From “The ?:\m¢‘p\c_ ot 'D\é,\c\'\:\vf-té
Dover .Boo\cs) A . Bvstew et al.

ON THE ELECTRODYNAMICS OF
MOVING BODIES

BY
A. EINSTEIN

Translated from *“Zur Elekirodynamik bewegter Korper,”
Annalen der Physik, 17, 1905.

ON THE ELECTRODYNAMICS OF MOVING
BODIES

Br A. EINSTEIN

ally understood at’ the present time—when applied

to moving bodies, leads to asymmetries which_do not.
appear to be inherent in the phenomena. Take, for example,
the reciprocal electrodynamic action of a magnet'and a con-
ductor. = The observable phenomenon here depends only on
the relative motion of the conductor and the magnet, where-
as the customary view draws a sharp distinction between the
two cases in which either the one or the other of these bodies
is in motion. Forif the magnet is in motion ‘and ‘the con-
ductor ‘at’ rest, there arises in the neighbourhood ‘of the
magnet an electric field with a certain definite energy, pro-
ducing a current at the places where. parts of the conductor
are situated. But if the magnet is stationary and the con-
ductor in motion, no electric field arises in the neighbour-
hood of themagnet. In the conductor, however, we find an
electromotive force, to'which in itself there is no correspond-
ing energy, but which gives rise—assuming equality ' of
relative motion in the two cases discussed—to electric currents
of the same path and intensity as those produced by the
electric forces'in the former case.

Examples of this sort, together with the unsuccessful 'at-
tempts to discover any motion of the earth relatively to the
“light medium,” suggest that the phenomena of' electro-
dynamics as well as of mechanics possess no properties corre-
sponding to the idea of absolute rest. They suggest rather
that, as has already been shown to the first order of small
quantities, the same laws of electrodynamics and optics will

be valid for all frames of reference for which the equations of
37

IT is' known that Maxwell’s electrodynamics—as usu-
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mechanics hold good.* We will raise this conjecture (the
purport of which will hereafter be called the “ Principle of
“Relativity ) to the stafus of a postulate, and..also introduce
another postulate, which is only apparently irreconcilable
with_the former, namely, that light is always propagated in
empty space with a definite velocity ¢ which is independent
of the state of.mofion of the. emitting body. These two
postulates suffice for the attainment of a simple and consistent
theory of.the.electrodynamics of moving bodies based on
Maxwell's theory.for stationary bodies. The introduction of a
‘ luminiferous ether " will prove to be superfluous inasmuch
as the view here to be developed will not require an ‘‘ ab-
solutely stationary space’ provided with special properties,
nor assign a velocity-vector to a point of the empty space in
which electromagnetic processes take place.

The theory to be developed is based—like all electro-
dynamics—on the kinematics of the rigid body, since the
assertions of any such theory have to do with the relation-
ships between rigid bodies (systems of co-ordinates), clocks,
and electromagnetic processes. Insufficient consideration of
this circumstance lies at the root of the difficulties which the
electrodynamics of moving bodies at present encounters.

1. KIiNEMATICAL PART

§ 1. Definition of Simultaneity

Let us take a system of co-ordinates in which the
equations of Newtonian mechanics hold good.t In order to
render our presentation more precise and to distinguish this
system of co-ordinates verbally from others which will be
introduced hereafter, we call it the “ stationary system.”

If a material point is at rest relatively to this system of
co-ordinates, its position can be defined relatively thereto by
the employment of rigid standards of measurement and the
methods of Euclidean geometry, and can be expressed in
Cartesian co-ordinates.

If we wish to describe the motion of a material point, we

* The preceding memoir by Lorentz was not at this time known to the

suthor.
ti.e. bo the first approximation.
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give the values of its co-ordinates as functions of the time.
Now we must bear carefully in mind that a mathematical
description of this kind has no physical meaning unless we
are quite clear as to what we understand by “time.” We
have to take into account that all our judgments in which
time plays a part are always judgments of simultaneous
events. If, for instance, I say, * That train arrives here at
7 o'clock,” T mean something like this: * The pointing of
the small hand of my watch to 7 and the arrival of the train
are simultaneous events,” *

It might appear possible to overcome all the difficulties
attending the definition of ‘ time™ by substituting * the
position of the small hand of my watch for * time.” And
in fact such a definition is satisfactory when we are concerned
with defining a time exclusively for the place where the
watch is located ; but it is no longer satisfactory when we
have to connect in time series of events occurring at different
places, or—what comes to the same thing—to evaluate the
times of events occurring at places remote from the watch.

