
Astronomy 5682
Problem Set 4: Supernova Cosmology

Due Thursday, 3/9, 11:59 pm

Background Reading: Chapter 6. It is useful to read this chapter before starting the assignment.

You may turn in this assignment on paper, either in-class on Wednesday (3/8) or to my mailbox in
4055 McPherson on Thursday. Alternatively, you may submit it electronically via Carmen. Note
that I have pushed the deadline to midnight on Thursday, since many of you couldn’t quite make
4 pm last time. However, I think McPherson Lab gets locked around 6 pm, so if you’re submitting
on paper then plan accordingly.

IMPORTANT: You should turn in Graph 1 and Graph 2 (attached at the end) as part of your
problem set solution. If you’re submitting electronically, you can mark the graphs by hand and
photograph them to include with your submission, or you can try to re-generate them with the
same axes with whatever plotting software you like to use. If your marking by hand, I suggest
doing it in pencil so that you can correct mistakes.

Personally, I find that plotting by hand gives me a more visceral feel for what is going on.

Background: Review of Magnitudes

The relation that is most often used to determine the distance to astronomical objects is

f =
L

4πd2
, (1)

the flux of energy received from a source is equal to the luminosity of the source divided by 4π
times the square of the distance. The luminosity is the rate at which the source releases energy,
and it is independent of the source’s distance; it has units of energy/time (e.g., erg/s). The flux is
the rate at which energy is received from the source per unit area; it has units of energy/time/area
(e.g., erg/s/cm2). Equation (1) is a straightforward consequence of energy conservation.

While fluxes and luminosities are relatively easy to understand, they are somewhat inconvenient
to use in practice because astronomical objects span an enormous range of intrinsic and apparent
brightness, leading to lots of numbers like 2.823 × 1017 and 6.81 × 10−11. Instead, astronomers
often give their measurements in terms of magnitudes, which are related to fluxes and luminosities
by logarithms. The logarithms make formulas a bit more complicated, but because we are going
to be using real astronomical data in this problem set, we don’t have much choice but to bite the
bullet and deal with magnitudes. This review is supposed to tell you all the things you need to
know about magnitudes for the purposes of this problem set. All logarithms in this problem set are
base-10. Also, in this problem set the letters m and M stand for apparent magnitude and absolute
magnitude, respectively, not for mass.

The apparent magnitude m is a measure of apparent brightness related to the flux. The formula
that relates flux to apparent magnitude is

m = −2.5 log(f/f0),

where f0 is the flux of a star that would have apparent magnitude 0. As you can see from this
equation, fainter stars (smaller f) have larger apparent magnitudes, and each reduction in flux by
a factor of 100 corresponds to an increase of 5 magnitudes. If one star is 5 magnitudes fainter than
another, then we receive 100 times less energy from it. If one star is 10 magnitudes fainter than
another, then we receive 100 × 100 = 10, 000 times less energy.
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The absolute magnitude M is a measure of intrinsic brightness related to luminosity. The absolute
magnitude of a star is defined to be the apparent magnitude that the star would have if it were at
a distance of 10 parsecs. Note that while the apparent magnitude of a star (like the flux) depends
on its distance, the absolute magnitude is an intrinsic property (like the luminosity) that does not
depend on its distance.

By combining the definitions of apparent magnitude and absolute magnitude with the equation
f = L/(4πd2), one obtains the equation that relates the apparent magnitude of an object to its
absolute magnitude and distance:

m = M + 5 log dpc − 5,

where dpc is the distance in parsecs. Since we will be dealing with distant galaxies and supernovae
rather than stars in the Milky Way, it is more useful to use the equivalent equation

m = M + 5 log dMpc + 25, (2)

where dMpc is the distance in Mpc.

Equation (2) can be solved for d, yielding

d = 100.2(m−M−25) Mpc. (3)

Thus, if we know an object’s absolute magnitude M and measure its apparent magnitude m, we
can find its distance with equation (3), just as we could find the distance from equation (1) if we
knew the object’s luminosity and measured its flux.

The quantity m − M is called the distance modulus. The distance modulus of a star or galaxy
depends only on its distance; the larger the distance, the greater the distance modulus.

