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120 EXACT SOLUTIONS [5.1

where o < 0, % < 0, are spacelike surfaces which lie entirely ingide the
past null cone of the origin 0, and so are not Cauchy surfaces (see
figure 13). In fact the future Cauchy development of &, is the region
bounded by %, and the past light cone of the origin. By lemma 4.5.2,
the timelike geodesics through the origin O are orthogonal to the
surfaces &,. If reD*(F)uD~(S,) then the timelike geodesic
through r and O is the longest timelike curve between r and &,. If
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Fioure 13. A Cauchy surface {z* = constant} in Minkowski space—time, a.pd
spacelike surfaces &, &, which are not Cauchy surfaces. The normal geddesics
to the surfaces .%,, 5. all intersect at 0.

however r does not lie in D+(%,) y D~(%,) there is no longest timelike
curve between r and .%,: either r lies in the region ¢ > 0, in which case
there is no timelike geodesic through r orthogonal to &, or r lies in
the region o < 0, 2% > 0, in which case there is a timelike geodesic
through r orthogonal to &, but this geodesic is not the longest curve
between r and %, as it contains a conjugate point to &, at O (cf.
figure 13).

To study the structure of infinity in Minkowski space-time, we shall
use the interesting representation of this space-time given by Penrose.
From the null coordinates v, w, we define new null coordinates in

e e — T e —————
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which the infinities of v, w have been transformed to finite values;

thus we define p, ¢ by tanp = v, tang = w where -}z < P < im,
—47 < g < }7 (and p > ¢). Then the metric of {(-#,7n) takes the form

ds® = sec? preciq(—dpdg+ 1sin? (p — ¢) (d6% + sin? @ dg?)).
The physical metric v is therefore conformal to the metric g given by
ds® = —4dpdg +sin?(p —gq) (d6%+ sin? 8 d¢?). (5.5)
This metric can be reduced to a more usual form by defining
'=p+q, r=p-q
where =Tt <A, —~m<t—r <, rz0; (5.6)
{5.5) is then
d3® = — (d¢')® + (dr')? + sin® ' (d62 + sin2 @ dgp?), {5.7)
Thus the whole of Minkowski space-time is given by the region (5.8) of
the metric da? = }sec? (}(t' +7')) sec? (3" —r')) Q32

where ds® is determined by (5.7); the coordinates ¢, r of {5.3) are
related to ', r* by

2t = tan (}{¢' +7")) + tan (& —7")),
2r = tan (3(¢'+ r')) —tan (J{t’' — ).

Now the metric (5.7) is locally identical to that of the Einstein static
universe (see §5.3), which is a completely homogeneous space-time.
One can analytically extend (5.7) to the whole of the Einstein static
universe, that is one can extend the coordinates to cover the manifold
B'% 8% where —o0 < ' < oo and ', 0, ¢ are regarded as coordinates
on 8% (with coordinate singularities at +' = 0,7 =mand §=0,0=1n
similar to the coordinate singularities in (6.3); these singularities can
be removed by transforming to other local coordinates in a neighbour-
hood of points where (5.7) is singular). On suppressing two dimensions,
one can represent the Einstein static universe as the cylinder
#®+y? = 1 imbedded in a three-dimensional Minkowski space with
metric ds® = — df® + da?+ dy? (the full Einstein static universe can be
imbedded as the cylinder a?+y*+22+w? = 1 in a five-dimensional
Euclidean space with metric ds? = — d¢2+ da? + dy? +dz? +dw?, of.
Robertson (1933)).

One therefore has the situation: the whole of Minkowski space—time
is conformal to the region (5.6) of the Einstein static universe, that is,
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to the shaded area in figure 14. The boundary of this region may there-
fore be thought of as representing the conformal structure of infinity
of Minkowski space-time. It consists of the null surfaces p = 37
(labelled #+)and ¢ = — 17 (labelled #-) together with points p = }7,
¢ =4r (labelled i*), p= 7, g= — 7 (labelled %) and p = — i,
¢ =—4n (labelled i-). Any future-directed timelike geodesic in
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F1gurE 14. The Einstein static universe represented by an imbedded cylinder;
the coordinates &, ¢ have been suppressed. Each point represents one half
of & two-sphere of area 47 sin®s". The shaded region is conformal to the whole of
Minkowski space—time; its boundary (part of the null cones of i+, 4% and i~)may
be regarded as the conformal infinity of Minkowski space—tirne.

Minkowski space approaches i+ (#7) for indefinitely large positive
(negative) values of its affine parameter, g0 one can regard any time-
like geodesic as originating at i~ and finishing at i+ (cf. figure 15(1)).
Similarly one can regard null geodesics as originating at .#~ and ending
at S+, while spacelike geodesics both originate and end at i°. Thus one
may regard ¢+ and i- ag representing future and past timelike infinity,
F*and S ag representing future and past null infinity, and ¢ ag

Tepresenting spacelike infinity. (However non-geodesic curves do not

Spacelike
geodesic
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obey these rules; e.g. non-geodesic timelike curves may start on #-
and end on #+.) Since any Cauchy surface intersects all timelike and
null geodesics, it is clear that it will appear as a cross-section of the
8pace everywhere reaching the boundary at :9.

r=20

FHr = o,

g = §m { =+co)
S4p = i) {g = constant}
Surf
Surface {7 = constant} / {‘u;a:::sum}
r=20, o . 10
t= ¥ (regard as
] one point) Sr =,
Surface e
Timelike {p = constant} {p = constant}
geodesics F{g =—}m) Two-spheres
Null ) } £ {r = constant}
geodesic g
i"(p = —4n)

(i) (i)
Ficure 15
(i) The shaded region of figure 14, with only one coordinate suppressed,
representing Minkowski epace~time and its conformal infinity.
(ii) The Penrose diagram of Minkowski space-time; each point represents
a two-sphere, except for i+, 10 and =, each of which is a single point, and points
on the line r = ¢ {where the polar coordinates are singular).

