
A873: Cosmology Course Notes

II. General Relativity

Suggested Readings on this Section (All Optional)

For a quick mathematical introduction to GR, try Chapter 1 of Peacock.

For a brilliant historical treatment of relativity (special and general) and Einstein’s con-
tributions to physics: Subtle is the Lord, by Abraham Pais, Oxford University Press.

For Einstein’s original papers on relativity, see The Principle of Relativity, A. Einstein et
al., published by Dover Books. The 1905 paper On the Electrodynamics of Moving Bodies

is perhaps the best scientific paper ever written. The three papers that follow this in the
book are well worth reading. So is the 1916 paper on General Relativity, but it is more
challenging (and best read in concert with the Pais book).

Special Relativity

Postulates of theory:

1. There is no state of “absolute rest.”

2. The speed of light in vacuum is constant, independent of state of motion of emitter.

(Point 2 could really be subsumed into point 1.)

Implies: Simultaneity of events and spatial separation of events depend on state of motion
of observer.

Relation between coordinate systems x, y, z, t and x′, y′, z′, t′ of uniformly moving observers
described by Lorentz transformations.

For a reference frame moving at constant velocity v in +x direction, the Galilean transfor-
mation is

t′ = t

x′ = (x − vt)

y′ = y

z′ = z

The Lorentz transformation is

t′ = γ
(

t −
vx

c2

)

x′ = γ(x − vt)

y′ = y

z′ = z,

where γ = 1/
√

1 − v2/c2 is the Lorentz factor.

Derived by considering a spherical light wave emitted at t = t′ = 0, for which

x2 + y2 + z2 = c2t2 must imply x′2 + y′2 + z′2 = c2t′2

if c is observer independent.
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Observers in relative motion disagree on the spatial separation ∆l =
[

(∆x)2 + (∆y)2 + (∆z)2
]1/2

and the time separation ∆t between the same pair of events.

But they agree on the “spacetime interval” (∆s)2 = −c2(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2

between events.

Analogy: Stationary observers with rotated reference frames disagree on ∆x, ∆y but agree

on ∆l =
[

(∆x)2 + (∆y)2
]1/2

.

The Equivalence Principle

“Special” relativity restricted to uniformly moving observers. Can it be generalized?

Newtonian gravity: a = F/m, F = −GMmr̂/r2.

Why is this unsatisfactory?

Implicitly assumes infinite speed of signal propagation.

Coincidental equality of inertial and gravitational mass.

Einstein, 1907: “The happiest thought of my life.” If I fall off my roof, I feel no gravity.

Equivalence between uniform gravitational field and uniform acceleration of frame. True
in mechanics. Assume exact equivalence, i.e., for electrodynamics as well.

Equivalence principle implies gravitational and inertial masses must be equal.

Allows extension of relativity to accelerating frames.

Implies that extension of relativity must involve gravity.

Third frame trick −→ gravitational mass of electromagnetic energy, gravitational redshift
and time dilation, bending of light (incorrect answer because ignores curvature of space)

Restatement of equivalence principle: In the coordinate system of a freely falling observer,
special relativity always holds locally (to first order in separation). No gravity.

Over larger scales (second order in separation), gravity doesn’t vanish in a freely falling
frame — tidal effects. E.g., freely falling objects in an inhomogeneous gravitational field
may accelerate towards or away from each other.

General Relativity

With aid of equivalence principle, can change relativity postulate from “There is no abso-
lute rest frame” to “There is no absolute set of inertial frames.”

Uniform acceleration can be treated as uniform gravitational field.

Freely falling particles follow geodesic paths in curved spacetime.

A geodesic path is a path of shortest distance, or more generally of shortest spacetime
interval. In flat space, a straight line; in flat spacetime, a straight line at constant velocity.

Distribution of matter (more generally, stress-energy) determines spacetime curvature.

Misner, Thorne, and Wheeler’s catchy summary of GR:
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Spacetime tells matter how to move. (Along geodesic paths.)

Matter tells spacetime how to curve. (Field equation.)