Equations (2) and (3) are the facts about apparent and absolute magnitudes that you need to use
in this problem set. I should note that the flux of an object is usually measured through a filter,
and that the apparent magnitude and absolute magnitude are therefore defined separately for each
filter. In this problem set, we will be dealing entirely with data measured through a “visual” (V)
filter, which selects out yellow light. The apparent and absolute magnitudes with such a filter
would usually be written mV and MV , respectively, but to make our notation simpler we will just
use m and M .
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Problem 1: The Supernova Hubble Diagram (20 points)

A plot of apparent magnitude vs. redshift for distant astronomical objects is known as a “Hubble
Diagram,” since Hubble used such diagrams to demonstrate the expansion of the universe. The
redshift z is related to the recession velocity v by the Doppler formula, which for z � 1 gives
v = cz, where c is (as usual) the speed of light. We’ll use cz in place of v, since the quantity cz
is well defined even at redshifts large enough that the Doppler formula and Hubble’s law begin to
break down.

When a supernova explodes, its brightness increases rapidly, reaches a maximum, then declines over
the course of a few weeks. There are at least two broad classes of supernovae, ones produced by
core collapse in massive stars, and ones produced by exploding white dwarfs. The exact mechanism
behind this latter class of supernovae, called Type Ia supernovae, is not well understood, but it
appears that all Type Ia supernovae have approximately the same peak luminosity, i.e., that the
absolute magnitude at maximum light Mmax is nearly the same for all Type Ia supernovae (once
they are corrected for the duration of the supernova, as I mentioned in class). For the rest of this
problem set, we will use only Type Ia supernovae.

Table 1 below lists values of log cz andmmax, the apparent magnitude at maximum light, for a dozen
supernovae discovered and observed in the early 1990s. The data are from a paper by Mario Hamuy
and collaborators, published in 1996. These apparent magnitudes have already been corrected for
the shape of the light curve, as discussed in class, to make the supernovae more nearly “standard
candles.”

Table 1
Supernova log cz mmax

1990O 3.958 16.409
1990Y 4.066 17.3488
1991S 4.223 17.8124
1991U 3.992 16.3683
1992J 4.137 17.2548
1992P 3.897 16.2426
1992ag 3.891 16.2164
1992aq 4.481 19.0955
1992bc 3.774 15.4026
1992bk 4.240 17.7777
1992bo 3.736 15.4329
1993B 4.326 18.4524

(a) Plot the positions of these dozen supernovae on Graph 1.

(b) Argue that if (i) all supernovae have the same Mmax, (ii) Hubble’s law is correct, and (iii)
peculiar velocities can be neglected, then all of these points should lie on a line of slope 5.0.

(c) I have included several lines of slope 5.0 on Graph 1. Which of these lines gives the best fit to
the data? (Top, second from top, third from top, etc.)

This line can be described by the equation

mmax = 5 log cz +m0. (4)

What is m0?
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(It is useful to check your answer by showing that equation (4) fits two different points along the
line.)

(d) Why don’t all the supernovae lie exactly on the line?
(There may be several reasons. List those you can think of and assess which ones you think are
probably the most important.)

Problem 2: Calibration of Mmax and the Determination of H0 (40 points)

If all went well, then Problem 1 convinced you that the supernovae in the above Table lie along a line
of slope 5, and that the relation between their distances and redshifts is therefore well described by
Hubble’s law. Since Hubble’s law states that cz = H0d, we can get H0 = (cz)/d if we can determine
the distance to one of these supernovae.

Unfortunately, all of these supernovae are in galaxies that are too distant to have distances deter-
mined using Cepheids. However, the fact that they all lie close to a line of slope 5 implies that
they all have nearly the same luminosity (same Mmax), justifying the statement that I made in
the second paragraph of Problem 1. Therefore, if we can determine Mmax for a supernova in a
nearby galaxy, we can assume that the supernovae in our diagram have the same Mmax. In this
Problem, we will use Cepheid variables to determine the distance to a galaxy where a well observed
supernova exploded in 1990. (Actually, it exploded millions of years before, but the light reached
us in 1990.) If you don’t remember much about Cepheid variables, you might want to look them
up in the textbook (§6.4) to remind yourself what they are and how they are used as distance
indicators.