One can also represent the conformal structure of infinity by
drawing a diagram of the (¢',7') plane, see figure 15 (ii). As in figure
12 (ii), each point of this diagram represents a sphere 82, and radial
null geodesics are represented by straight lines at + 45°, In fact, the
structure of infinity in any spherically symmetric space-time can be
represented by a diagram of this sort, which we shall call 8 Penroge
diagram. On such diagrams we shall represent infinity by single lines,
the origin of polar coordinates by dotted lines, and irremovable singu-
larities of the metric by double lines.

The conformal structure of Minkowski space we have described is
what one would regard as the ‘normal’ behaviour of a space—time at
infinity; we shall encounter different types of behaviour in later
sections.

Finally, we mention that one can obtain spaces locally identical to
{-#,n) but with different (large scale) topological properties by identi-
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Froure 22. Dust-filled Bianchi I space with a ingulari
: pancake sin ty.
(i) The (r,n) plane; null lines are at + 45°. Y

(i) A half-secti.on of the space in (7, 7, ¥) coordinates {the z-coordinate is §
suppressed), showing the past light cone of the point p = (1,, 0, 0). There ia & |

particle horizon in the y-direction but not in the - {i.e. ) direction.

field equations equivalent to (5.16), (5.17) inside ¥7, and is a flat
space-time outside ¥". However the solution is not C! across the
boundary of ¥”, and in fact the density of matter becomes infinite on
this boundary (as §— 0 there). Since the first derivatives are not
square integrable, the Einstein field equations cannot be interpreted
on the boundary even in a distributional sense (see §8.4). While the
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gtension onto the boundary is unique, it is in no way unique beyond
he boundary. We have carried out the extension in the case of dust;
imilar extension could be carried out if one had a mixture of matter
pd radiation.

£t us now return to considering general non-empty spatially homo-
imeous models. The existence of a singularity in these models will
pllow directly from Raychaudhuri’s equation if the motion of the

gample, if the world-lines are orthogonal to the surfaces of homo-
meity) and the timelike convergence condition is satisfied; however
exist such spaces in which the matter accelerates and rotates,
ither of these factors could possibly prevent the existence of a
arity. The following result, which is an improved version of a
georem of Hawking and Ellis (1965), shows that in fact neither
icceleration nor rotation can prevent the existence of singularities in
hese models.

2orem

(4, g) cannot be timelike geodesically complete if:

(1) B, K°K® > 0 for all timelike and null vectors K (this is true
| the energy-momentum tensor is type I (§4.3) and ux+p; >0,
+§‘_‘,p‘—41rA > 0);

'(2) there exist equations of motion for the matter fields such that
Cauchy problem has a unique solution (see chapter 7);

'(3) the Cauchy data on some spacelike three-surface 5 is invariant
nder a group of diffeomorphisms of # which is transitive on 5.

group of diffeomorphisms, these are isometries and J is complete,
i.e. cannot have any boundary. It can be shown (see § 6.5) that if there
8 anon-spacelike curve which intersects # more than once, then there
xists a covering manifold A of M4 inwhich each connected component
of the image of 3# will not intersect any non-spacelike curve more than
once. We shall assume that .4 is timelike geodesically complete, and
how that this is inconsistent with conditions (1), (2) and (3).

| Let 5 be a connected component of the image of #° in A By (3),
the Cauchy data on ## is homogeneous. Therefore by condition (2),
the Cauchy development of any region of S is isometric to the Cauchy
evelopment of any other similar region of . This implies that the
aces {8 = constant} are homogeneous if they lie within the Cauchy
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Fiouze 23. Secthn (8, #) constant of the Schwarzschild solution.

((:l}] é_p;l)‘arl-::; sx:;gulant.y at * = 2m when coordinates (t, r) are used
_ Inkelstein diagram obtained by using coordinates : Li ¢ 45°
lines of constant v). Surface » = 2m is & null surface on whgﬁ?;l:oes B a8 ore

-1
! = constant My

5.5] THE SCHWARZISCHILD SQLUTION 153

. jsometric to (., 8). A construction of this larger manifold has been
- given by Kruskal (1860). To obtain it, consider {.#,8) in the coordi-
* nates (v,w, 0, §); then the metric takes the form

dg? = — (1 _2%11,) du dw + r3(d6? + sin2 8 d¢?),

where r is determined by

Y(v—w) = r+ 2mlog (r— 2m).