Compare to equivalent description of Newtonian gravity:

Gravitational force tells matter how to accelerate. (F = ma, or g = ~∇Φ.)

Matter tells gravity how to exert force. (F = GMm/r2, or ∇2Φ = 4πGρ.)

Warning: remainder of relativity section will mostly use units G = c = 1.

Metric tensor

In GR (and differential geometry), a fundamental role is played by metric tensor gµν .

Squared length of a vector is |A|2 = A ·A = gµνAµAν (note Einstein summation conven-
tion).

Inner product is A · B = gµνAµBν .

Metric tensor is symmetric, so has 10 independent components rather than 16.

Note that gµν is, in general, a function of spacetime position.

Spacetime interval between two events separated by small dxµ (µ = 0, 1, 2, 3) is

ds2 = gµνdxµdxν .

In special relativity, gµν = diag(−1, 1, 1, 1).

ds2 is a scalar, hence independent of coordinate system.

ds2 < 0 : |ds| = proper time measured by an observer passing through events

ds2 > 0 : |ds| = distance measured by an observer who sees both events as simultaneous

Can integrate s =
∫

ds to get interval along a path between widely separated events.

Observers with different coordinate systems (e.g., moving relative to each other in arbitrary
ways) disagree on values of dxµ, gµν .

All agree on value of ds2.

GR: Effect of geometry on matter

Einstein’s argument:

Equivalence principle =⇒in frame of freely falling observer, there is at least an infinitesimal
region in which gµν has the special relativistic form

gµν = diag(−1, 1, 1, 1) ≡ ηµν =⇒ ds2 = −dt2 + dx2 + dy2 + dz2 (c = 1 units)

Here “infinitesimal” really means “to first order in the separation dxµ from the observer”;
in a non-uniform gravitational field, gµν departs from ηµν at second order in dxµ.

Suppose that special relativity holds in some finite region.

With appropriate coordinates, gµν = ηµν = diag{−1, 1, 1, 1}.
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Free particles move in straight lines, at uniform velocity, i.e., along geodesics.

Change coordinates =⇒gµν change, particles follow curved paths that are independent
of mass. By equivalence principle, we interpret this as motion under the influence of a
gravitational field (uniform or non-uniform, depending on transformation).

Particle paths are still geodesics, since these are coordinate independent.

If the supposition above doesn’t hold:

Retain the view that gµν describe the gravitational field.

Assume that freely falling particles still follow geodesics.

What else could they do? No other “special” paths.

Can derive from least-action principle and special relativity form of energy.

Bottom line: the equation of motion for freely falling particles in a specified coordinate
system is just the equation for geodesic paths. In practice, this equation represents four
2nd-order differential equations that determine xα(s), given initial position and 4-velocity:

d2xα

dτ2
+ F [metric]

dxµ

dτ

dxν

dτ
= 0.

The geodesic equation is the relativistic analog of the Newtonian equation g = −~∇Φ.

The metric gµν is the relativistic generalization of the gravitational potential.

In units with c = 1, the departure of gµν from the Minkowski form ηµν is ∼ v2/c2, where
v is the characteristic speed in this gravitational potential.

GR: Effect of matter on geometry

Need an equation to tell how matter produces spacetime curvature, since to get motion of
particles we need the metric gµν .

Must regain Newtonian gravity in appropriate limit −→ use Poisson’s equation for guid-
ance: ∇2Φ = 4πGρ.

We want: [curvature] = [mass-energy density]

Various lines of argument lead to the Einstein field equation

Gµν = 8πTµν .

The quantity Tµν is the stress-energy tensor, the relativistic generalization of ρ.

−T · u · u ≡ −Tµνuµuν = energy density seen by observer with 4-velocity u.

−T · u · r̂ ≡ −Tµνuµr̂ν = component of 4-momentum density in direction r̂ in Lorentz
frame defined by u

For an ideal fluid, Tµν = (ρ + p)uµuν + pgµν .
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The quantity Gµν is the Einstein tensor, a symmetric, rank-2 tensor that is built from the
metric and its derivatives up to 2nd order.

