functions that connect points in
energy and momentum space. In fact, one may also write R(e,, ¢!, cosf) as R(q,w),
where w(= ¢, — €')) is the energy transfer and ¢(= [e2 + ¢'? — 2¢,¢', cos 0]'/?) is the
momentum transfer, so that the kernel explicitly reflects these dependencies.

It is clear from eq. (B.55) that the source, or the net scattering into the beam (e,
) is a function of the occupancy (f!) in all other beams. The sink term also depends
on f] through the blocking term (1 — f}), reflecting the Fermi-Dirac statistics of the
neutrino. A solution to the Boltzmann or transport equation yields f, (and, hence,
f]) at all times, radii, energies, and angles. f, is not known a priori and cannot be
assumed to be Fermi-Dirac. Only in equilibrium should f, approach a Fermi-Dirac
distribution, characterized by the local temperature and with a chemical potential
that reflects the local neutrino number density. The transport problem is difficult
enough without the added complication of non-linear integral source terms. The full
implicit solution, including energy and angular redistribution, is numerically intense
and beyond the scope of this project. Instead, we make several simplifications that

make the problem tractable and efficiently solved.
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First, as stated in §4.2.2, we assume isotropic scattering. The second impor-
tant simplification comes from detailed balance, a consequence of the fact that these
scattering rates must drive the distribution to equilibrium; R™ = e #“R°"  where
B = 1/T. We may therefore deal only with R°"*. The scattering kernels dealt with
specifically in this section, those for inelastic neutrino-nucleon and neutrino-electron
scattering, have complicated dependencies on scattering angle and the angular inte-
gration over scattered neutrino phase space, implicit in eq. (B.55), cannot be com-
puted analytically. For this reason, we approximate the angular dependence of the

scattering kernel with a truncated Legendre series (Bruenn 1985). That is, we take
20 +1
R (g,, €, cos ) = Z T—'_(I)(e,,, gl cos ) Py(cosb), (B.58)
1=0

where

+1
)(e,,e) = / d(cos 0) R (g, €, cos0) P,(cosh). (B.59)

v
-1

In practice, we expand only to first order so that
out ! 1 ! 3 !
R (e, ¢,,cos0) ~ §<I>0(e,,, e,) + §<I>1(5,,, g,,) cos . (B.60)
Substituting into the first term on the right-hand-side of eq. (B.55) (the source) gives

~scatt __ (1 f )/oo d&;/g,uz —Bw /+1d Ifl /QF d¢’ 1@ + 3(I) 0 (B 61)
771/ - v 0 0(27'('77,0)3 € . /'[’ v 0 2 0 2 1 COS .

Substituting for cos# using eq. (B.57) and using the definitions

- 1 [t!
j, =1 / df. (B.62)
2/
and
- 1 [+t
= / dyupf, (B.63)
—1

we have that

dr [ 15 3 -
= (1= f)) s | deele™™ | S®oJ, + -PipH,| . B.64
v ( f )0(27rhc)3 A €8, € 9 0/, T 9 LT, ( )
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Integrating over i to get the source for the zeroth moment equation,

1/+1 dp e = 47”/00 de' e~ | L J(1-J) - 5o, A, & (B.65)
2/ v c(2rhe)® J, V" 9 0 S '

Similarly, we may write the sink term of the Boltzmann equation collision term,
employing the Legendre expansion

47 o 1 7 3 7
oscatt de! 212, (1 — JY— o, uH' . B.66
Xv 0(271'77,6)3 /0 €€y 9 0( u) 9 1AL, ( )

The contribution to the zeroth moment equation is then
1

dm °° 1 AW
1 i —vscatt ) = _7/ de' &2 | =®y(1 = J' Jy, —
u( X f ) 0(27Th0)3 ; €€, B O( u)

3
2/, 2

®,H,H ;} :
(B.67)
Combining these equations, we find that
1 [+ A ®©
- d Escatt ] = / d ! 12
5[ el = s [ el
1 51 7\ ,—Buw 1N F 3o F R B
x 15% [J,,(l —J)e (1 J,,)J,,} — SOHHE 1) (B6S)
One can see immediately that including another term in the Legendre expansion (tak-
ing R ~ (1/2)®g+ (3/2)®1 cos 0+ (5/2)P5(1/2)(3 cos? § — 1)) necessitates including
P, and ]5;, the second angular moment of the neutrino phase-space distribution func-
tion, in the source and sink terms. Our transport scheme solves both the moment
equations for the spectral Eddington factors p, = f’,, / j,, and g, = ]\7,, / j,,, where
B 1 +1 5 1 +1
P, == / dup?f, and N, = - / dupf, . (B.69)
2/, 2/,
It is therefore possible for us to include only terms up to R°"* o cos® 6 in our Legendre
expansion of the scattering kernel. In practice, however, we retain only the linear

term. We discuss this approximation in the next two sections.
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B.3.1 Neutrino-Electron Scattering

The scattering kernel R(g,,€!,, cosf) in §B.3 is related to the fully relativistic structure
function for neutrino-electron scattering;

a

!
ELEy

R (e,, ¢!, cos ) = 2G*? [AS:(q,w) + Sa(q, w) + BS3(q,w)](1 — e )7L (B.70)