'; This presents the two-space (6,¢ constant) in null conformally flat

coordinates, as the space with metric ds? = —dvdw is flat. The most
general coordinate transformation which leaves this two-space
expressed in such conformally flat double null coordinatesis v’ = v'(v),
w’ = w'(w) where v’ and w’ are arbitrary C! functions. The resulting

- metric is

2m\ dv dw
2. 1PV 2 O Qo dw + r3(dO2 +sin? 8 dg?
ds? = (l - )dv’d _ do’ duw’ +r3(d6? + sin® 8 dP?).
To reduce this to a form corresponding to that obtained earlier for

Minkowski space-time, define
g =o' —w), t'=3}v+w)
The metric takes the final form

ds? = Fo(t', ') {— 't +da'?) + 12(, 2') (A6 +sin? 6 dg?).  (5.23)

The choice of the functions v’, ' determines the precise form of the
metric. Kruskal's choice was o' = exp (v/4m), w’ = —exp (—wf4m).
Then r is determined implicitly by the equation

(¢)2—(x")? = —(r—2m)exp (r/2m) (5.24)

and F is given by
F? = exp(—r[2m). 16m?/r. (5.25)

On the manifold .#* defined by the coordinates (t',z',6,¢) for
{t')*— ('}t < 2m, the functions r and F (defined by (5.24), (6.25)) are
positive-and analytic. Defining the metric g* by (5.23), the region I of
(4*, 8*) defined by ' > |t'| is isometric to (#,g), the region of the
Schwarzschild solution for which r > 2m. The region defined by
z’ > ~t' (regions I and II in figure 24) is isometric to the advanced
Finkelstein extension {.#’, 8'). Similarly the region defined by 2’ > ¢’
(regions I and IT" in figure 24) is isometric to the retarded Finkelstein
extension (.#”, &"). There is also a region I', defined by z’' < —|¢],
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F16URE 24. The maximal analytic Schwarzschild extension. The @, ¢ coordinates
are suppressed; null lines are at + 45° Surfaces {r = constant} are homogeneous.

{i) The Kruskal diagram, showing asymptotically flat regions I and I’ and
regions II, IT" for which r < 2m.

(i1} Penrose diagram, showing conformal infinity as well as the two

singularities.

which turns out to be again isometric with the exterior Schwarzschild
solution (.#, ). This can be regarded as another asymptotically flat
universe on the other side of the Schwarzschild ‘throat’. (Consider the
section ¢ = 0. The two-spheres {r = constant} behave as in Euclidean
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space, for large »; however for small », they have an area which
decreases to the minimum value 16mm?and then increases again, as the
two spheres expand into the other asymptotically flat three-space.}

. The regions I’ and 1I are isometric with the advanced Finkelstein

extension of region I', and similarly I' and I’ are isometric with the
retarded Finkelstein extension of I', as can be seen from figure 24,
There are no timelike or null curves which go from region I to region I’
All future-directed timelike or null curves which ecross the part of the
surface r = 2m represented here by ¢’ = |z’| approach the singularity
at ¢ = (2m + (z')%)}, where r = 0. Similarly past-directed timelike or
null curves which cross ¢’ = — |2'| approach another singularity at
t' = —(2m+(2')*}, where again r = 0.

The Kruskal extension {.€*, £*) is the unique analytic and locally
inextendible extension of the Schwarzschild solution. One can con-
struct the Penrose diagram of the Kruskal extension by defining new
advanced and retarded null coordinates

¥ = arctan (v'(2m)-t), w” = aretan (w'(2m)-1)

for —7<v+w <m and —-Im<v" <im —Ir<w <inm

(see figure 24 (ii)). This may be compared with the Penrose diagram
for Minkowski space (figure 15 (ii}). One now has future, past and null
infinities for each of the asymptotically flat regions I and I’. Unlike
Minkowski space, the conformal metric is continuous but not differ-
entiable at the points i°.

If we consider the future light cone of any point cutside r = 2m,

- the radial outwards geodesic reaches infinity but the inwards one

reaches the future singularity; if the point lies inside r = 2m, both these
geodesics hit the singularity, and the entire future of the point is ended
by the singularity. Thus the singularity may be avoided by any
particle ontsider = 2m (soitisnot ‘universal’ asitisin the Robertson—
Walker spaces), but once a particle has fallen inside » = 2m (in region
IT) it cannot evade the singularity. This fact will turn out to be closely
related to the following property: each point inside region IT represents
a two-sphere thatis a closed trapped surface. This means the following:
consider any two-sphere p (represented by a point in figure 24) and
two two-spheres ¢, s formed by photons emitted radially outwards,
inwards at one instant from p. The area of ¢ (which is given by 4#+?)
will be greater than the area of p, but the area of ¢ will be less than the
area of p, if all three lie in a region r > 2m. However if they all lie in
the region II where r < 2m, then the areas of both ¢ and s will be less
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liverses by passing through the ‘wormholes’ made by charges.
nfortunately it seems that one would not be able to get back again
pour universe to report what one had seen on the other side.

