
A5682: Introduction to Cosmology Course Notes

12. Inflation

Reading: Chapter 10, primarily §§10.1, 10.2, and 10.4.

The Horizon Problem

A decelerating universe has a particle horizon, a maximum distance over which any two points
could have had causal contact with each other, using signals that travel no faster than light.

For example, in a flat matter-dominated universe with a(t) ∝ t2/3, a photon emitted at t = 0 has
traveled a distance d = 2c/H(t) = 3ct by time t.

When we observe two widely spaced patches on the CMB, we are observing two regions that were
never in causal contact with each other.

More quantitatively, at t = trec, the size of the horizon was about 0.4 Mpc (physical, not comoving),
making its angular size on (today’s) last scattering surface θhor ≈ 2◦.

The last scattering surface is thus divided into ≈ 20, 000 patches that were causally disconnected
at t = trec.

How do all of these patches know that they should be the same temperature to one part in 105?

The Flatness Problem

The curvature radius is at least R0 ∼ cH−1
0 , perhaps much larger.

The number of photons within the curvature radius is therefore at least

Nγ =
4π

3

(
c

H0

)3

nγ ∼ 1087,

where nγ = 413 cm−3.

The universe is thus extremely flat in the sense that the curvature radius contains a very large
number of particles.

Huge dimensionless numbers like 1087 usually demand some kind of explanation.

Another face of the same puzzle appears if we consider the Friedmann equation

H2 =
8πG

3c2
εm,0

a3
− kc2

a2R2
0

.

Even if the “energy” term and “curvature” term on the right hand side are similar in magnitude
today, then at very early times (BBN, say, with a ∼ 10−9) the energy term was enormously bigger.

(Modern cosmological measurements show that the energy term is much larger than the curvature
term today. In the radiation dominated regime, the energy term scales as a−4, so the discrepancy
is even worse.)

The textbook (§10.1) frames this in terms of the value of Ω: if Ω is approximately one today, it
had to be extremely close to one at very early times.
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Inflation in a nutshell

In the standard big bang model, the flatness and large scale uniformity of the universe are just
accepted as initial conditions, not explained.

Inflation is an extension of the big bang model that attempts to give a causal explanation for the
origin of flatness and homogeneity, much as the big bang model itself gives a causal explanation
for the primordial helium abundance.

The basic idea and first concrete model of inflation was proposed in 1980, by Alan Guth, and
quickly followed up by many others.

In the inflation scenario, the early universe went through an accelerating phase in which it was
dominated by vacuum energy with an extremely high energy density.

During this phase, the universe expanded exponentially in time, with an e-folding timescale

texp = tH =
1

H
=

(
8πGεvac

3c2

)−1/2

.

If the universe expanded by at least a factor of e60 during inflation, then the entire volume of the
presently observable universe was within one causally connected patch before inflation started, so
causal processes could have established the homogeneity of the universe.

During inflation, a(t) grew by a very large factor at constant ε, making the curvature radius very
large and growing the energy term relative to the curvature term. After inflation, the universe is
extremely flat.

Eventually, inflation ended, and the enormous energy that had been stored in εvac was converted
to photons and other particles, producing the very large number of particles within the curvature
radius.

A natural prediction of inflation is that Ω0 should be extremely close to 1.0.

Scalar field inflation

In most implementations of inflation, the accelerated expansion is driven by a scalar field φ that
fills space.

This field is assumed to have a potential energy V (φ) (analogous to the potential energy B2/8π of
a magnetic field with magnitude B).

For a scalar field, the total energy density and pressure are

εφ =
1

2

1

h̄c3
φ̇2 + V (φ)

pφ =
1

2

1

h̄c3
φ̇2 − V (φ).

φ has units of energy (e.g., GeV), while V (φ) has units of energy per unit volume.

If the field is changing slowly, so that the φ̇2 terms are much smaller than V (φ), then we have
pφ ≈ −εφ and thus a component that can produce exponential expansion if it dominates the total
energy density.
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Successful inflation thus requires a phase in which V (φ) dominates the energy and pressure budget
for a sufficiently long time.

If φ̇ is small and V (φ) is sufficiently flat, then the universe goes through a phase of nearly exponential
expansion with

a(t) ∝ eHt

and Hubble parameter

H =

(
8πGV (φ)

3c2

)1/2

.

The expansion is “nearly” exponential because φ, and hence V (φ), are changing slowly as the
expansion goes on.

Depending on the form of V (φ) and the value of φ(ti) at the start of inflation, the exponential
expansion may last long enough (at least 60 e-folds) to solve the horizon problem and the flatness
problem.

Many models associate inflation with the epoch at which grand unification breaks, expected to be
at an energy scale kTGUT ≈ 1015 GeV, or with the Planck epoch when quantum gravity effects
become important, at an energy scale kTPlanck ≈ 1019 GeV.

Figure 11.3 of the book illustrates one commonly assumed form of the potential, which leads to
inflation if φ starts near zero and eventually rolls to a minimum at some non-zero φ0.

Another broad category of models, usually referred to as “chaotic inflation,” has a potential some-
thing like V (φ) ∝ φ4, in which case the field must start at a large value, and inflation occurs while
it rolls towards zero.

In either scenario, inflation ends when φ begins to oscillation about the minimum of V (φ), so that
φ̇ terms dominate the energy density and pressure.