We might, of course, content ourselves with time values
determined by an observer stationed together with the watch
at the origin of the co-ordinates, and co-ordinating the corre-
sponding positions of the hands with light signals, given out
by every event to be timed, and reaching him through empty
space. But this co-ordination has the disadvantage that it is
not independent of the standpoint of the observer with the
watch or clock, as we know from experience. We arrive at
& much more practical determination along the following line
of thought.

If at the point A of space there is a clock, an observer at
A can determine the time values of events in the immediate
proximity of A by finding the positions of the hands which
are simultaneous with these events. If there is at the point
B of space another clock in all respects resembling the one at
A, it is possible for an observer at B to determine the time
values of events in the immediate neighbourhood of B. But
it is not possible without further assumption to compare, in

* We shall not here discuss the inexactitude which lurks in the concept

of simultaneity of two events at approximately the same place, which can
only be removed by an abstraction.
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respect of time, an event at A with an event at B. We have
80 far defined only an “ A time” and a “B time.” We
have not defined a common “time ” for A and B, for the
latter cannot be defined at all unless we establish by definitron
that the ‘‘ time " required by licht to travel from A to B
equals the “time’ it requires to travel from B to A.
Let a ray of light start at the “ A time " ¢, from A towards
B, let it at the *“ B time” ¢g be reflected at B in the direction
of A, and arrive again at A at the *“ A time ” '

In accordance with definition the two clocks synchronize
if

it — ta = t'a - ta.

We assume that this definition of synchronism is free
from contradictions, and possible for any number of points ;
and that the following relations are universally valid :—

1. If the clock at B synchronizes with the clock at A, the
clock at A synchronizes with the clock at B.

2. If the clock at A synchronizes with the clock at B and
also with the clock at C, the clocks at B and C also syn-
chronize with each other.

Thus with the help of certain imaginary physical experi-
ments we have settled what is to be understood by synchron-
ous stationary clocks located at different places, and have
evidently obtained a definition of * simultaneous,” or *‘ syn-
chronous,” and of “time.” The “time’’ of an event is
that which is given simultaneously with the event by a
_stationary clock located at the place of the event, this clock
being synchronous, and indeed synchronous for all time deter-
minations, with a specified stationary clock.

In agreement with experience we further assume the
quantity

2AB
fa —ta O
to be a universal constant—the velocity of light in empty
space.

It is essential to have time defined by means of stationary
clocks in the stationary system, and the time now defined
being appropriate to the stationary system we call it “ the
time of the stationary system.”
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§ 2. On the Relativity of Lengths and Times

The following reflexions are based on the principle of
relativity and on the principle of the constancy of the
velocity of light. These two principles we define as
follows :—

1. The laws by which the states of physical systems
undergo change are not affected, whether these changes of
state be referred to the one or the other of two systems of co-
ordinates in uniform translatory motion.

2. Any ray of light moves in the ** stationary " gystem of
co-ordinates with the determined velocity ¢, whether the ray
be emitted by a stationary or by a moving body. Hence

light path

veloelty = o S hterval

where time interval is to be taken in the sense of the definition
in § 1.

§Let; there be given a stationary rigid rod; and .let its
length be ! as measured by a measuring-rod which is also
stationary. We now imagine the axis of the rod' lying
along the axis of z of the stationary system of co-ordinates,
and that a uniform motion of parallel translation with velocity
v along the axis of z in the direction of increasing z is then
imparted to therod. We now inquire as to the length of the
moving rod, and imagine its length to be ascertained by the
following two operations :— '

(@) The observer moves together with the given measur-
ing-rod and the rod to be measured, and measures the length
of the rod directly by superposing the measuring-rod, 1n
just the same way as if all three were at rest. .