The metric (5.28) is analytic everywhere except at 7 = r_ where it is
generate but one can define different coordinates v” and w” by

" _ 7o
v arc tan (exp (2 o v)) .

g ' w" = arctan ( —exp (_—r*—i-r—‘w)) ,

2nr_2

here  is an integer > 2(r,)?(r_)~%. In these coordinates, the metric
lytic everywhere except at r = r,_ where it is degenerate. The
pordinates v” and w” are analytic functions of v” and w” for r  r,
pr_. Thus the manifold .#* can be covered by an analytic atlas, con-
jisting of local coordinate neighbourhoods defined by coordinates v”
and ©" for r + r_ and by local coordinate neighbourhoods defined by
# and w” for r % 7. The metric is analytic in this atlas.

' The case ¢ = m? can be extended similarly; the case € > m? is
dready inextendible in the original coordinates. The Penrose diagrams
if these two cases are given in figure 26.

In all these cases, the singularity is timelike. This means that, unlike
n the Schwarzschild solution, timelike and null curves can always
void hitting the singularities. In fact the singularities appear to be
pulsive: no timelike geodesic hits them, though non-geodesic time-
like curves and radial null geodesics can. The spaces are thus timelike
though not null) geodesically complete. The timelike character of the
singula ity also means that there are no Cauchy surfaces in these
spaces: given any spacelike surface, one can find timelike or null curves
which run into the singularity and do not cross the surface. For
example in the case e < m?, one can find a spacelike surface & which
ierosses two asymptotically flat regions I (figure 25). This is a Cauchy
urface for the two regions I and the two neighbouring regions II.
However in the neighbouring regions III to the future there are past-
directed inextendible timelike and null curves which approach the
singularity and do not cross the surface r = r_. This surface is there-
fore said to be the future Cauchy horizon for &. The continuation of
the solution beyond r = r_is not determined by the Cauchy dataon &.
he continuation we have given is the only locally inextendible
analytic one, but there will be other non-analytic C= continuations
which satisfy the Einstein-Maxwell equations.

r=0 NF=r_ Ve
(singularity) \\ /%

r=40
= r._ || (singularity)

. ——Cauchy hotizon

/‘//;\.’\,-;T/for.?

surfaces
{t= conatant}

F1eurE 25. Penrose diagram for the maximall i ]
I - y extended Reissner—Nordstrs,
solution (e? < m?). An infinite chain of asymptotically flat regions 1"Il '
{00 >r > r.) are connected by regions II (r, > r » r.)and III (r_ > r > O)
each region III is bounded by a timelike singularity at » = 0. '

but unlike in the Schwarzschild solution, it is timelike and so can be
avoided by a future-directed timelike curve from a region I which |
crosses r = 7,. Such a curve can pass through regions I1, III and II §
and re-emerge into another asymptotically flat region I. This raises |
the intriguing possibility that one might be able to travel to other |
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Fraure 26. P i i i
e 2 enrose dlam for the maximelly extended Reissner—Nordstrém
(1} e*=m3, (i) e > m2,
:;1 t_:::s ﬁIr;; case there 1s an inﬁ.n_it.a chain or regions I (¢0 > » > m) connected by
i (m>r> 0].'I_‘hepomtsparenotpartoftheaingu]arityatr = 0, but
are really exceptional points at infinity. B
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A particle P crossing the surface r = r, would appear to have

" infinite redshift to an observer O whose world-line remains outside

¢ = r, and approaches the future infinity i+ (figure 25). In the region 11
between 7 = r. and r = r_, the surfaces of constant » are spacelike and
80 each point of the figure represents a two-sphere which is a closed
trapped surface. An observer P crossing the surface 7 = 7_ would see
the whole of the history of one of the asymptotically flat regions I in
a finite time. Objects in this region would therefore appear to be
infinitely blue-shifted as they approached i+. This suggests that the
surface » = r_ would be unstable against small perturbations in the
initial data on the spacelike surface &, and that such perturbations
would in general lead to singularities on r = r_.

5.6 The Kerr solution

In general, astronomical bodies are rotating and so one would not
expect the solution outside them to be exactly spherically symmetric.
The Kerr solutions are the only known family of exact solutions which
could represent the stationary axisymmetric asymptotically flat field
outside a rotating massive object. They will be the exterior solutions
only for massive rotating bodies with a particular combination of
multipole moments; bodies with different combinations of moments
will have other exterior solutions. The Kerr solutions do however
appear to be the only possible exterior solutions for black holes (see
§9.2 and §9.3).

The solutions can be given in Boyer and Lindquist coordinates
(r,0, ¢,t) in which the metric takes the form

2
dst = p? (dT’ + daz) +(r+a?)sin?Bdg —dee + 27":' (@sin?6d¢ — di)?,

(5.29)
where  p¥(r,0) = r+a%cos?@ and A(r) = r2—-2mr+a’.

m and a are constants, m representing the mass and ma the angular
momentum as measured from infinity (Boyer and Price (1965)); when
a = 0 the solution reduces to the Schwarzschild solution. This metric
form is clearly invariant under simultaneous inversion of ¢ and ¢,
j.e. under the transformation {——¢, ¢——¢, although it is not
invariant under inversion of  alone (except when ¢ = 0). This is what
one would expect, since time inversion of a rotating object produces
an object rotating in the opposite direction.
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When a® > m?, A > 0 and the above metric is singular only when i

r = 0. The singularity at r = 0 is not in fact a point but a ring, as can
be seen by transforming to Kerr-Schild coordinates (z,y,z,%), where

z+iy = (r+ia)sin Bexpij(dgs.{_aA—x dr),
z = rcosB, i= J.(dt'!'(rz'*'az)A_ldf)—r.

