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VIII. Linear Fluctuations

Linear perturbation theory in general

Start with an “unperturbed” solution for quantities xi, i = 1, 2, ...

Write equations for x̃i = xi + δxi.

Expand, keeping terms linear in δxi, and subtracting off unperturbed solution to get
equations for δxi.

Hope you can solve them.

In GR, the quantities xi might be metric coefficients, densities, velocities, etc. GR pertur-
bation theory can be tricky for two reasons.

(1) The equations are very complicated. This is a problem of practice, not of principle.

(2) In a perturbed universe, the “natural” coordinate choice is no longer obvious. Different
coordinate choices have different equations. Results for physically measurable quantities
should be the same, but the descriptions can look quite different.

For scales l � cH−1 and velocities v � c, one can usually get by with Newtonian linear
perturbation theory.

Newtonian perturbation theory in an expanding universe

(This discussion follows Peebles, pp. 111-119.)

Basic unperturbed equations

In an inertial frame, the equations governing the density ρ(r, t) and velocity u(r, t) of an
ideal fluid are:

Continuity equation :

(
∂ρ

∂t

)

r

+ ~∇r · (ρu) = 0 (mass conservation)

Euler equation :

(
∂u

∂t

)

r

+ (u · ~∇r)u = −~∇rΦ (momentum conservation)

Poisson equation : ∇2
rΦ = 4πGρ.

We have ignored pressure gradients in the Euler equation.

Transformation of variables

We would like to have these equations in comoving coordinates x = r/a(t) with “peculiar”

velocity v = u − (ȧ/a)r = ˙(ax) − ȧx = aẋ.

We want to use a quantity that will be small when perturbations are small, so define
the dimensionless density contrast δ(x, t) by ρ = ρb(t) [1 + δ(x, t)], ρb = background
density ∝ 1/a3.
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By the chain rule, the time derivative of a function f at fixed time t and comoving position
x = r/a is

(
∂f

∂t

)

x

=

(
∂f

∂t

)

r

+

(
∂r

∂t

)

x

· ~∇rf =

(
∂f

∂t

)

r

+
ȧ

a

r

a
·
(
a~∇rf

)
.

Rearranging terms yields the expression for the time derivative of f at fixed t and r:

(
∂f

∂t

)

r

=

(
∂f

∂t

)

x

− ȧ

a
x · ~∇f, ~∇ ≡ a~∇r.

With appropriate substitutions, the three equations above become:

Continuity :
∂δ

∂t
+

1

a
~∇ · [(1 + δ)v] = 0

Euler :
∂v

∂t
+

1

a
(v · ~∇)v +

ȧ

a
v = −1

a
~∇φ

Poisson : ∇2φ = 4πGρba
2δ with φ ≡ Φ − 2

3
πGρba

2x2.

The one qualitatively new feature is the “friction” term
(

ȧ
a

)
v in the Euler equation. It

drags v to 0 if ~∇φ vanishes.

This is just the “kinematic redshift” that we encountered long ago; it reflects the use of
expanding, non-inertial coordinates.

It will have a crucial consequence: density contrasts in an expanding universe grow as
power laws of time (for Ωm = 1) instead of exponentials.

The linear perturbation equation

So far, the equations are general, within the Newtonian limit and the assumption that
pressure gradients are negligible, ~∇p/ρ � ~∇φ.

The linear approximation is obtained by keeping only the terms that are first order in δ
or v:

∂δ

∂t
+

1

a
~∇ · v = 0,

∂v

∂t
+

ȧ

a
v +

1

a
~∇φ = 0.

Eliminate v by taking time derivative of first equation, (1/a)× divergence of second, sub-
tracting, and substituting using the continuity and Poisson equations.

Result:
∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρbδ.

This is a second-order differential equation for δ(x, t) with a growing and decaying mode
solution:

δ(x, t) = A(x)D1(t) + B(x)D2(t).
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The linear growth factor

We can rewrite the equation for δ as an equation for the growth factor

D̈ + 2H(z)Ḋ − 3

2
Ωm,0H

2
0 (1 + z)3D = 0.

For Ωm = 1, D1(t) ∝ t2/3 ∝ a(t), D2(t) ∝ t−1 ∝ a−3/2.

A more complicated algebraic expression for D1(t) in the case of Ωm < 1, ΩΛ = 0 is given
in Peebles (1980, Large Scale Structure of the Universe), equation 11.16.

For a flat universe with a cosmological constant, the solution to the differential equation
can be written in integral form

D1(z) =
H(z)

H0

∫
∞

z

dz′(1 + z′)

H3(z′)

[∫
∞

0

dz′(1 + z′)

H3(z′)

]
−1

,

where the factor in brackets makes the normalization D1 = 1 at z = 0.

For other equations of state of dark energy, or for more components (curvature, radiation),
no general integral expression exists, and the differential equation must be solved directly.

To a good approximation, d ln D1/d ln a ≈ Ω0.6
m , implying D1 ∝ a while Ωm ≈ 1 and

slowing of growth as Ωm falls below one.