The relativistic structure functions (S;) are given in terms of the imaginary part of
the polarization functions as in egs. (2.24), (2.25), and (2.26). Each of the retarded
polarization functions in eqs. (2.24-2.26) can be written in terms of one-dimensional
integrals over electron energy (g.), which we label I,, (Reddy, Prakash, & Lattimer
1998);

ImIT%(g, w) — 2:“2; 5 [12+w11 + %IO} , (B.71)
ImIIE (g, w) = 4:";3 [12 +wl + (% + (12—2 + mQZ—;) IO] : (B.72)
ImIT%(q, w) = %ﬁq‘fo, (B.73)
and )
ImIl® (¢, w) = 87f|“q 5 [ofo+20]. (B.74)

Reddy, Prakash, & Lattimer (1998) were able to express the I,,’s in terms of polylog-

arithmic integrals such that

I, = T2 <1 _ 5_21) | (B.75)
I = T2 (ne - g - % - Z‘—;l) : (B.76)

and

2 2 & e_& 62_51) , (B.77)

£ :T3Z("3‘Z"e+§+§+2;‘2Tz T2,

where 7, = p/T is the electron degeneracy, z = fw, w is the energy transfer, and

w 9
=4 =1 —4—. B.78
e 5t 5 (B.78)
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In eqs. (B.75-B.77), the &,’s are differences between polylogarithmic integrals; &, =
Li,(—a1) — Liy(—az), where

Lin(y) = /0 ’ Ll"Tl(x) dz, (B.79)

and Li;(z) = In(1 — z). The arguments necessary for computing the integrals are
a; = exp|B(e- +w) — ne] and ay = exp(Be_ — 7). Tables for computation of Li,(y)
and the I;s have been kindly provided by Sanjay Reddy.

Figure (B.1) shows the full scattering kernel for €, = 20 MeV and ], = 2, 10,
and 16 MeV as a function of the cosine of the scattering angle, cosf. Note that
although the absolute value of the energy transfer (|e, — €/|) is the same for both
e/, = 16 MeV and ¢!, = 24, the absolute value of R°"*(20,16,cosf) is more than
twice that of R°" (20,24, cosf), reflecting the fact that at this temperature the in-
coming neutrino is more likely to downscatter than upscatter. Figure (B.2) shows
the scattering kernel for the same conditions as Fig. (B.1), but also includes both the
first-order (short dashed lines) and second-order (long dashed lines) approximations
to R°". We employ the former. The latter is included to illustrate the improvement
in including higher-order terms. In fact, the actual degree of expansion necessary
to capture accurately the physics can only be ascertained by running full transport
calculations. We have run dynamical simulations with only the zeroth-order and
first-order terms in the Legendre expansion and find little or no difference between
the emergent spectra and detailed thermodynamical evolution in the models we have
studied. Smit (1998) and Smit & Cernohorsky (1996) have explored the importance
of including the second-order term (o cos? #, shown here) and finds it negligible. The
scattering-angle-averaged kernel, also the zeroth-order term in the Legendre series for
R°" is shown in Fig. (B.3) for v,—electron scattering for a matter temperature (7°)
of 6 MeV and with an electron degeneracy factor 7. = pe/T = 20 as a function of &,
for various incoming neutrino energies, €,s.

Even though we have made the simplifying assumption that the scattering kernel
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can be approximated by a Legendre series truncated at first order (eq. B.60), in a fully

dynamical calculation it is numerically costly to compute the Legendre moments of the

/!
v

scattering kernel (®q(g,,¢!,) and ®4(¢,,¢!)) via eq. (B.59) at each point on the radial
grid (at each temperature, density, and composition point) at each time step. In order
to decrease the computation time, we tabulate ®¢(e,,¢!) and ®,(¢,, ¢!) for each ¢, and
e! , for each neutrino species, on a grid in temperature and 7. At each T-7, point, we
calculate both kernels for each €,-¢!, point, given the energy grouping for the particular
calculation. The angular integrals over cosf for I = 0 and | = 1 in eq. (B.59) are
carried out using 16-point Gauss-Legendre quadratures. During an actual supernova
calculation, we use simple trapezoidal rule quadrature to calculate the integral over &/,
for a given €,,. Each term in this integral contains the kernels, which must be evaluated
for the each ¢,-¢!, pair at the temperature/density /composition point currently being
addressed by the code. 7. is calculated by the equation of state and we do a six-point
bivariant interpolation in 7-7, space, for the given ¢,-¢!, combination. In practice,
we use 40 energy groups (ns), 30 temperature points (Nr), and 30 7. points (V).
The tables are then [ X ny x n; X Ny x N, in size, with [ = 2 (&, and &), or
approximately 50 Megabytes. Since the vector and axial-vector couplings for electron
scattering are different for each neutrino species, we compute tables for v,, 7., and

coscatt

pEcatt and x5 are then included explicitly as a

v, for each dynamical calculation. 7
source and sink, respectively, in a manner analogous to any of the absorption and
emission processes detailed in §B.1. Using this method, our calculations including
neutrino-electron scattering, are just 10-15% slower than our calculations ignoring
this important equilibration process.