In these coordinates, the metric takes the form
ds? = dx? + dy® + dz® — di®

2m?  (rizdz+ydy)—alzdy—ydz) zdz  _\?
+r4+a2z=( poprp +—;—+dt) . (5.30)

where r is determined implicitly, up to a sign, in terms of z, y, z by
M- (22 +yt+22—at)ri—a%? = 0.

For r + 0, the surfaces {r = constant} are confocal ellipsoids in the
(x, ¥, z) plane, which degenerate for r = 0 to the disc 22+ y% < a%,z = 0.
The ring 2* + y* = a?, z = 0 which is the boundary of this disc, is a real
curvature singularity as the scalar polynomial R,,.;R% diverges
there. However no scalar polynomial diverges on the disc except at
the boundary ring. The funetion 7 can in fact be analytically con-
tinued from positive to negative values through the interior of the dise
22+y% < a? z =0, to obtain & maximal analytic extension of the
solution,

To do this, one attaches another plane:defined by coordinates
(z’,y',2') where a point on the top side of the disc z*+y* < a?, 2= 0
in the (z,y,z) plane is identified with a point with the same x and y
coordinates on the bottom side of the corresponding dise in the
(z',%',2') plane. Similarly a point on the bottom side of the disc in the
{z,y,z) plane is identified with a point on the top side of the disc in the
{#’, 3, 2") plane (see figure 27). The metric (5.30) extends in the obvious
way to this larger manifold. The metric on the (z', ¥, 2") region is again
of the form (5.29), but with negative rather than positive values of .
At large negative values of 7, the space is again asymptotically flat
but this time with negative mass. For small negative values of » near
the ring singularity, the vector 8/¢ is timelike, so the circles
(¢ = constant, r = constant, § = constant) are closed fimelike curves.
These closed timelike curves can be deformed to pass through any
point of the extended space {Carter (1968a)). This solution is geodesic-

5.6) THE KERR SOLUTION

ally incomplete at the rin,
i null geodesics which reac
| plane on the positive r side (Carter {19684a)).

TiquRE 27. The maximal extel e
byGidentifying the top of the disc xz.-{- Yyt < a”, 2= (2 in the (x, ¥,
bottom of the corresponding disc in the (", ¥, £)
figure shows the sectionsy = 0, ¥
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g singularity. However the only timelike a,rfnd
h this singularity are those in the equatorial
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The extension in the case g% < m? is rather more cc;mp!ait;ate:(i
because of the existence of the two value_s r, =m+(m —fa ) aare
s =m—(mi—a?)t of r at which Air) v.amshes. T.hese S\;' a((;es;rﬁm
si-milar to the surfaces r=ry, r=7_10 the Relssner—t or ?Orms
golution. To extend the metric across these surfaces, one trans

to the Kerr coordinates (7,6, $.,%.), where
du, = dt+ (PP +a)A-dr, df, = d¢ +al-1dr.
The metric then takes the form
dst = p2df? - 2asin?fdr d¢, + 2drdu.
+p-H(r+atf— Aatsin?@]sin?0de,?
— dap=tmrsint0dg, du, ~ {1 —2mrp~?)du,® (5.31)
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on the manifold defined by these coordinates, and is analytic at] AU AL
r =7, and r = r_. One again has a singularity at » = 0, which has the ]
same ring form and geodesic structure as that described above. The |
metric can also be extended on the manifold defined by the coordinates |

(r.6,¢_,u_) where
du_=dt—(r2+e?)A-1dr, d¢_=d¢—aA-dr;

the metric again takes the form (6.31), with ¢, u, replaced by —¢_,
— %_. The maximalanalytic extension can be built up by a combination 3
of these extensions, as in the Reissner-Nordstrém case {Boyer and
Lindquist (1967), Carter {1968a)). The global structure is very similar |
to that of the Reissner-Nordstrém sclution except that one can now §
continue through the ring to negative values of r. Figure 28 (i} shows |
the conformal structure of the solution along the symmetry axis. The |
regions I represent the asymptotically flat regions in which r > r,. |
The regions II (r_ < r < r,) contain closed trapped surfaces. The }
regions III {—o0 < r < r_) contain the ring singularity; there are |
closed timelike curves through every point in a region III, but no
causality violation occurs in the other two regions. :

In the case a? = m?, 7, and r_ coincide and there is no region II. The |
maximal extension is similar to that of the Reissner-Nordstrém solu- 1
tion when e? = m?. The conformal structure along the symmetry axis |
in this case is shown in figure 28 (ii). i

The Kerr solutions, being stationary and axisymmetric, have a |
two-parameter group of isometries. This group is necessarily Abelian §
(Carter (1970)). There are thus two independent Killing vector fields §
which commute. There is 2 unique linear combination K@ of these |
Killing vector fields which is timelike at arbitrarily large positive and |
negative values of . There is another unigue linear combination K¢ |
of the Killing vector fields which is zero on the axis of symmetry. The
orbits of the Killing vector K° define the stationary frame, that is, an
object moving along one of these orbits appears to be stationary with
respect to infinity. The orbits of the Killing vector K¢ are closed curves,
and correspond to the rotational symmetry of the solution.

