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• How do black holes launch jets? What is the connection between the accretion 
disc, the corona and the jet?

• Does general relativity accurately describe the extreme gravity just outside the 
event horizon?



The black hole
• According to General Relativity and the no 

hair theorem, black holes are described by 

- Mass 

- Spin (angular momentum) 

- (Electrical charge) 

• Event horizon for a non-spinning black hole 

• For a rapidly-spinning black hole
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The accretion disc
• Material maintains circular orbits outside the 

innermost stable orbit, gradually spiralling 
inwards as viscous friction and magnetic 
fields transfer angular momentum outwards 

• At the innermost stable circular orbit, 
material transitions to a plunging orbit and 
falls rapidly into the black hole 

• ISCO location depends upon spin: 

•  a = 0: rISCO = 6 rg (or 3 rs) 

•  a = 0.998: rISCO = 1.235 rg



The corona

• Particle acceleration, likely by magnetic 
fields threading inner accretion disc and 
spinning black hole, produces a corona of 
energetic particles close to the black hole 

• Source of intense X-ray continuum emission 

• Illuminates the accretion disc, leading to 
reprocessing and reflection



Chandra X-ray Observatory

NuSTAR

XMM-Newton

XRISM
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The Relativistic 
Iron K Line

1.5 Ms iron K band spectrum of IRAS 
13224–3809 with XMM-Newton

Extended redshifted 
wing of emission line 
from innermost 
regions of disk closest 
to black hole

Relativistic effects including Doppler shifts and gravitational 
redshifts shift the observed energy (or wavelength) of photons 

emitted or reflected from different locations on the disk
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X-ray reflection and 
reverberation mapping of the 
inner accretion flow can tell 
us about…

• Geometry of the accretion disc and its 
inclination to our line of sight 

• Spin of the black hole 

• Location, geometry and structure of the 
corona 

• The connection between the inner accretion 
disc, corona and jet



Measuring black hole spin
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• As spin increases, ISCO moves to smaller radius and disk can 
extend closer to black hole 

• Inner radius of disk determines extremal redshift of broad 
iron K emission line in reflection spectrum



• Massive black hole seeds grow via accretion and/or 
mergers 

• Angular momentum must be conserved as gas 
accretes onto a black hole, and the black hole 
must retain the angular momentum it accretes 

• Spin of black hole depends on growth history 

• Prolonged uniform accretion of gas inflowing from 
the same direction causes the black hole to spin to 
continuously increase 

• Chaotic accretion of gas inflowing from different 
directions, or mergers between black holes reduce 
the spin to lower values

And the spin distribution 
of supermassive black 
holes encodes their 
growth histories

The measured spins of supermassive black holes plotted against 
their masses, compared to the predictions of models for their growth

Figure credit: J. Piotrowska



High-resolution X-ray spectroscopy with XRISM
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XRISM

The Resolve micro-calorimeter spectrometer 
measures X-ray photon energies to a resolution of 

±4.5eV (E/ΔE = 1500) by measuring the temperature 
rise as each is absorbed into silicon at T = 50mK



The broad iron K line in MCG–6-30-15

16

• XRISM Resolve high-
resolution spectrometer 
separates the broad iron K 
line from the inner accretion 
disk from narrow emission 
and absorption lines 

• Narrow lines are blended into 
the underlying broad line in 
lower resolution spectra 
measured by the Xtend CCD
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A Seyfert 1 galaxy at z = 0.0077
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The broad emission line is produced as X-rays from 
the corona reflect off of the inner accretion disk



The narrow iron K emission line is produced by 
reflection from more distant material



 The absorption lines are imprinted by winds and 
outflows of material launched from the accretion flow



From supermassive to stellar mass black holes

20

• The shape of the broad iron K line 
from the inner accretion disk is 
almost identical between: 

• MCG–6-30-15 - a supermassive 
black hole in an AGN 

• Cygnus X-1 - a stellar mass 
black hole in an X-ray binary 

• The emission line is generated by 
the same dynamics of the gas in 
orbit around a black hole
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Summary
• X-ray observations allow us to make detailed measurements of the 

extreme environment just outside the event horizon 

• Reflection of X-rays off material falling into the black hole produces 
emission lines that are broadened by the effects of General Relativity 

• We detect relativistically broadened emission lines and X-ray reflection 
and around black holes across the mass scale from stellar mass to 
supermassive black holes in active galactic nuclei 

• We can make measurements of these lines to reconstruct a map of the 
inner accretion disk, the particle acceleration region (corona) around the 
black hole, and to measure fundamental properties of the black hole, 
including spin 

• XRISM is providing the highest-resolution X-ray spectra measured around 
black holes, allowing us to separate the reflection from the accretion 
disk, reflection from more distant material and the signatures of winds to 
high precision