Because we do not evaluate the scattering source and sink implicitly, we introduce
an explicit timescale into the energy and electron fraction updates returned by our
transport algorithm. In effect, if the scattering timescale (cx5*)~! is shorter than
our timestep, we may encounter a numerical instability. For this reason, at high den-

sities, where the neutrino phase-space distribution function is in local thermodynamic
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equilibrium, we divide the source and sink by a factor (typically 100 above p = 10" g
cm™?). This reduces the rate artificially, thus increasing the timescale for scattering.
As this process is totally negligible in this regime, particularly considering the fact

that f, = f59 at these high densities, we find this approximation acceptable.

B.3.2 Neutrino-Nucleon Scattering

The kernel for inelastic neutrino-nucleon scattering can be related to the non-relativistic
structure function employed in the thermalization studies of Chapter 2 (see egs. 2.12

& 2.13);
R™(g,, e, cos6) = G*S(q,w)[(1 + cos ) V? + (3 — cos §) A?], (B.80)

where S(g,w) is given by eq. (2.14) in terms of the imaginary part of the polarization
function, analogous to neutrino-electron scattering.

The neutrino-nucleon scattering kernels, while larger in absolute magnitude than
the corresponding neutrino-electron scattering kernels are, at most points in energy
space and thermodynamic space, much less broad. In fact, in thermodynamic regimes
most relevant for the formation of the various species’ spectra, the kernel is quite
sharply peaked in energy. That is, for a given ¢, the distribution of €/’s is tightly
centered on ¢, because the ratio of the neutrino energy to the nucleon mass is small.
R°" as a function of cos @, for neutrino-neutron scattering, is shown in Fig. (B.4) at
a representative thermodynamic point, a plot analogous to Fig. (B.1) for neutrino-
electron scattering. By comparing the &, = 19 MeV line with that for &, = 21
MeV, one sees that the former is larger and, hence, downscattering is preferred. In
addition, the overall magnitude is much larger than in the neutrino-electron scattering
case. Figure (B.5) shows @y (eq. B.59) for neutrino-neutron scattering as a function
of &/, for several €,’s at the same thermodynamic point as used for Fig. (B.3), the
corresponding figure for neutrino-electron scattering. Note that while downscatting is

strong for the €, = 35 MeV kernel, there is almost equal upscattering at €, = 5 MeV.
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The effect of this process on an actual neutrino distribution function was explored in
Chapter 2. In order to explore the effect of this process on the emergent spectra in
dynamical simulations we must first deal with a technical problem.

In a typical simulation, we employ 40 energy groups for all neutrino species with
1 MeV < g, < 320MeV for electron-type neutrinos and 1 MeV < ¢, < 100 MeV for
anti-electron and muon neutrinos. The grouping is generally logarithmic for the v,s
and linear for 7, and v,. Neutrino-electron scattering and neutrino-nucleon scattering
are most important as thermalization mechanisms at energies below ~ 60 MeV, where
the phase space distribution of all neutrino species is largest. One can see clearly from
Fig. (B.5) that a trapezoidal rule integration of ®, over €/, as it appears in eq. (B.65)

oscatt

and x5, In fact, with logarithmic

~scatt

and eq. (B.67) may grossly overestimate 7
energy grouping one may even calculate upscattering when there is none because the
energy groups become larger with increasing energy.

For neutrino-electron scattering, we were able to employ a simple trapezoidal rule
and adequately capture the qualities of the kernel. This implies that we use a linear

interpolation for J/ and H’ in each energy bin. As Fig. (B.5) shows, however, in order

!

'), we must do better than simple trapezoidal

to get an accurate integral over ®y(e,, e
rule with linear interpolation. In order to increase the accuracy of our scheme without
compromising computational efficiency, for a given energy grouping, we pre-compute
a grid of integrals over ¢!, We assume that during the dynamical calculation and the
computation of 75 and 5" both J/ and H’ are proportional to Ae', + B over
an energy interval €, ; < ¢}, < ¢, ;41. Given this assumption and both ®y(e,,¢),) and
®4(e,,€),) at a given T and 7, ,, we tabulate the following integrals:

51/, i+1 9
! ! !
/ del el ®(e,, €)),
I

v,

Ev,i+1 )
1121 !
/ dgugu 6ll(I)l (81/7 61/)’

Ev,i

Ev,i+1 9 ﬂ
! ! —pbw !
/ del e e P Py(ey, €),
£

v,
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and
/EV’ - de! e'?e! e PP (e, ),

where [ = 0,1 and each 7 is ;;1 individual energy group, set up at the beginning of
the calculation. The integrals over ¢!, are computed using 16-point Gauss-Legendre
quadrature, each nested with another 16-point Gauss-Legendre quadrature for the
integral over cos ) necessary for each ®;(e,,¢!). These integrals are tabulated at 30
temperature and 30 7, , points, analogous to the case with neutrino-electron scatter-
ing. For example, the integral

[e9) - Ev,i+1
/ de' 2T ®o(e,,€!) = ZA/ de! £'2e! ®y (e, €))