If there is some coupling between the field φ and other fields and particles (such as photons),
then these oscillations will be damped and the energy will be dumped into these other fields and
particles.

This is known as the reheating epoch.

In effect, gravitational potential energy associated with repulsive gravity has been used to make the
universe much larger, but with the same energy density as before inflation. Sometimes described
as “the ultimate free lunch.”

After this epoch, we return to a normal, radiation-dominated, hot big bang model, but with a
universe that is much larger and flatter and causally connected over much larger scales.

Inflation and flatness

Suppose that at the start of inflation the energy and curvature terms on the r.h.s. of the Friedman
equation are comparable,

8πG

3c2
ε ≈ kc2

a2R2
0

.

Suppose that during inflation, a(t) grows by the minimum factor of e60 required to solve the horizon
problem, and that ε stays constant.
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At the end of inflation, the energy term is larger than the curvature term by a factor of (e60)2 = e120.

To examine the other manifestation of the flatness problem, suppose that inflation occurs at a time
tGUT and that the curvature radius at the start of inflation is approximately R = aR0 ≈ ctGUT.

Further suppose that at this time there is approximately one “particle” of energy kTGUT in each
volume (ctGUT)

3.

The energy density is therefore ε = kTGUT/(ctGUT)
3.

When inflation ends, the curvature radius is larger by a factor of e60.

However, the energy density is still the same, so there is still roughly one particle of energy kTGUT

per volume (ctGUT)
3.

The number of particles within the curvature volume ∼ R3 is therefore at least N ∼ e180 ∼ 1078.

Density fluctuations from inflation

Inflation “irons out” pre-existing inhomogeneities by stretching them out to enormous scales.

Soon after inflation was proposed, people realized that the scalar field driving inflation would
experience quantum fluctuations in accordance with the Heisenberg uncertainty principle.

In an exponentially expanding universe, these fluctuations are stretched from microscopic scales to
macroscopic scales, as different regions of the universe grow by slightly different factors and end up
at slightly different densities.

Roughly speaking, at any time during inflation there are quantum fluctuations in the value of φ on
scale cH−1 of magnitude δφ ∼ H.

These fluctuations cause inflation to end at slightly different times in different locations, with δt ∼
δφ/φ̇. This in turn leaves the universe with energy density fluctuations on this scale δε/ε ∼ Hδt.

According to inflation, these quantum fluctuations from the very early universe are the source
of density variations that produce anisotropy in the CMB and seed the gravitational growth of
structure in the universe.

The inflation potential has to be “fine-tuned” to get CMB fluctuations as low as 10−5. [It requires
V ′(φ)/V (φ) � 1.]

However, once this fine-tuning is done, the statistical properties of the fluctuations predicted by
inflation are in extremely good agreement with the observed properties of CMB anisotropies and
large scale structure in the universe.

Specifically, in agreement with observations, the predicted fluctuations are

• Gaussian (bell curve distribution of δε)

• Nearly scale invariant (the amplitude of fluctuations on scale ct at time t, δH(t) ∼ 10−5, is nearly
independent of t)

• Present equally in all forms of energy – specifically, the cold dark matter, baryons, and photons all
fluctuate together. (Technically, these are referred to as “adiabatic” fluctuations.) This is crucial
to getting the observed pattern of peaks and troughs in the CMB angular power spectrum, and to
getting the observed polarization.

Assessment

Inflation is the best theory we have for explaining the flatness of the universe, the large scale
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uniformity of the universe, and the origin of inhomogeneity in the universe.

Inflation does not really change the “standard big bang” model, but it gives an explanation for
things that in the standard model are just accepted as initial conditions.

CMB evidence for a flat universe confirms one of the key predictions of inflation: that Ω0 should
be equal to one within the limits of measurement.

CMB anisotropies also have the statistical properties predicted “generically” by inflation.

However, these properties (scale-invariant, adiabatic, Gaussian) are what one might have guessed
even without a theory for their origin.

Today’s cosmic acceleration shows that accelerated expansion is possible, but the energy and
timescale is very different from that needed for inflation (∼ 1010 years vs. ∼ 10−32 seconds).

Inflation’s successes are impressive, but it relies on physics that we do not fully understand, and
the evidence for inflation is not nearly as strong as the evidence for the hot early universe implied
by BBN and the CMB.

A specific model of inflation that is rooted in particle physics discoveries and naturally predicts
that the level of fluctuations in the CMB should be ∼ 10−5 would be very convincing, but we don’t
have that yet.

The small departures from scale invariance confirm a “non-generic” prediction of inflation and give
some insight into V (φ).

Detection of a contribution of gravity waves to CMB anisotropy would provide stronger evidence
for inflation and much better insights into the energy scale at which it took place.

This gravitational wave signature could potentially be detected by CMB polarization measure-
ments and is a major reason for the interest in CMB polarization experiments. However, it is not
guaranteed to be present at a detectable level.

Current polarization measurements show that gravitational waves contribute less than about 5%
of the large scale CMB anisotropy. This upper limit combined with the small departure from scale
invariance already rules out some otherwise interesting versions of inflation. (See figure attached
to web page.)

The “larger scale setting” for inflation — i.e., what preceded it and how the universe entered an
inflationary state in the first place — is far from clear.
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