
Problem Set 6: Spherical Collapse in an Ωm = 1 Universe

Due Friday, November 30

The evolution of a spherically symmetric, overdense perturbation in a k = 0, Ωm = 1 universe
can be solved analytically up to the point of collapse, which makes it a very useful model despite
its geometrical idealization. The evolution can be viewed from a Newtonian point of view, but
the relativistic derivation is more broadly applicable. The basic trick is to recognize that, as a
consequence of Birkhoff’s theorem (in a spherically symmetric universe, only the interior mass
matters), the perturbation itself must follow the equations of a k = +1 Friedmann universe.

The spherical collapse model is discussed in §8.2 of Padmanabhan’s book and in a famous paper
by Gunn & Gott (1972, Astrophysical Journal, vol. 176, p. 1). Note, however, that the spherical
collapse model discussed in those places is slightly different from the one described below (see part
3).

(1) Perturbation overdensity

Consider an Ωm = 1 universe containing a single, spherically symmetric, homogeneous overdense
region (the perturbation). The background universe is described by the Friedmann equation for
k = 0 and the perturbation by the Friedmann equation for k = +1 (since its density exceeds the
critical density). The equations for the evolution of the background universe a(t) and for the radius
of the perturbed region r(tp) can therefore be written in the parametric form (see course notes, §3,
or Ryden §6.1):
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Use the conditions that (a) t and tp must be equal, and (b) the perturbation vanishes at high
redshift (ρp → ρ as η and ηp → 0) to derive an expression for the overdensity ρp/ρ as a function
of ηp. You may find it useful to introduce the quantity q which is the radius the perturbed region
would have had if it had expanded at the unperturbed rate (i.e., if had not been overdense).

(2) The linear regime

Show that the density contrast
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Show that the dimensionless velocity perturbation for ηp � 1 is
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where v = ṙ is the perturbation’s expansion velocity and H is the Hubble parameter of the back-
ground universe.

Hint: You need to keep doing Taylor expansions in ηp until the quantities you are trying to compute
don’t vanish. It will be worth it in the end.



(3) Turnaround

Let δi denote the density contrast δρ/ρ at some early time ti (ηp � 1), and let ri denote the
perturbation radius at this time.

Show that the perturbation expands to a maximum or “turnaround” radius
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Show that the overdensity at turnaround is ρp/ρ ≈ 5.5.

[Extra credit: The expressions for turnaround radius and time differ from those of Gunn & Gott
(1972) by the factors of 5/3. Why?]

(4) Collapse and virialization

Show that the perturbation collapses to zero radius at tc = 2tta.

Assuming that non-radial velocities are negligible at turnaround, argue that after the perturbation
collapses and reaches virial equilibrium (potential energy = −2 × kinetic energy) it will have a
radius rc ≈ rta/2.

If virialization occurs instantaneously at t = tc, what will the density of the virialized object be
relative to the mean density of the universe at t = tc?

For this part of the problem, assume that the virialized object that forms after collapse is constant
density (and spherical).

(5) Isothermal halo

A more realistic (though still idealized) model is that the post-collapse dark matter halo is a singular
isothermal sphere, with ρ(r) ∝ r−2 and enclosed mass M(< r) ∝ r. Show that in this case the
half-mass radius of the virialized halo is r1/2 = 5

12
rta.

(6) Applications

If all went well, then in part 4 you derived the well-known lore that spherical perturbation in an
Ωm = 1 has a mean overdensity M/(4πR3/3) = 178ρcrit after it collapses and virializes, where
R is the “virial radius.” Since the details of the physical argument are rough, and there is some
cosmology dependence in any case, it is common to refer to the virial radius as R200, within which
the mass is M200 and the mean overdensity is 200ρcrit.

With this definition, show that the virial radius of a dark matter halo of circular velocity V200 =
(GM/R200)
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where h ≡ H0/100 kms−1 Mpc−1.

What are the virial radius and virial mass of the Milky Way’s dark matter halo?