(b) By means of stationary clocks set up 1n the stationary
system and synchronizing in accordance with § 1, the ob-
server ascertains at what points of the stationary system t_he
two ends of the rod to be measured are located at a definite
time. The distance between these two points, measured by the
measuring-rod already employed, which in this case is atb rest,
is also a length which may be designated ‘ the length of the

rod.” o
In accordance with the principle of relativity the length
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to be discovered by the operation (a)—we will call it “the
length of the rod in the moving system "—must be equal to
the length 7 of the stationary rod.

The length to be discovered by the operation (b) we will
ca.ll‘ *“ the length of the (moving) rod in the stationary system.”
This we shall determine on the basis of our two principles,
and we shall find that it differs from I

_ Current kinematics tacitly assumes that the lengths deter-
mined by these two operations are precisely equal, or in other
words, that a moving rigid body at the epoch ¢ may in geo-
metrical respects be perfectly represented by the same body
at rest in a definite position.

We imagine further that at the two ends A and B of the

rod, clocks are placed which synchronize with the clocks of
the stationary system, that is to say that their indications
correspond at any instant to the ‘time of the stationary
system " at the places where they happen to be. These clocks
are therefore *“ synchronous in the stationary system.”
_ We imagine further that with each clock there is a mov-
Ing observer, and that these observers apply to both clocks
the criterion established in § 1 for the synchronization of two
clocks. Let a ray of light depart from A at the time * ta, let
113 be reflected at B at the time ts, and reach A again at the
time ¢,. Taking into consideration the principle of the con-
stancy of the velocity of light we find that

7 r
AB and #'y - tp = —TAB
- c+ v

tB—tA=c

yvhere ras denotes the length of the moving rod—measured
1n the stationary system. Observers moving with the moving
rod would thus find that the two clocks were not synchronous,
while observers in the stationary system would declare the
clocks to be synchronous.

So we see that we cannot attach any absolute signification
to the concept of §imulta.neitx, but that two events which,
viewed from a system of co-ordinates, are simultaneous, can

no longer be looked upon as simultaneous events when en-

. "t Time" here denokes * time of the stationary system " and also posi-
tion of hands of the moving clock situated at the place under discussion,”
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visaged from a system which is in motion relatively to that
system.

§ 3. Theory of the Transformation of Co-ordinates and
Times from a Stationary System to another System
in Uniform Motion of Translation Relatively to the
Former

Let us in “stationary’ space take two systems of co-
ordinates, i.e. two systems, each of three rigid material lines,
perpendicular to one another, and issuing from a point. ILet
the axes of X of the two systems coincide, and their axes of
Y and Z respectively be parallel. Let each system be provided
with a rigid measuring-rod and a number of clocks, and let
the two measuring-rods, and likewise all the clocks of the two
systems, be in all respects alike.

Now to the origin of one of the two systems (%) let a con-
stant velocity v be imparted in the direction of the increasing
z of the other stationary system (K), and let this velocity be
communicated to the axes of the co-ordinates, the relevant
measuring-rod, and the clocks. To any time of the stationary
system K there then will correspond a definite position of the
axes of the moving system, and from reasons of symmetry
we are entitled to assume that the motion of ¥ may be
such that the axes of the moving system are at the time ¢
(this “¢ " always denotes a time of the stationary system)
parallel to the axes of the stationary system.

‘We now imagine space to be measured from the stationary
system K by means of the stationary measuring-rod, and also
from the moving system % by means of the measuring-rod
moving with it; and that we thus obtain the co-ordinates
z, y, 2, and £, n, { respectively. Further, let the time ¢ of
the stationary system be determined for all points thereof
at which there are clocks by means of light signals in the
manner indicated in § 1; similarly let the time T of the
moving system be determined for all points of the moving
system at which there are clocks at rest relatively to that
system by applying the method, given in § 1, of light signals
between the points at which the latter clocks are located.

