
Astronomy 8824, Autumn 2017 David Weinberg

Astronomy 8824: Numerical Methods Notes 2

Ordinary Differential Equations

Reading: Numerical Recipes, chapter on Integration of Ordinary Differential Equations

(which is ch. 15, 16, or 17 depending on edition). Concentrate on the first three sections.

Also look briefly at the first sections of the following chapter on Two Point Boundary

Value Problems.

For orbit integrations, §3.4 of the current edition of Binney & Tremaine (Galactic Dynam-

ics) is a good discussion, especially on the topics of symplectic integration schemes and

individual particle timesteps.

We’ll discuss some general aspects of integrating ODEs, while the example in the problem

set will be a relatively simple case of integrating orbits in a gravitational potential, which

is often relevant to astronomers!

A Side Note: Systems of Linear Equations

Reference: Numerical Recipes, chapter 2.

The system of equations

a11x1 + a12x2 + a13x3 + ...a1nxn = b1

a21x1 + a22x2 + a23x3 + ...a2nxn = b2

....

an1x1 + an2x2 + an3x3 + ...annxn = bn

can be written in matrix form

A · x = b.

If the equations are linearly independent, then the matrix A is non-singular and invertible.

The solution to the equations is:

x = A−1 · A · x = A−1 · b.

The computational task of matrix inversion is discussed in Chapter 2 of NR.

For small, non-singular matrices it is straightforward, allowing a straightforward solution

to a system of equations.

For example, in iPython try

import numpy as np

a=np.array([[1,9,7],[2,4,12],[3,7,3]])

1

Astronomy 8824, Autumn 2017 David Weinberg

b=np.array([9,-3,7])

ainv=np.linalg.inv(a)

np.dot(a,ainv)

x=np.dot(ainv,b)

np.dot(a,x)

The problem becomes more challenging when

• The solutions have to be done many, many times, in which case it’s important to be

efficient.

• The equations are degenerate or nearly so, in which case one needs singular value de-

composition.

• The number of matrix elements is very large. If many of the matrix elements are zero,

then one can use sparse matrix methods.

Initial Value Problems

Higher order differential equations can be reduced to systems of first-order differential

equations.

For example
d2y

dx2
+ q(x)

dy

dx
= r(x)

can be rewritten as
dy

dx
= z(x)

dz

dx
= r(x) − q(x)z(x),

two first-order equations that can be integrated simultaneously.

The generic problem to solve is therefore a system of coupled first-order ODEs,

dyi(x)

dx
= fi(x, y1, y2, ..., yN), i = 1, ..., N .

For the case of an orbit in a gravitational potential we have

d2x

dt2
= −~∇Φ(x)

which can be written
dx

dt
= v

dv

dt
= −~∇Φ(x) .

2

Astronomy 8824, Autumn 2017 David Weinberg

This can be written in the dyi(x)/dx form above, though for orbits it is most straightfor-

ward to just think in terms of x and v.

An initial value problem is one in which all values of yi are specified at the initial value of

x.

For example, one might specify x and v at t = 0 and integrate forward in time.

Runge-Kutta

We’ll now think about integrating a single ODE for variable y(x).

The simplest way to integrate an ODE, like the simplest way to do a numerical integral,

is Euler’s method:

yn+1 = yn + hf(xn, yn)

to advance from xn to xn+1 = xn + h.

As with numerical integrals, this is a bad method; one can get higher accuracy and greater

stability with only slightly more work.

Mid-point method (2nd order Runge-Kutta)

Use derivative at xn to advance to xn+1/2. Then use the derivative at xn+1/2 to advance

from xn to xn+1.

k1 = hf(xn, yn)

k2 = hf(xn + h/2, yn + k1/2)

yn+1 = yn + k2

with an error O(h3) per step.

Since the number of steps is ∝ 1/h, the error in the integration should scale as h2.

4th order Runge-Kutta

One can evaluate at more intermediate points and fit a higher order function.

This involves more evaluations per step, but it should allow one to take larger steps.

The most commonly used scheme is 4th order, which seems to be a good compromise

between these two:

k1 = hf(xn, yn)

k2 = hf(xn + h/2, yn + k1/2)

k3 = hf(xn + h/2, yn + k2/2)

k4 = hf(xn + h, yn + k3)

yn+1 = yn + k1/6 + k2/3 + k3/3 + k4/6 + O(h5) .

3

Astronomy 8824, Autumn 2017 David Weinberg

(See NR, eq. 17.1.3.)

Adaptive Step Size

If computing time is not an issue, you can just integrate your ODE multiple times with

steadily decreasing h and check for convergence to your desired accuracy.

However, the step size required for an accurate integration may vary by by a large factor

through the domain.

For example, integrating a highly elliptical orbit requires much smaller timesteps near

peri-center than through most of the orbit, so using a fixed timestep may be wasteful.

You would also like your code to give you an estimate of the accuracy of its answer.

NR discusses strategies for doing this within Runge-Kutta.

The most straightforward idea is to advance from x to x + H, where H is macroscopic

jump, using small steps h. Keep halving h (doubling the number of steps) until the desired

accuracy is achieved.

Start with this value of h for the next H-step. If it’s more accurate than needed, increase

h; if it’s less accurate than needed, decrease h.

There is a somewhat more efficient way to achieve this effect, described in NR and imple-

mented in their routines.

This approach is quite general.

For a specific problem, you may have physical intuition about what should guide the size

of steps.