The linear density and velocity fields

If we assume that density fluctuations appear at some very early time, then at a much
later time we care only about the growing mode D1(t), which we can just call D(t). Thus,

δ(x, t) = δ(x, ti)
D(t)

D(ti)
, D(t) ∝ a(t) ∝ t2/3 for Ωm = 1.

As long as δ � 1, density contrasts simply “grow in place” in comoving coordinates.

From the continuity equation

~∇ · v = −a
∂δ

∂t
= −aδ

Ḋ

D
= −aδHf(Ωm),

where

f(Ωm) ≡ 1

H

Ḋ

D
=

dlnD

dlna
≈ Ω0.6

m .

The condition for a perturbation to be growing mode is δ̇ = δHf(Ωm); growing mode per-
turbations are those for which the velocity divergence correctly reinforces the gravitational
growth.
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Newtonian linear perturbation theory, bottom lines

• For Ωm = 1, δ(x, t) ∝ a(t) ∝ t2/3 [growing mode, matter dominated, no pressure].

• For Ωm 6= 1, δ(x, t) = δ(x, ti)D(t)/D(ti), but D(t) is more complicated. Generally
d lnD/d ln a = f(Ωm) ≈ Ω0.6

m , so fluctuation growth slows when Ωm drops below 1.

• The peculiar velocity field satisfies ~∇ · v = −aδHf(Ωm).

• Pressure gradients can stabilize fluctuations on scales smaller than cs(Gρb)
−1/2, where cs

is the sound speed.

• Because of kinematic redshift, linear perturbations grow roughly as power laws of time
rather than exponentially, so they do not forget their initial conditions.

• All this changes when |δ| reaches ∼ 1.

Fourier description

It is often convenient to work with Fourier components of δ:

δ(x, t) =

∫
d3kδkd2πik·x, δk =

∫
d3xδ(x)e−2πik·x.

Each δk = Akeiθk is a complex number, the Fourier amplitude. (Beware that different
authors choose different conventions on where to put the 2π’s.)

If the phases θk are uncorrelated, then the field δ(x) is Gaussian. This implies that the
1-point probability distribution function of δ is Gaussian,

P (δ) = (2πσ2)−1/2e−δ2/2σ2

,

where the variance

σ2 ≡ 〈δ2〉 =

∫
∞

0

4πk2P (k)dk.

Here P (k) is the power spectrum

P (k) ≡ 〈AkA∗

k〉,

which tells the rms fluctuation as a function of scale (whether or not the field is Gaussian).

In linear theory, each Fourier mode evolves independently, δk(t) ∝ D(t).

The spatial scale is λ = 2π/k, so even if small scale modes have become nonlinear, 4πk3δk >∼
1, large scale modes may still follow linear theory. (This statement is not obviously true,
but it holds in most circumstances.)

On scales in the linear regime, the shape of the power spectrum is preserved, and its
amplitude grows ∝ D2(t).
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Variance of mass fluctuations

We are often interested in the properties of the density field after it has been smoothed,
by convolution with a window function WR(r) of characteristic radius R.

Common choices for W (r) include a top hat,

W (r) = Θ
[
1 − r

R

]

and a Gaussian
W (r) = e−r2/2R2

.

The variance of fluctuations of the smoothed density field is

σ2(R) =

∫
∞

0

4πk2P (k)dk W̃ 2(kR)

=

∫
∞

0

∆2(k)d ln k W̃ 2(kR),

where ∆2(k) ≡ 4πk3P (k)

and

W̃ (kR) =

∫
d3rWR(r)e−2πik·r

is the Fourier transform of the window function.

If WR(r) depends only on r/R, then W̃ (k) depends on k only through the combination
kR, and it generally satisfies

W̃ ≈ 1 2πkR � 1

W̃ ≈ 0 2πkR � 1.

For a power spectrum P (k) ∝ kn with n > −3, σ2(R) ∝ R−(3+n) increases towards smaller
scales and is dominated by waves with k ∼ 1/(2πR).

These results hold generally, not just in linear theory, provided that one uses the non-linear
P (k) rather than the linear P (k). However, if one starts with Gaussian fluctuations, the
probability distribution P (δ) becomes non-Gaussian in the non-linear regime.
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The Inflation + Cold Dark Matter Power Spectrum

The scale-invariant power spectrum

A scale that exits the Hubble radius during inflation with fluctuation amplitude δH reenters
the Hubble radius during the radiation or matter-dominated era with approximately the
same amplitude.

If the fluctuations are scale-invariant, then this amplitude δH is constant, but it applies at
a different time for each scale.

To understand the implications of this, it is useful to blow up the upper right of the “last-in
first-out” inflation diagram (see figures at end of section).

Consider fluctuations that reenter the Hubble radius during the matter-dominated era,
when D1(a) ∝ a.

What does δH = const. imply for the power spectrum P (k, t) at a fixed time, where k
represents the comoving wavenumber 2π/λ?

Scale-invariance implies

4πk3P (k, tc) ≈ δ2
H ≈ const.,

where tc is the time when the comoving scale λ “crosses” (is equal to) the Hubble radius.