0

Ev,i+1
+ ZB/ de' e'2®(c,, "), (B.81)

where A; = (Ji' — Jit1) /(e8! —£t1) and B; = Ji' — Al). The total source and sink
are given by integrals analogous to eq. (B.81) with appropriate changes to A; and B;,
depending on if the term in the source or sink is over j,’, or IjI,’, In practice, for a
given temperature and density, we calculate the necessary integrals at the four nearest
neighbor 1" — 7, , points saved in the table and then interpolate the solution using
a four-point bivariant interpolation scheme. In this scheme, the energy integral over
the kernel is reproduced extremely well and the primary uncertainty in calculating
the total source and sink is due to the linear interpolation of J/ and H! - the same as
in the neutrino-electron scattering case. Also interesting is that because the neutrino-

nucleon scattering kernel is so sharply peaked around ¢, and drops off so quickly with

!
v

e!,, most terms in the sum in eq. (B.81) are zero. When we fill the table, we note
the index 7 of the lowest and highest ¢;,; intervals that contribute significantly (to a
part in 10%) to the total €/, integral over ®;. Typically, only four to five energy groups
must be included in the final sum. This decreases both the size of the table and the

~scatt

amount of time needed to calculate 75" and x3**. Although the vector and axial-

vector couplings for neutrino-neutron scattering are independent of neutrino species,
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we calculate separate tables for v., 7., and v, so as to allow for arbitrary energy
grouping for each species.

The Elastic Limit: With the inelastic formalism in hand, it is instructive to
construct the elastic limit. Note that in the limit of zero energy transfer, S(q,w) —
S(0) = Cnypd(w), where C'is a constant and n,, is the neutron or proton number

density. The scattering term can then be written as
scatt[f ] — ( f ) Cnn,p / d&' 12 ’Bwé(w) /+1 d,UlIf, /27r d(b'M
v v (271’77,0) 1 v 0

Cn » ) +1 27
P de' /%6 dp'(1 = f! do' M, B.82
oo [ aeierote) [ awa-g) [ ao (B.82)

where M = [(1 + cos0)V? + (3 — cos§) A?]. Using eqs. (B.57), (B.62), and (B.63) we
find that

L) = (1= ) gt [ delete ) VA, + ) + 34°(, = i 3)
_ g, AmCnp / e 25(W) VAL — T — pH) 4+ 3A42(1 — J+ pl3)].  (B.83)
c(2rhc)? J,
Integrating over ¢!, using the delta function, we have that
- V2 — A2 -
LaU) = anCR +34) U= £+ (rrag ) wil]
= Onplny [(j,, - f)+ 6n,p,uItL,} (B.84)

where o0, = (G*/mc)e2(V* + 3A?), d,, is the scattering asymmetry for neutrino-
neutron or neutrino-proton scattering, G' is the weak coupling constant, and c is the
speed of light. The result presented in eq. (B.84) is to be compared with the full
scattering part of the collision term on the right-hand side of eq. (4.7):

Rs / ! '
S E/(I)(Q,Q)f,,(ﬂ)d&). (B.85)

Approximating the integral elastic scattering source term as in eq. (4.8) we derive
eq. (4.10). Combining the scattering sink, —k,f,, with the scattering source, Kksd, +

ks0uH,, we obtain eq. (B.84) and an expression for Onp-
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Note that taking the zeroth moment of 5(500)*"“ [f.] yields zero, as it should in the

elastic scattering limit. Further, note that the first moment is non-zero:

]‘ i tt ]‘ G2 2 17 2 2 G2 2 17 2 2
3] A = G o V= A = Lo e LV 340

2

G 25 (12 2 1
= —Enn,psyHy(V +34°%) |1 - §5n,p
- 1
= —Jn,pnn,pH,, [1 — gén’p:| (B86)
This expression is to be compared with the elastic scattering momentum source term
on the right-hand side of the first moment of the transport equation, eq. (4.15). In
fact, the quantity o, yn, (1 —6,,/3) defines the transport cross section in eqgs. (4.15)

and eqs. (4.18), which we use for elastic scattering in the models presented in Chapter

4.
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FIGURE B.1. The scattering kernel R°*(e,, ¢!, cosf) for v,—electron scattering as a
function of cos @ for €, = 20 MeV and €/, = 2, 10, 16, and 24 MeV, at a representative
thermodynamic point (T =5 MeV, p =10 g cm™3, Y, = 0.4).
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FIGURE B.2. For the same thermodynamic point as used for Fig. (B.1), the scattering
kernel (R°", thick solid lines) for v,—electron scattering as a function of cos 8, for €, =
20 MeV and ¢!, = 2, 10, and 16 MeV. Short dashed lines show the first-order Legendre
series expansion approximation to R°", which is linear in cosf; R ~ (1/2)®y +
(3/2)®; cosf. The long dashed line shows the improvement in going to second order
in cos @ by taking R°" ~ (1/2)®g + (3/2)®; cosf + (5/2)Po(1/2)(3 cos® 6 — 1).
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F1GURE B.3. The [ = 0 term in the Legendre expansion of the v, —electron scattering
kernel, ®y(e,,€!,) (eq. B.59), for T'= 6 MeV and 7, = 20 as a function of €}, for ¢, = 5,
10, 15, 20, 25, and 35 MeV. Note that for any ¢,, the neutrino is predominantly
downscattered. The magnitude of ®y(e,,¢!,) and sign of (w) are to be compared with
those in Fig. (B.5).
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FIGURE B.4. The scattering kernel R°" (g, e’ cosf) for v,—neutron scattering as a
function of cos @ for €, = 20 MeV and €/, = 18, 19, 21, and 22 MeV, at a representative
thermodynamic point (T'= 5 MeV, p = 10" g cm™3, X, = 0.5). Note that although
the absolute value of the energy transfer (e, — ¢/|) is the same for both €/, = 19
MeV and &!, = 21, the absolute value of R°"*(20,19,cos#) is greater than that of
R°"*(20, 21, cos 8), reflecting the fact that at this temperature the incoming neutrino