In the Schwarzschild and Reissner-Nordstrém solutions, the
Killing vector K¢ which ig timelike at large values of r is timelike ]
everywhere in the region I, becoming null on the surfaces r = 2m and |
r = r, respectively. These surfaces are null. This means that a particle |
which crosses one of these surfaces in the future direction cannot |
return again to the same region. They are the boundary of the region

5 . The conformal structure of the Kerr solutions along the a.xi_s of
: tf;, (i) in the case 0 < a® < m?, (i) in the cage a? = m?, '_I‘l}e dotted lines
ars lines of constant r; the regions I, TI and III in case (i) are divided by r = r,
and r = r_, and the regions I and III in case (ii) by r=m. In both cases, the
structure of the space near the ring singularity is as in figure 27.

of the solution from which particles can escape to the infinity #+ of
; ;lpa.rticula.r region I, and are called the event korizons of that #+. (Tl?ey
' arein fact the event horizon in the sense of § 5.2 for an observer moving
on any of the orbits of the Killing vector K@ in the region 1.) .
In the Kerr solution on the other hand, the Killing vector Ke is
spacelike in a region outside r = 7, called the ergosphere (figure 29).
| The outer boundary of thisregion is thesurface r = m -+ (mt—a® cosz'ﬂ?i
' on which K@ isnuil. This is called the atationary limit surface since it is
' the boundary of the region in which particles travelling on a tlmx?llke
ourve can travel on an orbit of the Killing vector K¢, and so remain at
' rest with respect to infinity. The stationary limit surface is & timelike
" gurface except at the two points on the axis, where it is _null‘(a.t .these
' points it coincides with the surface r = 7 +). Where it is tx.mehl':e it can
be crossed by particles in either the ingoing or the outgoing direction.
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Symmetry axis
(0= 0)

Equatorial
plane
{# = in)

Stationary
limit

sutface
E
=7 rgosphere
Event horizon
Ring T=r,
singuiarity

Ficure 29. In the Kerr solution with 0 < g2

_ : < a? < m?, the ergosph i
the stationary limit surface and the horizon at » = r,, e o oo eet
infinity from region I (outside the event horizon r = r.}
(1_)etw_een r=r,and 7 =r_) and region III (r <~
ring singularity}. .

Particles can escape to |
_but not from region IT
; this region contains the

C

Ergoapherc

Singularity

=7

Event
honizon
=1,

Stationary
. limit surface
F1cure 30. The equatorial plane of a Kerr solution with m? > a®. The circles

represent the position a short time late i i
S el r of flashes of light emitted by the points
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" It is therefore not the event horizon for #+. In fact the event horizon
 is the surface r = 7, = m+ (m?—a?)b. Figure 30 shows why this is. It

ghows the equatorial plane & = }m; each point in this figure represents

* an orbit of the Killing vector K5, i.e. it is stationary with respect
" o J*. The small circles represent the position a short time later of

flashes of light emitted from the points represented by the heavy

' black dots. Outside the stationary limit the Killing vector K¢ is time-

' Jike and so lies within the light cone. This means that the point in

" figure 30 representing the orbit of emission lies within the wavefront
of the light.

On the stationary limit surface, K° is null and so the point repre-
genting the orbit of emission lies on the wavefront. However the wave-
front lies partly within and partly outside the stationary limit surface;

it is therefore possible for a particle travelling along a timelike curve
" t0 escape to infinity from this surface. In the ergosphere between the
'\ gtationary limit surface and r = r_, the Killing vector K¢ is spacelike
~ and so the point representing the orbit of emission lies outside the

wavefront. In this region it is impossible for a particle moving on a

. timelike or null curve to travel along an orbit of the Killing vector and
" 50 to remain at rest with respect to infinity. However the positions of

the wavefronts are such that the particles can still escape across the

. gtationary limit surface and so out to infinity. On the surface r =r,,

the Killing vector K is still spacelike. However the wavefront corre-

. gponding to a point on this surface lies entirely within the surface.

This means that a particle travelling on a timelike curve from a point
on or inside the surface cannot get outside the surface and 80 cannot
get out to infinity. The surface r = 7, is therefore the event horizon

" for £+ and is & null surface.

Although the Killing vector K@ is spacelike in the ergosphere, the
magnitude KeRoK, K, of the Killing bivector K, ia By i8 negative every-
where outside r=r,, except on the axis Ke = 0 where it vanishes.
Therefore K and K¢ span a timelike two-surface and so at each point
outgide r = 7 off the axis there is a linear combination of K* and Ra
which is timelike. In a sense, therefore, the solution in the ergosphere
is locally stationary, although it is not stationary with respect to
infinity. In fact there is no one linear combination of K+ and K< which
is timelike everywhere outside r = 7. The magnitude of the Killing
bivector vanishes on r = r,, and is positive just inside this surface.
Onr = 7., both K= and K= are spacelike but there is a linear combina-
tion which is null everywhere on r = r, (Carter (1969)).
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The behaviour of the ergosphere and the horizon we have discussed -
will play an important part in our discussion of black holes in §9.2:
and §9.3,

Just as the Reissner-Nordstrim solution can be thought of ag
a charged version of the Schwarzschild solution, 5o there is a family of
charged Kerr solutions (Carter {1968a)). Their global properties are
very similar to those of the uncharged Kerr solutions. 3