For example, the accuracy of integration may depend on the ratio of the timestep to the

local dynamical time (Gρ)−1/2 for a gravitational calculation or sound-crossing time L/cs

for a hydrodynamic calculation.

In such situations, you may be able to choose a constant scaling factor that multiplies

some function of local conditions, rather than using step-doubling or other Runge-Kutta

strategies.

Bulirsch-Stoer

This is analogous to Romberg integration for numerical integrals.

Take a sequence of different numbers of steps, with decreasing h.

Using the results for this sequence, extrapolate to the result for h = 0.

NR is enthusiastic about this method for cases that require greater efficiency or higher

accuracy than Runge-Kutta.

4

Astronomy 8824, Autumn 2017 David Weinberg

However, it’s more susceptible to problems if the integration isn’t smooth everywhere.

Leapfrog Integration

Leapfrog is a 2nd-order integration scheme for gravitational problems.

From initial conditions x0, v0, take a half-step to get v1/2.

Then “leapfrog” the positions over the velocities, then the velocities over the positions,

and so forth.

x1 = x0 + v1/2∆t

v3/2 = v1/2 − ~∇Φ(x1)∆t

x2 = x1 + v3/2∆t

etc.

I am almost sure that this is equivalent to 2nd-order Runge-Kutta but for the specific case

of equations where ẋ depends only on v and v̇ depends only on x, which makes it possible

to do fewer evaluations.

Important: You will usually want to output both positions and velocities. If your arrays

store positions on the whole steps and velocities on the half-steps, then you must advance

the velocities half-a-step before output (but be careful to get them back on the half-step

before continuing the integration). You also need to synchronize positions and velocities

before computing energy conservation checks.

Stiff Equations and Implicit Integration

Sometimes you want to integrate a system where there are two or more very different

timescales.

If you integrate with timesteps short compared to the shorter timescale, your calculation

may never finish.

A common example is a hydrodynamic system with cooling. You are typically interested

in phenomena happening on the sound-crossing timescale L/cs, where L is the scale of the

system.

But in a dense region, the cooling timescale may become orders-of-magnitude shorter than

the sound-crossing timescale.

If you have to do the short timescale integration accurately to get the long timescale

behavior to be accurate, then your stuck. But sometimes the short timescale behavior

doesn’t matter too much (e.g., it matters that the gas gets cold, but it doesn’t matter

exactly what its temperature is), and you just need your integration to be stable.

5

Astronomy 8824, Autumn 2017 David Weinberg

In this case, an implicit scheme for the short timescale behavior may be useful. Here is an

example from NR:

Consider

y′ = −cy , c > 0 .

The explicit Euler scheme is

yn+1 = yn + hy′

n = (1 − ch)yn .

If h > 2/c, then the method is unstable, with |yn| → ∞ as n → ∞.

One can avoid this behavior by substituting y′

n+1 for y′

n, obtaining the implicit equation

yn+1 = yn + hy′

n+1.

In this particular case, the implicit equation is trivially solved

yn+1 =
yn

1 + ch
,

which gives a stable result even for large h.

More generally, the implicit equations may be solved by matrix inversion (if they’re linear)

or by some form of iteration (which we’ll get to in two weeks) if they’re non-linear.

If you have a stiff set of equations, then sometimes the physics of the problem will suggest

an alternative solution.

For example, when timescales for ionization are short compared to other timescales in the

system, then relative abundances may always be close to ionization equilibrium, where

recombination rates balance ionization rates.

This gives a set of equations that can be solved as a function of local conditions (e.g.,

density, temperature), and perhaps stored in a lookup table.

If you’re interested in evolution of a hierarchical triple star system where the outer orbital

period is much longer than the inner orbital period, it may be adequate to treat the inner

binary as a ring with mass spread over the orbit according to the amount of time the stars

spend there.

Two Point Boundary Value Problems

Sometimes your boundary conditions aren’t all specified at the same point.

For example, you might know an initial position but be trying to achieve a specific final

velocity.

6

Astronomy 8824, Autumn 2017 David Weinberg

Stellar structure is a classic example: some boundary conditions are known at the center

of the star, but others are known at the surface.

Two general strategies for this kind of problem are the shooting method and relaxation

methods.

In the simplest version of the shooting method, you take a guess at the initial boundary

values and see where you end up.

Then you change an initial boundary value and see how that changes where you end up.

You can now do some form of iteration (as discussed in two weeks) to try to zero in on the

correct initial boundary condition to satisfy your final boundary condition.

It’s like firing your artillery shell and continuously adjusting the angle of your gun until

you hit your desired target.

Sometimes it may be very difficult to get to the right final boundary condition.

In such cases it may be better to integrate from both sides and try to meet in the middle,

e.g., from the center of the star and the surface of the star.

In relaxation methods, you start with an approximate guess at the full solution.

You then use finite differences to calculate the errors in this guess at every point in the

domain.

You then try to adjust your solution to eliminate these errors. If your guess is close, then

you may be able to reduce the problem of eliminating the errors to a problem of solving

simultaneous linear equations.

Relaxation methods are most useful when you have a very good guess to start with.

For example, you may want to solve for a sequence of main sequence stellar models with

increasing mass. The solution at mass M , perhaps scaled in some way, then becomes a

good starting guess for the solution at mass M + ǫ.

One could do the evolution of a star of fixed M in a similar way, with the composition

changing slightly from one time to the next.

7

