
Astronomy 5682
Problem Set 6: The Geometry of Space, Ωm,0, and ΩΛ,0

Due Thursday, April 13

Overview

The curvature of space depends on Ω0, the sum of the matter density Ωm,0 and the vacuum energy
density ΩΛ,0. (In this problem set, we will ignore the contribution of radiation and assume that
dark energy, if it exists, is constant in time.) If the Cosmological Principle holds for the entire
universe (not just the part that we can see), then a universe with flat or negatively curved space is
infinite, while a universe with positively curved space is finite. So if we can determine the geometry
of space, we can get some idea of whether the universe is finite or infinite in extent.

We can measure the curvature of space if we can determine the angular size of a distant (high
redshift) structure of known physical size. In this problem set, we will use the angular sizes of
“hot spots” in a map of the cosmic microwave background (hereafter abbreviated CMB) to try to
decide whether we live in a flat universe with Ωm,0 + ΩΛ,0 = 1 or a negatively curved universe
with Ωm,0 = 0.3 and ΩΛ,0 = 0. Finally, we will combine the results with the supernova results to
estimate Ωm,0 and ΩΛ,0.

Part I: A Scale in the Cosmic Microwave Background

There is, in fact, a structure in the distant universe whose physical scale we can predict theoretically:
the scale of the strongest fluctuations in the CMB. For reasons that we will briefly discuss in
class, this scale is the distance that a “sound wave” (which in this case means any pressure-driven
disturbance) could travel before the universe becomes neutral at redshift zrec = (3000 K)/(2.7 K) ≈
1100. Structures of this size appear as “hot spots” in sensitive maps of temperature fluctuations
in the CMB, so their angular size can be measured observationally. The subscript “rec” stands
for recombination, the formation of neutral hydrogen, and after zrec the universe is transparent to
CMB photons, so no new structure can be imprinted on the CMB.

You will need to remember our equations for the Hubble parameter (another form of the Friedmann
equation)

H2(t)

H2
0

=
Ωr,0

a4
+
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a3
+ΩΛ,0 +

(1− Ω0)

a2
.

and for the comoving distance

r =
c

H0

∫ z

0

dz′

[Ωr,0(1 + z′)4 +Ωm,0(1 + z′)3 +ΩΛ,0 + (1− Ω0)(1 + z′)2]1/2
.

You can look back at §5 and §6 of the course notes, and §5.4 of the textbook, if you need to
remember how we got to these. At the redshifts of interest in this problem set, we should not
completely ignore the contribution of the Ωr,0 term, but we will do so nonetheless.

(a) First consider the case Ωm,0 = 1, ΩΛ,0 = 0. Show that the age of the universe at redshift zrec is

trec =
2

3H0
(1 + zrec)

−3/2.

For H0 = 70 kms−1Mpc−1 ≈ (14 billion years)−1, what is trec?

(Note that this will be somewhat different from the true value because we have assumed Ωm,0 = 1
and Ωr,0 = 0.)
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(b) Before zrec, photons are constantly scattering off of electrons, and one can show that the “speed
of sound”, denoted cs, is

cs =
c√
3
≈ c

1.732
,

where c is the speed of light.

How far could a sound wave travel in time trec? Make life easy by expressing your answer in light
years.

(c) The characteristic size of “hot regions” and “cold regions” at trec is roughly 2cstrec. Argue that
the characteristic angular size of hot spots and cold spots on the CMB should therefore be

θc =
2cstrec
Sk(r)

(1 + zrec),

where r is the comoving distance.

Hint: Refer to the FRW metric.

(d) Show that for Ωm,0 = 1, ΩΛ,0 = 0, the comoving distance to zrec is, to an accuracy of a few
percent,

r ≈ 2c

H0
.

What is the predicted value of θc for Ωm,0 = 1 and ΩΛ,0 = 0, in degrees?

(e) Suppose instead that Ωm,0 = 0.3. Argue that, in this case, the age of the universe at zrec is
approximately

trec = (Ωm,0)
−1/2 2

3H0
(1 + zrec)

−3/2.

[Hints: What is the form of a(t) at high redshift? What is H/H0?]

(f) Calculating r for a universe with Ωm,0 = 0.3 requires doing the integral numerically. The result
is r = 3.2c/H0 for a flat universe with Ωm,0 = 0.3, ΩΛ,0 = 0.7.

What is the predicted value of θc for this case?

(g) For an open (negatively curved) universe with Ωm,0 = 0.3, ΩΛ,0 = 0, numerical evaluation of
the integral gives r = 2.8c/H0.

What is the predicted value of θc for this case?

You will need to remember the formula for the curvature radius,

R0 =
c

H0
(1−Ω0)

−1/2.
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Part II: Measurement

The upper figure on the next page is a map of the CMB from the BOOMERANG experiment (you
can find more about this experiment by Googling “Boomerang CMB”). While the “spots” on the
map are irregular and varied, they do have a characteristic size. I have picked this over the WMAP
or Planck maps in part because the scale is more convenient and in part because this balloon
experiment (and the similar MAXIMA experiment) gave the first high-precision measurement of
the curvature of space, published in 2000.

(h) Choose eight strong spots from the central area of the map (enclosed by the curved line) and
measure their size in mm. Specifically, you should measure the size of the yellow region, going
across the shortest dimension if the spot is elongated. Avoid the three small, circled spots, which
are radio galaxies rather than CMB spots.

What is the average size of the spots in mm?

What is the length of the vertical axis in mm?

(i) Using the scale marked in degrees along the vertical axis (labeled DEC; don’t use the horizontal
axis labeled RA), convert your average size to degrees. (Extra Credit [2 points]: Why shouldn’t
you use the RA axis?)

What is the typical size of CMB hot spots measured by BOOMERANG, in degrees? Is this number
closer to your answers for a flat universe, from (d) and (f), or for a negatively curved universe,
from (g)?

(j) The lower figure on the next page is the CMB power spectrum measured by BOOMERANG.
From this plot, estimate the value of l at the first (highest) peak in the power spectrum and convert
it to an angular scale using the formula θ ≈ 200/l degrees. What is the value of θpeak? What is the
uncertainty in your measurement (i.e., assuming that the data in the plot are correct, how precisely
can you measure θpeak from it)? Is your result from this measurement consistent with your “spot”
measurement from (i)?

Part III: Pinning Down Ωm,0 and ΩΛ,0

A more careful analysis of this map, and similar maps from other experiments, shows that Ωm,0 +
ΩΛ,0 = 1, with an uncertainty of about 0.01. The sum of Ωm,0 and ΩΛ,0 determines the curvature of
space because the energy density of matter and vacuum energy act together to produce curvature.

The evolution of the expansion rate, however, is governed (approximately) by the difference between
matter density and vacuum energy density, Ωm,0 − ΩΛ,0, because matter acts to decelerate the
expansion of the universe and vacuum energy acts to accelerate it. The supernova results that you
analyzed in Problem Set 4 can be well fit by a universe with Ωm,0 − ΩΛ,0 = −0.4.

(k) Draw a graph in which the horizontal axis is Ωm,0 and the vertical axis is ΩΛ,0, with the range
of each axis running from zero to one. Label the axes. On this graph, draw the line Ωm,0+ΩΛ,0 = 1.
Also draw the line Ωm,0 − ΩΛ,0 = −0.4.

If the CMB results and the supernova results are both right, what can you conclude about the
values of Ωm,0 and ΩΛ,0?
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