ρ ∼ ∇2Φ ∼ relative accelerations ∼ 2nd derivatives of gµν

The Einstein tensor is linear in the curvature and vanishes when spacetime is flat.

The constant of 8π is determined by demanding correspondence to Newtonian gravity in
the appropriate limit.

Energy-Momentum Conservation

In a Lorentz frame, equation for conservation of energy and momentum is
∑

d
dxν

Tµν = 0.
Time derivative = spatial divergence.

Covariant generalization of this is the general expression for energy-momentum conserva-
tion.

Vanishing of
∑

d
dxν

Gµν = 0 is a geometrical identity known as the Bianchi identity.

In GR, conservation of energy-momentum is an automatic consequence of the Einstein
equation: energy-momentum must be conserved because of the way it affects spacetime.

Solutions of the field equation

Note that Gµν = 8πTµν is a set of ten, second-order differential equations for the ten
components of gµν .

Second-order =⇒

boundary conditions matter

spacetime can be curved even where Tµν = 0

propagating wave solutions exist

Four geometrical identities (the Bianchi identities) constrain Gµν , so there are only six
independent constraints on gµν .

Remaining four degrees of freedom reflect freedom to choose coordinates arbitrarily.

Freedom to choose coordinates =⇒same spacetime can “look” very different physically for
different choices of observers. The Milne cosmology of problem set 1 will be an example
of this.

Nonlinear =⇒hard to solve.

Some exact solutions, e.g.

T = 0 everywhere −→ flat spacetime, “Minkowski space”

Spherically symmetric, flat at ∞, point mass at r = 0 −→ Schwarzschild solution

Generalization to include angular momentum −→ Kerr solution

Homogeneous cosmologies, which we will study

In other cases, approximate.

Some relevant limits:
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gµν ≈constant, i.e. gradients can be ignored −→ special relativity

gµν = ηµν + hµν with |hµν | � 1 −→ weak field approximation

Weak field and v � c −→ Newtonian limit

The Newtonian Limit

A first-order perturbative calculation in this Newtonian limit yields

d2xi

dτ2
≈

1

2

d

dxi
h00,

for the equation of motion.

The corresponding Newtonian equation of motion is

d2xi

dτ2
= −

∂Φ

∂xi
,

(g = −~∇Φ), so we should identify h00 = −2Φ.

In the Newtonian limit the ideal fluid stress-energy tensor is Tµν ≈ diag(ρ, p, p, p), and the
field equation then yields the result

−
1

2
∇2h00 = 4π(ρ + 3p),

and thus

∇2Φ = −
1

2
∇2h00 = 4π(ρ + 3p).

For a non-relativistic fluid, p � ρ, and we get the equation of motion of a particle moving
under the influence of a gravitational potential Φ that obeys Poisson’s equation.

The 3p contribution implies that radiation (with p = ρ/3) has a stronger gravitational
pull than matter (for the same energy density), and that a fluid with p < −ρ/3 can exert
gravitational push.

Tests of GR

• yields Newtonian gravity in appropriate limit

• precision tests of equivalence principle

• precession of Mercury – the key from Einstein’s point of view

• bending of light – historically important

• gravitational redshift

• higher-order solar system tests =⇒measured values of “post-Newtonian parameters” agree
with GR predictions

• binary pulsars:

9



A873: Cosmology Course Notes

gravity wave dissipation rate – very strong test
precession of orbit in an external system
gravitational time delay, effects up to ∼ (v/c)3

Other low precision tests: structure of dense stars, gravitational lensing

Despite these impressive tests, application to cosmology requires gigantic extrapolation in
length and time scale.

Can’t rest comfortably on empirical basis of small-scale tests.

Cosmological models based on GR are impressively successful, but they require two strange
ingredients: dark matter and dark energy.

Existence of these ingredients could be an indication that GR is breaking down in some
way on cosmological scales, though we will generally take the view that it is not.
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