is more likely to downscatter than upscatter.
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FicGure B.5. The [ = 0 term in the Legendre expansion of the neutrino-nucleon
scattering kernel, ®q(e,,¢!) (eq. B.59), for T'= 6 MeV and 7, = —2 as a function of
el for e, = 5, 10, 15, 20, 25, and 35 MeV. Note that for £, = 5 MeV the neutrino
is predominantly upscattered, while for £, = 35 MeV the neutrino is predominantly
downscattered. The magnitude of ®y(e,,¢!,) and sign of (w) are to be compared with
those in Fig. (B.3).
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FIGURE B.6. ®y(e,,¢e!,) for v.e™ scattering as a function of €/, for T = 4, 6, 8, 10,
and 12 MeV. Compare with Fig. (B.7) for vn scattering.
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FIGURE B.7. ®;(e,,¢e!) for vn scattering as a function of €/, for T =4, 6, 8, 10, and
12 MeV. Compare this figure with Fig. (B.6) for v.e™ scattering.



250

REFERENCES

[1] Abromowitz, M. & Stegun, I. A., Handbook of Mathematical Functions (Dover
Publications, Inc., New York, 1972)

[2] Ahmad et al. (2002), SNO collaboration, Phys. Rev. Lett., 89, 011301

[3] Arzoumanian, Z. 1995, Ph.D. Thesis, Princeton University

[4] Bahcall, J. N. 1964, Physical Review, 136, B1164

[5] Bahcall, J. N., Basu, S., & Pinsonneault, M. H. 1998, Phys. Lett. B, 433, 1
[6] Beacom, J. F., Boyd, R. N., & Vogel, P. 2000, Phys. Rev. Lett., 85, 3568
[7] Beacom, J. F. & Vogel, P. 1998, Phys. Rev. D, 58, 053010

(8] Bethe, H. & Wilson, J. R. 1985, AplJ, 295, 14

[9] Bhattacharya, M., Garcia, 1., Kaloskamis, N. I., Adelberger, E. G., Swanson,
H. E., Anne, R., Lewitowicz, M., Saint-Laurent, M. G., Donzaud, C., Guillemand-
Mueller, D., Leenhardt, S., Mueller, A. C., Pougheon, F., Sorlin, O., Trinder,
W. 1998, Phys. Rev. C, 58, 3677

[10] Bond, J. R., Neutrino Production and Transport During Gravitational Collapse,
Ph. D. Thesis, Cal Tech, 1979

[11] Bowers, R. L. & Wilson, J. R. 1982, ApJS, 50, 115

[12] Brinkmann, R. P. & Turner, M. S. 1988, Phys. Rev. D, 38, 8, 2338
[13] Bruenn, S. W. 1985, ApJS, 58, 771

[14] Bruenn, S. W. & Mezzacappa, A. 1997, Phys. Rev. D, 56, no. 12

[15] Bruenn, S. W., De Nisco, K. R., & Mezzacappa, A. 2001, preprint (astro-
ph/0101400)

[16] Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. 1957,
Rev. Mod. Phys., 29, 547

[17] Buras, R., Janka, H.-Th., Keil, M. Th., & Raffelt, G. G., Rampp, M. 2002,
submitted to ApJ, (astro-ph/0205006)

[18] Burris, D. L., Pilachowski, C. A., Armandroff, T. E., Sneden, C., Cowan, J. J.,
& Roe, H. 2000, ApJ, 544, 302



251

[19] Burrows, A. & Goshy, J. 1993, ApJ, 416, L75
[20] Burrows, A., Klein, D., & Gandhi, R. 1992, Phys. Rev. D, 45, 10, 3361
[21] Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830

[22] Burrows, A., Young, T., Pinto, P., Eastman, R., & Thompson, T. A. 2000, ApJ,
539, 865

[23] Burrows, A. & Sawyer, R. 1998, Phys. Rev. C, 58, 554

[24] Burrows, A. & Sawyer, R. 1999, Phys. Rev. C, 59, 510

[25] Burrows, A. & Mazurek, T. J. 1982, ApJ, 259, 330

[26] Burrows, A. & Mazurek, T. J. 1983, Nature, 301, 315

[27] Burrows, A. & Lattimer, J. M. 1985, ApJ, 295, L15

(28] Burrows, A. & Lattimer, J. M. 1986, ApJ, 307, 178

[29] Burrows, A. 1988, ApJ, 334, 891

[30] Burrows, A. 1989, ApJL, 341, L63

[31] Burrows, A., Mazurek T. J., & Lattimer, J. M. 1981, ApJ, 251, 325
[32] Cardall, C. Y. & Fuller, G. M. 1997, ApJL, 486, 111

[33] Chandrasekhar, S., An Introduction to the Study of Stellar Structure, (Dover
Publications, Inc., New York, 1967)