5.7 Gédel's universe
In 1949, Kurt Godel published a paper (Godel {1949)) which provided

a considerable stimulus to investigation of exact solutions more com-
Plex than those examined 80 far. He gave an exact solution of
Einstein’s field equations in which the metter takes the form of a
pressure-free perfect fluid (Top = puyu, where £ is the matter density
and u, the normalized four-velocity vector). The manifold is R4 and
the metric can be given in the form

de? = —df? 4 dat dexp(2(y2)wz)dy? + d22— 2 exp ((/2) wz) de dy,
where » > 0is a constant; the field equations are satisfied if u = 8fox®

(i.e. u® = 82,y and dmp = @ = — A,

The constant « is in fact the ragnitude of the vorticity of the flow

vector u,

This space-time has a five-dimensional group of isometries which
Is transitive, ie. it is a completely homogeneous space-time. {An
action of a group is transitive on _# if it can map any point of 4 into
any other point of .#.) The metric is the direct sum of the metric g, &
given by

ds? = —dez4+ da?— $exp (2(/2) wx) dy? - 2exp ((/2) wz) dt dy

on the manifold .4, = B® defined by the coordinates {t, z, ¥}, and the
metric 8, given by ds,? = dz?

on the manifold 4, = B! defined by the coordinate z. In order to
describe the properties of the solution it is sufficient to consider only |

("fh gl)
Defining new coordinates (', 7, ¢) on ., by

exp (2} wz) = cosh 2r + cos ¢ sinh 2r,
wyexp ((,/2) wx) = sin ¢ sinh 2r,
tan ${¢ + wt — (W2)t') = exp (- 2r)tan ¢,
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the metric g, takes the form

ds,® = 20w~%(— dt'+ dr?— (sinh*r —ginh?r) d@?+ 2(,/2}sinh?rd¢ de),

,.'where —0<t<0,0<r <c0,and 0 < ¢ < 27, ¢ = 0 being identified

with ¢ = 27; the flow vector in these coordinates is u = {w/ (/2)) 2far.

This form exhibits the rotational symmetry of the solution about the
axisr = 0. By a different choice of coordinates the axis could be chosen
to lie on any flow line of the matter.

r=14
[coordinate axis)
_Matter world-line — 3”8 future null cone
" (r, ¢ constant) \V“ [refocusses at p”)
S

Null cone p ’s null cone refocusses at o'
Null cone  tangent to ok
includes cirele ) Caustic on p's
circle', f _ A Nulligeodesws future null cone
\ f y y
i =

A

3 1
£r = log (14,2
(closed timelike , log (1+42) '
curve| | iclosed null curve) includes circle
o =
- p's future 'm0
null cone

r < log (14,2)
{closed apacelike
curve)

v
¢ F

. FiourEe 31. Godel's universe with the irrelevant coordinate z suppressed. The

space ig rotationally symmetric about any point; the diagram Trepresents cor-
reotly the rotational symmetry about the axis 7 = 0, and th_e time invariance.
The light cone opens out and tips over as r increases (see line L) resulting in

- closed timelike curves. The diagram does not correctly represent the fact that
. ali points are in fact equivalent.

The behaviour of (.#),8,) is illustrated in figure 31. The light- cones
on the axis 7 = 0 contain the direction 8/at' (the vertical direction on
the diagram) but not the horizontal directions 8/2r and 3/6¢f. As one
moves away from the axis, the light cones open out and tilt in the
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F1GURE 60. The collision and mergi i
: ging of two black holes. At time 7. ,
&pparent horizons 8.7, 27, inside the avent horizons 2%, ;

: 7 » 898, respecy;
By time 7, the event horizons have merged to form a six;gle ;vent i

a third apparent horizon has now formed surr i
S surrounding both the

n

If 6 were negative in a neighbourhood in 89 () of a point pea
one could deform 3.7 (1) outwards in &(7) to obtain an outer tra
surface outside 8.7 (7).

The nuil geodesics orthogonal to the apparent horizon 27 (1)

surface #(7) will therefore start out with zero convergence. Howy

if they' encounter any matter or any Weyl tensor satisfying
generality condition (§4.4), they will start converging, and so
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ion with a later surface $(7") will lie inside the apparent

n o7 (7'). In other words, the apparent horizon moves outwards
8s fast as light; and moves out faster than light if any matter
jation falls through it. As the example above shows, the apparent
n can also jump outwards discontinuously. This makes it
to work with than the event horizon, which always moves in

linuous manner. We shall show in the next section that the event

nt horizons coincide when the solution is stationary. One
therefore expect them to be very close together if the solution
ly stationary for a long time. In particular, one would expect
to be almost the same under such circumstances. If one has

tion which passes from an initial nearly stationary state through

on-stationary period to a final nearly stationary state, one can
proposition 9.2.7 to relate the areas of the initial and final

e final state of black holes

 last section, we assumed that one could predict the future far
from a collapsing star. We showed that this implied that the star
inside an event horizon which hid the singularities from an
le observer. Matter and energy which crossed the event horizon
be lost for ever from the outside world. One would therefore
that there would be a limited amount of energy available to
iated to infinity in the form of gravitational waves. Once most
senergy had been emitted, one would expect the solution outside
n to approach a stationary state. In this section we shall
study black hole solutions which are exactly stationary, in
tion that the exterior regions will closely represent the

tates of solutions outside collapsed objects.
precisely, we shall consider spaces (.#, g) which satisfy the

conditions:

' (#,8) is a regular predictable space developing from a partial

1y surface &.

| There exists an isometry group 8,: .# — .# whose Killing vector

imelike near #+ and #-.