To any system of values z, y, z, £, which completely defines
the place and time of an event in the stationary system, there
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HE results of the previous investigation lead to
I a very interesting conclusion, which is here to be
deduced.

I based that investigation on the Maxwell-Hertz equa-
tions for empty space, together with the Maxwellian
expression for the electromagnetic energy of space, and in
addition the principle that :—

The laws by which the states of physical systems alter are
independent of the alternative, to which of two systems of co-
ordinates, in uniform motion of parallel translation relatively
to each other, these alterations of state are referred (principle
of relativity).

With these principles * as my basis I deduced inter alia
the following result (§ 8) :—

Let a system of plane waves of light, referred to the
system of co-ordinates (z, ¥, 2), possess the energy I ; let the
direction of the ray (the wave-normal) make an angle ¢ with
the axis of z of the system. If we introduce a new system of
co-ordinates (£, 7, ) moving in uniform parallel translation
with respect to the system (z, ¥, #), and having its origin of
co-ordinates in motion along the axis of z with the velocity »,
then this quantity of light—measured in the system (&, 5, &)
—possesses the energy

v
1—(—}cos¢

V=l
1 - ¥t

*The principle of the constancy of the velocity of light is of course

contained in Maxwell's equstions,
69 -
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where ¢ denotes the velocity of light. We shall make use of
this result in what follows.

Let there be a stationary body in the system (z, ¥, 2),
and let its energy—referred to the system (z, y, 2)—be E,.
Let the energy of the body relative to the system (£, 9, {),
moving ag above with the velocity v, be H,.

Let this body send out, in a direction making an angle ¢
with the axis of z, plane waves of light, of energy 4L
measured relatively to (z, y, z), and simultaneously an equal
quantity of light in the opposite direction. Meanwhile the
body remains at rest with respect to the system (z, y,2). The
principle of energy must apply to this process, and in fact
(by the principle of relativity) with respect to both systems
of co-ordinates. If we call the energy of the body after the
emission of light E, or H, respectively, measured relatively to
the system (z, 3, 2) or (£, n, {) respectively, then by employ-
ing the relation given above we obtain

E, = B, + 4L + 3L,
l—gcos¢ 1+1—’cos¢
1 — v¥/ct J1 - Y
L
1 = e

By subtraction we obtain from these equations

=Hl+

1
H,-E - H - E) =L{:/—1=_=0—W—1}.

The two differences of the form H - E occurring in this ex-
pression have simple physical significations. H and E are
energy values of the same body referred to two systems of
co-ordinates which are in motion relatively to each other, the
body being at rest in one of the two systems (system (z, ¥, 2)).
Thus it is clear that the difference H - E can differ from the
kinetic energy K of the body, with respect to the other
system (&, #, £), only by an additive constant C, which de-
pends on the choice of the arbitrary additive constants of the
energies H and E. Thus we may place
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HO—E0=K0+C)
HI—E1=K1+C!

since C does not change during the emission of light. So we
have .
- K, = Li{—7—— -1}
K, - K, L{J1 —7 }

The kinetic energy of the body Wit]? respect to (€, n, §)
diminishes as a result of the emission of hght,.and the amount
of diminution is independent of the properties of the body.
Moreover, the difference K, — K, like the kinetrc energy of
the electron (§ 10), depends on the velocity.

Neglecting magnitudes of fourth and higher orders we
may place

P L,

—0%
cl

Ko"K1=

DOt =

i

From this equation it directly follows that :— o

If a body gives off the energy L in the Jform of radiation,
its mass diminishes by L/c®. The fact that the energy with-
drawn from the body becomes energy of radiation evidently
makes no difference, so that we are led to the more general
conclusion that ]

The mass of a body is 8 measure of its energy-content ; if
the energy changes by Li, the mass changes ir} the same sense
by Li/9 x 10%, the energy being measured in ergs, and the
mass in grammes.

It is not impossible that with bodies whose energy-con-
tent is variable to a high degree (e.g. with radium salts) the
theory may be successfully put to the test. _

If the theory corresponds to the facts, radiation conveys
inertia between the emitting and absorbing bodies.