[34] Chevalier, R. 1989, ApJ, 346, 847

[35] Cayrel, R., Hill, V., Beers, T. C., Barbuy, B., Spite, M., Spite, F., Plez, B,
Andersen, J., Bonifacio, P., Francois, P., Molaro, P., Nordstrom, B., & Primas,
F. 2001, Nature, 409, 691

[36] Cernohorsky, J. 1994, ApJ, 433, 247

[37] Colella, P. & Woodward, P. 1984, J. Comp. Phys., 54, 174

[38] Cooperstein, J., van den Horn, L. J., & Baron, E. A.; ApJ, 309, 653, 1986
[39] Cooperstein, J., van den Horn, L. J., & Baron, E. A. 1986, ApJ, 315, 729

[40] Cooperstein, J. & Baron, E. A. 1992, ApJ, 398, 531



252

[41] Cowan, J. J., Sneden, C., Truran, J. W., & Burris, D. L. 1996, ApJL, 460, 115
[42] Dicus, D. A. 1975, Phys. Rev. D, 6, 941

[43] Duncan, R. C., Shapiro, S. L., & Wasserman, 1. 1986, ApJ, 309, 141

[44] Eggleton, P. P. 1971, MNRAS, 151, 351

[45] Eastman, R. & Pinto, P. 1993, ApJ, 412, 731

[46] Fetter, A. L. & Walecka, J. D., Quantum Theory of Many Particle Systems
(McGraw-Hill, New York, 1971).

[47] Flammang, R. A. 1982, MNRAS, 199, 833

[48] Flowers, E. G. &Sutherland, P. S. 1976, ApJL, 208, L19

[49] Flowers, E. G., Sutherland, P. G., & Bond, J. R. 1975, Phys. Rev. D, 12, 2
[50] Freiburghaus, C., Rosswog, S., & Thielemann, F.-K. 1999, ApJL, 525, 121

[561] Freiburghaus, C., Rembges, J.-F., Rauscher, T., Kolbe, E., Thielemann, F.-K.,
Kratz, K.-L., Pfeiffer, B., & Cowan, J. J. 1999, ApJ, 516, 381

[52] Friman, B. L. & Maxwell, O. V. 1979, ApJ, 232, 541

[563] Fryer, C. L., Benz, W., Herant, M., & Colgate, S. 1999, ApJ, 516, 892

[54] Fryer, C. L., Burrows, A., & Benz, W. 1998, ApJ, 496, 333

[55] Fryer, C. L. & Heger, A. 2000, ApJ, 541, 1033

[56] Fryer, C. L. & Warren, M. 2002, accepted to ApJL, preprint (astro-ph/0206017)

[57] Fryxell, B. A., Miiller, E. & Arnett, D. 1989,Max-Planck-Institut fiir Astrophysik
Rep., 449

[58] Fuller, G. M. & Meyer, B. S. 1995, ApJ, 453, 792

[59] Fuller, G. M. & Qian, Y.-Z. 1996, Nuc. Phys. A, 606, 167

[60] Fuller, G. M., Fowler, W. A.; & Newman, M. J. 1980, AplJS, 42, 447
[61] Fuller, G. M., Fowler, W. A.; & Newman, M. J. 1982, AplJ, 252, 715
[62] Fuller, G. M. & Meyer, B. S. 1995, AplJ, 453, 792

[63] Hanhart, C., Phillips, D. & Reddy, S. 2001, Phys. Lett. B, 499, 9



253

[64] Hannestad, S. & Raffelt, G. 1998, ApJ, 507, 339

[65] Herant, M., Benz, W., Hix, W. R., Fryer, C. L., Colgate, S. A. 1994, AplJ, 435,
339

[66] Hill, V., Plez, B., Cayrel, R., & Beers, T. C. 2001, proceedings of Astrophysical
Ages and Timescales, ASP Conference Series, preprint (astro-ph/0104172)

[67] Hoffman, R. D., Woosley, S. E., Fuller, G. M., & Meyer, B. S. 1996, ApJ, 460,
478

[68] Hoffman, R. D., Woosely, S. E., & Qian,Y.-Z. 1997, ApJ, 482, 951

[69] Horowitz, C. J. & Li, G. 2000, Proceedings of Intersections Conference, Qubec,
preprint (astro-ph/0010042)

[70] Horowitz, C. J. 1997, Phys. Rev. D, 55, no. 8
[71] Horowitz, C. J. 2002, Phys Rev. D, 65, 043001

[72] ICARUS collaboration 2001, The ICARUS Ezperiment, Laboratory Nazionali
del Gran Sasso, LNGS-P28, (hep-ex/0103008)

[73] Itoh, N., Hayashi, H., Nishikawa, A., & Kohyama, Y. 1996, ApJS, 102, 411

[74] Janka, H.-Th., Keil, W., Raffelt, G., & Seckel, D. 1996, Phys. Rev Lett., 76,
2621

75] Janka, H.-Th. & Miiller, E. 1996, A&A, 306, 167

[76] Janka, H.-Th. & Miiller, E. 1995, ApJL, 448, 109
[77] Janka, H.-Th. 1991, A&A, 244, 378

[78] Janka, H.-Th. 2001, A&A, 368, 527

(79] Janka, H.-Th. & Hillebrandt, W. 1989, A&A, 224, 49

[80] Kajino, T., Otsuki, K., Wanajo, S., Orito, M., & Mathews, G. 2001, to appear
in Few-Body Systems Suppl., preprint (astro-ph/0006079)