(4, 8) is empty or contains fields like the electromagnetic field

field which obey well-behaved hyperbolic equations, and
the dominant energy condition: 7,,NoLb > 0 for future-
timelike vectors N, L.
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W consider how the area of & (t) varies as ¢ increases. Since 8 > 0
s cannot decrease. If § were > 0 on an open set, the area would
pe. Also if the generators of the horizon had past endpoints on
the area would increase. However as #{t) is moving under the
bry 0,, the area must remain the same. Therefore 8 = 0, and
are no past endpoints on the region of J-(#+, ) for which
b However since each point of J-(#+, #)n J+(F~, #) can be
d by the isometry &, to where x > x,, this result applies to the
of J=(S*, #)n J*(F~, ). From the propagation equations
| and (4.36) one then finds &,, =0, R,¥5%?=0 and
aY10¥?Yf = 0, where Y% is the future-directed tangent,

to the null geodesic generators of the horizon. 0

Proposition 9.3.1

Let (.#, 8) be a stationary, regular predictable space-time. The
generators of the future event horizon J-(#+,.#) have no past
points in J*+(#~, .#). Let ¥;° be the future-directed tangent Vet
these generators; then in J*+(#~, %), Y2 has zero shear & and 3
sion &, and satisfies :

Byp¥y2Y? = 0= Yl’.ecalbddYU:Y A
Let € be a spacelike two-sphere on .#~. Then one can cover f-
family of two-spheres €(¢) obtained by moving ¢ up and dow
generators of £~ under the action of 6, i.e. €(t) = 6,(%). We
define the function z at the point peJ+.# -, .#) to be the grs
value of ¢ such that pe JHE (1), #). Let % be a neighbourhood ¢
and = which is isometric to a corresponding neighbourhood |
asymptotically simple space~time. Then z will be continuous f
some lower bound z' on  n %. From this it follows that  will be
tinuous in the region of J~(#+,.Z) where it is greater than z

peition 9.3.2
j connected component in J+(#-, .#) of the horizon 2%(7) in a
pary, regular predictable space is homeomorphic to a two-sphere,

PESHI, AN J~(F*, A ). Then under the isometry 6,, p
moved into the region of J-(S+, .7 ); where 2 > 2'. However

er how the expansion of the outgoing null geodesics orthogonal
f(r) behaves if one deforms 2#(r) slightly outwards into
ft,.#). Let ¥, be the other future-directed null vector orthogonal
¥(r), normalized so that ¥;2¥,, = — 1. This leaves the freedom
Y, = &Y, Y, Y, = e*Y,. The induced metric on the space-
wo-surface 0%(7) is g, = gop + Y1 Yoy + Yo ¥yp. Define a family of
08 (7, w) by moving each point of 3%(r) a parameter distance w
the null geodesic curve with tangent vector ¥,2. The vectors Yo
e orthogonal to # (1, w) if they propagate according to

Eabylb;cl’zc=_ﬁabymb]qc and ¥2¥, =—1.

g = 2|, +1.

Therefore x will be continuous at p. !
Let 7,> 0 be such that F(ry)nJ (F*, .4) is contain j-

J (I, ). Let A be a generator of J~(#+, ) which intersects §
Suppose there were some finite upper bound x, to z on A. Sine
space 1s weakly asymptotically simple, - co as one a.pproa.ches_l
on &(1y). Thus there will be some lower bound z, of x on g

Flro)n J- (S, M).

Under the action of the group 6,, A is moved into another genei
6(A). As the generators of J~(#*,.#) have no future endpoin s,
past extension of 6,(A) will still intersect #(rg) n J—(#*, .#). Thia
to a contradiction, since the upper bound of = on 6,(A} would be
than x, if ¢ < &, —-x,.
Let z, be the upper bound of  on &(ry)n J~(.#+, .#). Then &
generator A of J~(S+, #) which intersects .#(r,) will intes
F(t) = JHE(W), M) 0 J~(F+, H) for t> z,. Every generato
J=(F+, A ) which intersects F(#') will intersect G(F (o)) fort 2 i
But §(S (1)) n J~(F*, M) = (S (7o) J-(F+, ) is compact. T
Z(t) is compact.

icc i;'bd) 5 ayza Eca Edt = ﬁupn; b ﬁbt + papt
- E’aYla;gﬁwyk: b Ebt + Raccb Y2c chha,hbt! (9-5)
': Pt = —hbaY,, Y, Contracting with £}, one obtains

A
412,

. = (Yla;bﬁba);cyﬂc
= Pp,ah? — R, V0¥ + Ry TA¥ Y2V 4 p, po
- Yla;cﬁcdyzd:bﬁba'

e horizon, ¥,2,, kedh?, is zero, as the shear and divergence of the
on are zero. Under a rescaling transformation Y, = evY,,