(a) Figure 1 plots the apparent visual magnitudes of Cepheid variables in the Large Magellanic
Cloud (LMC) against the logarithms of their periods (measured in days). The data are taken from
a paper by Barry Madore, who has done much of the work on Cepheids in the LMC.

Figure 1 contains a line that fits the average trend of the Cepheids fairly well. This line is described
by the equation

mC = a logP + bLMC, (5)

where the C stands for Cepheid. From Figure 1, determine the values of a and bLMC.

(b) We really want the absolute magnitudes of the Cepheids, not the apparent magnitudes. To get
this, we need a distance to the LMC. We’ll adopt the value dLMC = 50 kpc = 0.050 Mpc, suggested
by a variety of arguments that we won’t go into here. Plugging this value into equation (2) yields

m = M + 5 log(0.050) + 25 = M + 18.5 (6)

for the relation between apparent and absolute magnitudes of stars in the LMC.

Apply equation (6) to your result from (a) to determine the quantity M0 in the formula

MC = a log P +M0 (7)

that describes the relation between the period and absolute magnitude of a Cepheid variable. Note
that M0 is the absolute magnitude of a Cepheid with logP = 0.

(c) Figure 2 plots apparent magnitude mC vs. log P for Cepheid variables found in the relatively
nearby galaxy NGC 4639, hereafter referred to as N4639. These data are taken from a 1997 paper
by Abi Saha, Allan Sandage, and collaborators, who used Hubble Space Telescope to find and
observe the Cepheids in this galaxy.

4



The line in Figure 2 is described by an equation

mC = a log P + bN4639. (8)

The slope a is the same as in equation (5), but the offset b is different because the distance to
N4639 is greater than that of the LMC. I have put the line at the level that Saha and collaborators
claim gives the best fit to their data points. Using this line, determine the value of bN4639, just as
you determined bLMC in part (a).

(d) Combine the result of (c) with the result of (b) to obtain the distance modulus m−M for the
galaxy N4639. (You may need to look back at the review of magnitudes to remind yourself of the
definition of distance modulus.)

When you derive the distance modulus in this way, you are making an implicit assumption about
the properties of Cepheids in the LMC and in N4639. What is the assumption?

(e) Supernova 1990N, the 14th supernova discovered in 1990, went off in the galaxy N4639. At its
peak, it had an apparent visual magnitude

mmax = 12.61.

Combine this with the result of (d) to determine the peak absolute magnitude Mmax of supernova
1990N.

(f) Now take your result from Problem 1c. Consider a hypothetical supernova with cz = 104 kms−1,
implying log cz = 4. What would its peak apparent magnitude mmax be according to equation (4)?

Combined with your result from (e), what would the distance modulus m−M be for such a super-
nova? What distance (in Mpc) would then be implied by equation (3)?

(g) What is the implied value of the Hubble constant H0? Remember to give the units.

(h) What are the main uncertainties in this result?

Note: Your value may not agree exactly with the value I have quoted as a “best” estimate in class.
However, if your value is wildly different (factor of two, say, or orders of magnitude), then you did
something wrong.

Problem 3: Has Cosmic Expansion Been Slowing Down? (50 points)

You showed in Problem 1b that the apparent magnitudes and log cz of supernovae in galaxies
obeying Hubble’s law should lie on a straight line of slope 5. However, if we go to redshifts z that
are not much smaller than 1, we must consider the effect of the changing rate of cosmic expansion.

For parts (a)-(d) of this problem, we will assume that the universe is matter dominated, with no
cosmological constant. Thus, the value of Ω0 is really just the value of Ωm,0, the matter density
divided by the critical density.

Suppose that Ω0 ≈ 0, so that the expansion isn’t slowing down. Light received from a galaxy
with a redshift z = 0.5, say, was emitted when the universe was smaller by a factor (1 + z) = 1.5.
Expanding from that epoch to the present day took some t, and in that time the light traveled a
distance d = ct.