[81] Keil, W., Janka, H.-Th., & Raffelt, G. G. 1995, Phys. Rev. D, 51, 6635

[82] Kippenhahn, R., Weigert, A., & Hoffmeister, E. 1968, Meth. Comput. Phys., 7,
129

[83] Lamb, D. & Pethick, C. 1976, ApJL, 209, L77



254

[84] Lattimer, J. M., Pethick, C., Ravenhall, D., & Lamb, D. 1985, Nucl. Phys. A,
432, 646

[85] Lattimer, J. M. & Prakash, M. 2001, ApJ, 550, 426

[86] Lattimer, J. M. & Swesty, F. D. 1991, Nucl. Phys.A, 535, 331

[87] Leinson, L. B., Oraevsky, V. N., & Semikoz, V. B. 1988, Phys. Lett. B, 209, 1
[88] Liebendorfer, M. 2000, Ph.D. Thesis, Basel University, Basel, Switzerland

[89] Liebendorfer, M., Mezzacappa, A., Thielemann, F.-K., Messer, O. E. B., Hix,
W. R., & Bruenn, S. W. 2001, PRD, 63, 103004

[90] Liebendorfer, M., Mezzacappa, A., Thielemann, F.-K. 2001, PRD, 63, 104003

[91] Liebendorfer, M., Messer, O. E. B., Mezzacappa, A., Hix, W. R., Thielemann,
F.-K., & Langanke, K. 2002, Proceedings of the 11th Workshop on Nuclear Astro-
physics, Hillebrandt, W. & Miiller, E., eds., (astro-ph/0203260)

[92] Liebendorfer, M., Messer, O. E. B., Mezzacappa, A., Cardall, C. Y., & Thiele-
mann, F.-K. 2002, submitted to ApJS, (astro-ph/0207036)

(93] London, R. A. & Flannery, B. P. 1982, ApJ, 258, 260

[94] MacFadyen, A. I. & Woosley, S. E. 1999, ApJ, 524, 262

[95] Mazurek, T. J. 1982, ApJ, 259, L13

[96] Mayle, R., Wilson, J. R., & Schramm, D. N. 1987, ApJ, 318, 288

[97] Mclaughlin, G., Fuller, G. M., & Wilson, J. R. 1996, ApJ, 472, 440

[98] McWilliam, A., Preston, G. W., Sneden, C., & Searle, L. 1995a, AJ, 109, 2757

[99] McWilliam, A., Preston, G. W., Sneden, C., & Shectman, S. 1995b, AJ, 109,
2757

[100] Mestel, L. 1968, MNRAS, 138, 359
[101] Meyer, B. S. & Brown, J. S. 1997, ApJS, 112, 199

[102] Meyer, B. S., Howard, W. M., Mathews, G. J., Woosley, S. E., & Hoffman, R.
D. 1992, ApJ, 399, 656

[103] Mezzacappa, A. & Bruenn, S. W. 1993a, AplJ, 410, 637
[104] Mezzacappa, A. & Bruenn, S. W. 1993b, ApJ, 410, 669



259

[105] Mezzacappa, A. & Bruenn, S. W. 1993c, ApJ, 410, 740

[106] Mezzacappa, A., Liebendorfer, M., Messer, O. E. B., Hix, W. R., Thielemann,
F.-K., & Bruenn, S. W. 2001, PRL, 86, 1935

[107] Mihalas, D. 1980, ApJ, 238, 1034,

[108] Mihalas, D. & Mihalas, B., Foundations of Radiation Hydrodynamics, New York,
Oxford University Press, 1984

[109] Myra, E. S. & Burrows, A. 1990, ApJ, 364, 222
[110] Nagataki, S. & Kohri, K. 2001, PASJ, 53, 547
[111] Nobili, L., Turolla, R., & Zampieri, L. 1991, ApJ, 383 250

[112] Ormand, W. E., Pizzochero, P. M., Bortignon, R. A., Broglia, R. A. 1995,
Phys. Lett. B, 345, 343

[113] Otsuki, K., Tagoshi, H., Kajino, T., & Wanajo, S.-Y. 2000, ApJ, 533, 424
[114] Particle Data Group, The European Physical Journal C, 3, no. 1-4, 1998
[115] Pons, J. A., Miralles, J. A., Ibanez, J. M. 1998, A&A S., 129, 343

[116] Pons, J. A., Reddy, S., Prakash, M., Lattimer, J. M., & Miralles, J. A. 1999,
AplJ, 513, 780

[117] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,
Numerical Recipes in Fortran 77 (2d Ed.; New York, NY: Cambridge University
Press)

[118] Qian, Y.-Z., Fuller, G. M., Mathews, G. J., Mayle, R. W., Wilson, J. R.,
Woosley, S. E. 1993, PRL, 71, 1965

[119] Qian, Y.-Z. 2000, ApJL, 534, 67

[120] Qian, Y.-Z. & Fuller, G. M. 1995a, PRD, 51, 14, 1479

[121] Qian, Y.-Z. & Fuller, G. M. 1995b, PRD, 52, 2, 656

[122] Qian, Y.-Z. & Wasserburg, G. J. 2000, Phys. Reps., 333, 77
[123] Qian, Y.-Z. & Woosley, S. E. 1996, ApJ, 471, 331

[124] Raffelt, G. & Seckel, D. 1998, Phys. Rev. Lett., 69, 2605
[125] Raffelt, G. 2001, ApJ, 561,890



256

[126] Raghavan, R. S. 1986, Phys. Rev. D, 34, 2088

[127] Rampp, M. 2000, Ph.D. Thesis, Max-Planck Institute for Astrophysics, Garch-
ing, Germany.

