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The black hole

» According to General Relativity and the no
hair theorem, black holes are described by
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» Eventhorizon for a non-spinning black hole
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The accretion disc

e Material maintains circular orbits outside the

innermost stable orbit, gradually spiralling
inwards as viscous friction and magnetic

fields transfer angular momentum outwards

o Attheinnermoststable circular orbit,

material transitions to a plunging orbit and

ralls rapidly into the black hole
e |SCO location depends upon spin:

e a=0:rsco=6r:(0r3r

e a=0.998: risco=1.235r,




The corona

« Particle acceleration, likely by magnetic
fields threading inner accretion disc and
spinning black hole, produces a corona of
energetic particles close to the black hole

o Source of intense X-ray continuum emission

o I[lluminates the accretion disc, leading to
reprocessing and reflection
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The Relativistic
Iron K Line
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The effects of General Relatvity
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X-ray reflection and
reverberation mapping of the
inner accretion flow can tell
us about...

e Geometry of the accretion disc and its
inclination to our line of sight

e Spin of the black hole

e Location, geometry and structure of the
COrona

e Theconnection between the inner accretion
disc, corona and jet
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As spin increases, ISCO moves to smaller radius and disk can
extend closer to black hole

Inner radius of disk determines extremal redshitt of broad

iron K emission line in reflection spectrum




And the spin distribution
of supermassive black

10— ‘_\llll| Hv7 1 | | llll! _l Ll ll ._.l__ Ll _IJ_H_ *i-—l L1 L1 | | o T T -
: L /4 T “* N hol des th
: \ 8 S o : oles encodes their
: % H\\ L ——._-‘-—.ﬂ O \I\\ . fj ] ° °
,L q i : rowth histories
0.8 |\ 7 * iy S =
( ) | ? :
| J ¢ = 4 T E
| 1 : Massive black hole seeds grow via accretion and/or
| ¢ -
0.6 ‘ o = mergers
n |
- - - .
J B — . Angular momentum must be conserved as gas
4 ]
0.4 . accretes onto a black hole, and the black hole
. - must retain the angular momentum it accretes
&gg‘gg‘?lgjﬁhipfi}]lgel 2019 + Reynolds+2022 - Spin of black hole depends on growth history
0.2 I 4 Mallick+2022
Dubois+2021 *z = 0.25 fallick+ - . | | |
®  [NewHorizon: on-the-fly] - Prolonged uniform accretion of gas inflowing from
: . : Beckmann & Smethurst+2022 i : : :
igure credit: J. Piotrowska ™ HorizonAGN: post-processing . the same direction causes the black hole to spin to
r’IJ | | | I I II | | L1 1 11 II | | L1 1 1 Ill | | L1 1 11 ll | | L1 1 11 II | | L1 11 II— 1 N
- , - f - continuously increase
10 10° 10° 10 10° 10 10" y

Mg M-
B [Mo)) Chaotic accretion of gas inflowing from different

" The measured spins of 5 permasswe black holes plotted agamst QI S ORI IRARE < 1 01os fealce
ik | the spin to lower values

thei’r.—mas'SeS;?com hared to- he. predlct|ons of models for the|r grovvth




High-resolution X-ray spectroscopy with XRISM
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The Resolve micro-calorimeter spectrometer
measures X-ray photon energies to a resolution of
+4.5eV (E/AE = 1500) by measuring the temperature
rise as each is absorbed into silicon at T =50mK




The broad iron K line in MCG-6-30-15

A Seytert 1 ga\axy atz=0.0077
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The narrovv iron K emlssmn lme is produced by
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From supermassive to stellar mass black holes

1.6 |13 e The shape of the broad iron K line
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X-ray observations allow us to make detailed measurements of the

extreme environment just outside the event horizon

Reflection of X-rays off material talli

emission lines that are broadened by the e

We detect relativistically broade

and around black holes across the mass sc

supermassive black holes in active galactic nuclei

ng into the black hole produces

Tects of General Relativity

ned emission lines and X-ray reflection

ale from stellar mass to

We can make measurements of these lines to reconstruct a map of the

including spin

inner accretion disk, the particle acceleration region (corona) around the

black hole, and to measure fundamental properties of the black hole,

XRISM is providing the highest-resolution X-ray spectra measured around

black holes, allowing us to se

disk, reflection from more dis

high precision

narate the reflection from the accretion
rant material and the signatures of winds to