Now suppose that Ω0 = 1. The universe was expanding faster in the past, so expanding from
1/1.5 = 2/3 of its present size to its present size took less time than in the Ω0 ≈ 0 case. Light
therefore didn’t travel as far.
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(a) Based on this reasoning, explain in words how one could use the measured apparent magnitudes
and redshifts of distant supernovae (with z ∼ 0.5, say) to estimate the value of Ω0. Should high-
redshift supernovae appear fainter for Ω0 = 1 or for Ω0 ≈ 0?

(b) Give a mathematically rigorous version of your answer to (a), using the formula for “luminosity
distance” dL = Sk(r)(1 + z) together with the integral formula discussed in class for the comoving
distance r (p. 2 of the §6 course notes). You don’t need to solve this integral, but you should
describe how changing the value of Ω0 influences its value – i.e., does changing Ω0 from zero to one
make r bigger or smaller? The value of Ω0 also affects the luminosity distance through curvature,
which determines the form of Sk(r). Does this effect go in the same direction as the effect on r, or
does it go in the opposite direction?

(c) As discussed in class, the expected relation between m and z can be summarized for the lumi-
nosity distance, which is the distance d that belongs in equation (2). For H0 = 65 kms−1Mpc−1,
the formulas for a matter-dominated universe with Ω0 = 1 and Ω0 = 0 are:

dMpc = 9200(1 + z −√
1 + z), Ω0 = 1

dMpc = 4600z
(
1 +

z

2

)
, Ω0 = 0.

(In part h below, you’ll address whether using H0 = 65kms−1Mpc−1 vs. some other value makes
a difference to the result of this problem.)

Using these formulas, equation (2), and your derived value of the supernova peak absolute magni-
tude Mmax from Problem 2e, plot smooth curves showing the predicted apparent supernova mag-
nitudes mmax vs. log cz on Graph 2. In order to make your life (much) easier, I provide in Table
2 a tabulation of z, log cz, and values of dMpc and 5 log dMpc for both values of Ω0, at a number
of values of z. You can plot points for these values of z on Graph 2 using the Table, then connect
these points with smooth curves. Label which curve is for Ω0 = 1 and which curve is for Ω0 = 0.

Table 2
(Ω0 = 1) (Ω0 = 0) (Ω0 = 1) (Ω0 = 0)

z log cz dMpc dMpc 5 log dMpc 5 log dMpc

0.02 3.778 92 93 9.83 9.841
0.05 4.176 232 236 11.83 11.86
0.1 4.477 471 483 13.36 13.42
0.2 4.778 962 1012 14.92 15.03
0.3 4.954 1470 1587 15.84 16.00
0.4 5.079 1994 2208 16.50 16.72
0.6 5.255 3083 3588 17.44 17.77
0.8 5.380 4217 5152 18.12 18.56
1 5.477 5389 6900 18.66 19.19

(d) Plot the points from Table 1 (given back in Problem 1) on Graph 2.

(e) In the mid-1990s, two large collaborations began searching for and measuring the properties
of high-redshift supernovae. Table 3 lists data on 10 high-redshift supernovae observed by one of
these groups, taken from a 1998 paper by Adam Riess and (many) collaborators. Plot these points
on Graph 2.
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Table 3
Supernova z log cz mmax

1995K 0.48 5.158 23.24
1996E 0.43 5.111 22.78
1996H 0.62 5.27 23.76
1996I 0.57 5.233 23.58
1996J 0.3 4.954 21.74
1996K 0.38 5.057 22.96
1996U 0.43 5.111 23.09
1997ce 0.44 5.121 23.01
1997cj 0.5 5.176 23.45
1997ck 0.97 5.464 25.05

(f) What can you conclude about the evolution of the cosmic expansion rate?
(Think carefully. The conclusion that you can draw is a major one.)

(g) What are possible sources of error in this result?

(h) Suppose that new observations provided a convincing measurement of the distance to the galaxy
N4639, showing that its distance modulus was larger than the one that you derived in Problem 2d.
Would this change your conclusion about the value of the Hubble constant in Problem 2? Would
it change your conclusion in part (e) of this Problem about the evolution of the cosmic expansion
rate? (Think carefully about what information in Graph 2 leads to the value of H0 and what
information in Graph 2 leads to conclusions about the evolution of the expansion rate.)
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