[128] Rampp, M. & Janka, H.-Th. 2000, ApJL, 539, 33

[129] Rampp, M., Buras, R., Janka, H.-Th., & Raffelt, G. G. 2002, Proceedings of
the 11th Workshop on Nuclear Astrophysics, Hillebrandt, W. & Miiller, E., eds.,
(astro-ph/0203493)

[130] Rampp, M. & Janka, H.-Th. 2002, submitted to A&A, (astro-ph/0203101)
[131] Reddy, S., Prakash, M., & Lattimer, J. M. 1998, PRD, 58, 013009

[132] Rosswog, S., Liebendorfer, M., Thielemann, F.-K., Davies, M., Benz, W., &
Piran, T. 1999, A&A, 341, 499

[133] Salmonson, J. D. & Wilson, J. R. 1999, ApJ, 517, 859
[134] Schinder, P. J. 1990, AplJS, 74, 249

[135] Schinder, P. J., Schramm, D. N., Wiita, P. J., & Tubbs, D. L. 1987, ApJ, 313,
031

[136] Sehgal, I. 1974, Nucl.Phys., B70, 61
[137] Smit, J. M. 1998, Ph.D. Thesis, Universiteit van Amsterdam
[138] Smit, J. M. & Cernohorsky, J. 1996, A&A, 311, 347

[139] Smit, J. M., Cernohorsky, J., van den Horn, L. J., & van Weert, C. G. 1996,
AplJ, 460, 895

[140] Sigl, G. 1997, Phys. Rev. D, 56, 3179
[141] SNO Collaboration, Phys. Rev. Lett., 89, 011301-1

[142] Sneden, C., McWilliam, A., Preston, G. W., Cowan, J. J., Burris, D. L., &
Armosky, B. J. 1996, ApJ, 467, 819

[143] Sumiyoshi, K., Suzuki, H., Otsuki, K., Teresawa, M., & Yamada, S. 2000, PASJ,
52, 601

[144] Surman, R., Engel, J., Bennett, J. R., & Meyer, B. S. 1992, PRL, 79, 1809

[145] Suzuki, H. in Frontiers of Neutrino Astrophysics, ed. Suzuki, Y. & Nakamura,
K. 1993, (Tokyo: Universal Academy Press), 219



257

[146] Swesty, F. D. 1996, J. Comp. Phys., 1, 118

[147] Takahashi, K., Witti, J., & Janka, H.-T. 1994, A&A, 286, 857

[148] Thompson, T. A., Burrows, A., & Horvath, J. E. 2000, PRC, 62, 035802
[149] Thompson, T. A., Burrows, A., & Meyer, B. S. 2001, ApJ, 562, 837
[150] Thorne, K. S., Flammang, R. A., & Zytkow, A. N. 1981, MNRAS, 194, 475
[151] Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501

[152] Timmes, F. X. & Arnett, D. 1999, ApJS, 125, 277

[153] Totani, T., Sato, K., Dalhed, H. E. & Wilson, J. R. 1998, ApJ, 496, 216
[154] Tubbs, D. L. & Schramm, D. N. 1975, ApJ, 201, 467

[155] Tubbs, D. L. 1979, ApJ, 231, 846

[156] Tubbs, D. L. 1978, ApJS, 37, 287

[157] Tubbs, D. L., Weaver, T. A., Bowers, R. L., Wilson, J. R., & Schramm, D.
N. 1980, ApJ, 239, 271

[158] Vogel, P. 1984, Phys. Rev. D, 29, 1918

[159] Wallerstein, G., Iben, I., Parker, P., Boesgaard, A. M., Hale, G. M., Cham-
pagne, A. E., Barnes, C. A., Kéappeler, F., Smith, V. V., Hoffman, R. D., Timmes,
F. X., Sneden, C., Boyd, R. N., Meyer, B. S., & Lambert, D. L. 1997, Rev. Mod.
Phys., 69, 995

[160] Wanajo, S., Kajino, T., Mathews, G. J., & Otsuki, K. 2001, ApJ, 554, 578
[161] Wasserburg, G. J. & Qian, Y.-Z. 2000, ApJL, 529, 21

[162] Weber, E. J. & Davis, L. 1967, ApJ, 148, 217

[163] Westin, J., Sneden, C., Gustafsson, B., & Cowan, J. J. 2000, ApJ, 530, 783
[164] Woosley, S. E. & Hoffman, R. D. 1992, ApJ, 395, 202

[165] Woosley, S. E., Wilson, J. R., Mathews G. J., Hoffman, R. D., & Meyer, B. S.
1994, ApJ, 433, 209

[166] Woosley, S. E. & Weaver, T. A. 1995, AplJS, 101, 181
[167] Yueh, W. R. & Buchler, J. R. 1976, Ap. Space Sci., 41, 221