The condition for crossing the Hubble radius is:

a(tc)λ ∼ ctc =⇒ a(tc)/k ∝ a3/2(tc) =⇒ a1/2(tc) ∝ 1/k,

where we have used a ∝ t2/3 for a matter dominated universe.

Since P (k, t) ∝ D2
1(t) ∝ a2, we find

P (k, t) = P (k, tc)
a2(t)

a2(tc)
=

δ2
H

4πk3

a2(t)

a2(tc)
∝ δ2

Ha2k.

Bottom line: scale-invariant fluctuations produce P (k, t) ∝ k on scales that reenter the
Hubble radius during the matter dominated era.

The transfer function

But comoving scales smaller than λeq ∼ cteq(1+ zeq), where eq denotes the epoch of equal
matter and radiation densities, reenter the Hubble radius when the universe is radiation
dominated.

These fluctuations grow slower than a(t) until the universe becomes matter dominated.

For very small scales, which reenter when the universe is strongly radiation dominated, we
get essentially no growth after reentering the Hubble radius.
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For wavelengths in this regime, at fixed time

4πk3P (k, t) ≈ 4πk3P (k, tc) ≈ const. =⇒ P (k, t) ∝ k−3

(in practice, there is logarithmic growth, hence an additional factor of log k.)

The transition between scales that enter in the radiation dominated regime and scales
that enter in the matter dominated regime is a slow one, so the change from P (k) ∝ k to
P (k) ∝ k−3 is gradual.

The linear theory CDM power spectrum is written

P (k, t) ∝ kT 2(k)D2
1(t),

where T (k) is the transfer function.

T (k) describes the growth of fluctuations after they re-enter the horizon. It depends on
the energy density of components with different equations of state, (ΩCDMh2, Ωbh

2, ΩΛh2,
Ωrh

2, Ωνh2, ...), but it applies regardless of what spectrum of fluctuations comes out of
inflation (or any other mechanism that produces primeval fluctuations).

T (k) does depend on whether fluctuations at horizon crossing are adiabatic (matter and
radiation fluctuate together) or isocurvature (opposite matter and radiation fluctuations),
since this determines the interplay between gravity and pressure.

From our above analysis, we see that T 2(k) = const. at large scales and T 2(k) ∝ k−4 at
small scales. The transition where P (k) turns over is (in comoving units)

λ ∼ cteq(1 + zeq) = 50

(
Ωmh2

0.15

)−1

Mpc = 36

(
Ωmh

0.21

)
−1

h−1 Mpc.

In practice, this scale is slightly modified by the gravitational effects of the baryon com-
ponent.

Tilt, running, broken scale invariance

Since inflation may not produce perfectly scale-invariant fluctuations, the spectrum is often
written

P (k, t) ∝ knT 2(k)D2
1(t),

where n = 1 corresponds to scale-invariant inflationary fluctuations and n 6= 1 is called a
“tilted” spectrum.

Typical inflation models predict n = 0.9 − 1, but larger tilts (and n > 1) are possible.

The effective value of n could also change with scale; this is called “running of the spectral
index.” It is expected to be small in typical inflation models.

A feature in the inflaton potential can also produce “broken” scale invariance, with a sharp
feature in the power spectrum.
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Hot and warm dark matter

If the dark matter is mildly relativistic at the time that a scale reenters the Hubble radius,
then it will stream preferentially out of overdense regions and into underdense regions,
ironing out fluctuations on that scale.

If the dark matter consisted of neutrinos with rest mass ∼ 10 − 30 eV, then they would
be mildly relativistic at teq (essentially by definition, since their number densities are
similar to those of photons), and fluctuations on scales smaller than cteq would be strongly
suppressed, radically changing T (k).

This gives a “hot dark matter” power spectrum. A pure hot dark matter model fails
because the absence of small scale fluctuations means that small objects are unable to
form at high redshift.

If the dark matter particle has a mass ∼ 1 keV, then primordial fluctuations are suppressed
on sub-galactic scales but not on galactic scales.

Galaxies can still form fairly early, but they are not preceded by generations of smaller
collapsed structures.

This “warm” dark matter model is still viable and offers some attractive features.

However, the “cold” dark matter model, in which particles are massive enough that fluctu-
ations are not erased on any cosmologically interesting scale, seems more natural, because
the particle mass does not have to be fine-tuned and lies more in the range expected from
particle physics models.

Baryon wiggles

Before recombination, baryons are tightly coupled to photons. The baryon-photon fluid
has very high pressure (sound speed ∼ c/

√
3).

This pressure modifies fluctuation evolution: fluctuations oscillate as sound waves instead
of growing steadily.

If there were no dark matter, these oscillations would produce large wiggles in T (k), and
diffusion of photons would suppress fluctuations on small scales.

This pure baryonic model is inconsistent with observations.

However, there should still be low amplitude oscillations in P (k) because the oscillating
baryons tug on the dark matter.

The strength of the oscillations depends on the ratio of baryons to dark matter.
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