
Astronomy 8824: Problem Set 2

Due Tuesday, September 26

NUMERICAL INTEGRATION OF ORBITS

I have provided my sm plotting scripts for this assignment. You are welcome to use or adapt
them, or to write your own plotting scripts in sm or python. Writing good plotting scripts for this
assignment is a non-trivial amount of work.

If you do use my scripts, your python program will need to produce output files with the columns
that my scripts expect.

Part I: Kepler Potential

Consider a 2-d Kepler potential generated by a central point mass M . Adopt units G = M = 1, so
that

Φ(r) = −
1

r
.

In these units, what is the circular velocity vc at r = 1? What is the orbital period for an orbit with
semi-major axis a = 1? If we convert to physical units adopting M = 1M⊙ and a length unit of 1
AU, what is the time unit in years (i.e., what does an interval ∆t = 1 in system units correspond
to in years)?

Write a program to integrate test particle orbits in this potential, in Cartesian coordinates.

First implement this with the Euler method, where you update positions and velocities from time
ti to ti+1 = ti + ∆t using

~xi+1 = ~xi + ~vi∆t

~vi+1 = ~vi −
~∇Φ(~xi)∆t.

If you wish, you may use my program orbit euler.py, available from the web page, for this
part of the problem, then adapt it for subsequent parts. My implementation takes command
line arguments and writes results to standard output, in the right format for the plotting scripts
sm.orbits.kep and sm.energy.kep. To go through all the values I want to consider and make
files with appropriate filenames for the plotting scripts, I use the shell script sh.kepruns, which
can be run with the command sh sh.kepruns.

Modify the Euler program to implement the leapfrog method, where you evaluate the velocities at
half-integer timesteps

~xi+1 = ~xi + ~v
i+

1

2

∆t

~v
i+

3

2

= ~v
i+

1

2

− ~∇Φ(~xi+1)∆t.

Remember that in this case you need to take the first half time-step to evaluate ~v1/2; don’t just set
~v1/2 = ~v0.

Start with a test particle at x = 1, y = 0, ẋ = 0, ẏ = 1. Integrate the orbits up to t = 40 with both
methods, first with a timestep ∆t = 0.01, then with a timestep ∆t = 0.0001.

Plot the orbits for the two methods and two integration steps. Also evaluate the energy E =
1

2
v2 + Φ(~x) and make plots showing the level of energy conservation for the four cases. What other

conserved quantity could you use as a check of your integration accuracy?



2

Repeat with initial velocity ẏ = 0.5 and ẏ = 0.2. Include plots for all three values of ẏ with your
solution.

Comment briefly on the impact of timestep and the difference between Euler and leapfrog integra-
tion.

Here are a few issues to consider in your coding and plotting. Rather than get output every
timestep, you will want to code so that you can separately specify how often you get outputs; you
probably don’t need 400,000 outputs for the ∆t = 0.0001 case. When using the leapfrog integration,
you need to take an extra half-step to synchronize the position and velocity to the same time before
evaluating the energy at your output time (this is another reason you don’t want output at every
timestep). Be sure this is just a temporary evaluation; you want to get velocities back on the 1/2
timesteps when you go back to orbit integration. If you plot y vs. x with the same range and
the same units, your plot panels should be square so that the shape of the orbit is faithful. If you
let your plotting code automatically select axis ranges based on the variation in your quantities,
then it will make even highly elliptical orbits appear circular, and only reading the axis values
will reveal their ellipticity — very bad practice! Where practical, if you’re comparing different
cases (e.g., different timestep choices) keep the same axis ranges so that one can visually evaluate
the comparison; in some cases, like energy conservation that varies by orders-of-magnitude from
one case to another, this won’t be a useful approach. Label your plots well so that it is evident
what case you are showing. If you’re using sm, my macros “fourwin” and “sixwin” and “sixwin2”
are useful for cases like these where you want to put multiple square panels on a single page for
comparison, as illustrated in my scripts.

Part II: Harmonic Oscillator Potential

Now consider a potential

Φ(~x) =
x2

2
+

y2

2q2
.

Using the leapfrog integrator with ∆t = 0.0001, integrate and plot orbits for q = 1, q = 0.9, and
q = 0.6, always starting at x = 1, y = 0, ẋ = 0, with initial y-velocities ẏ = 1 and ẏ = 0.5. You
can use my plotting script sm.orbits.ho if you wish.

For the case q = 0.9, ẏ = 0.5, compare the energy conservation of the Euler and leapfrog methods
for ∆t = 0.01, 0.001, and 0.0001. You can use my plotting script sm.energy.ho if you wish. You
don’t need to include plots of the orbits for these other cases, but do some spot checks to see
whether the orbit is visibly different from leapfrog with ∆t = 0.01.

Part III: Planet and Moon

Adapt your leapfrog integration program to integrate the orbits of three bodies interacting gravi-
tationally.

The most massive body, the star, should have a mass Ms = 1 and start at rest at position (x, y) =
(0, 0).

The next most massive body, the planet, should have a mass Mp and start at position (x, y) = (1, 0)
with an initial velocity ẏp in the +y direction. As in Part I, ẏp = 1 corresponds to a circular orbit
for the planet, provided the perturbing effect of the third body can be ignored.

The third body, the moon, should have a mass Mm and start at position (xm, 0) with an initial
velocity ẏm in the +y direction.



3

Before you start integrating, you should subtract the center-of-mass velocity from all 3 bodies, so
that you work in a frame in which the center-of-mass stays fixed. Otherwise, your bodies will just
drift off the edge of any plot you make.

For the calculations in this part use ∆t = 10−4 as a default, though you may want to experiment
with larger or smaller timesteps in some cases.

First consider cases with Mp = 0.1 and Mm = 0.01. Note that if we imagine Ms = 1M⊙, then the
“planet” here is really a star at the bottom of the main sequence and the “moon” is a brown dwarf
10 times the mass of Jupiter!

Suppose that xm = 1.05. What initial value of ẏm is required for the moon to be in an approximately
circular orbit about the planet? (Think about which frames are relevant.)

Integrate and plot this case. I commend my plotting routine sm.orbits.moon, which has several
nice features: it plots the position of the moon relative to the planet in an inset window; it plots
a zoom around the initial position in another starting window to show perturbations of the planet
orbit; and it changes the line color used for the moon’s orbit each time the planet completes one
orbital period, making it much easier to decode what is happening over time. Note that in the file
names and plotting script I specify the initial ẏm of the moon relative to the planet and in units of
the velocity vc required for a circular orbit at the planet-moon separation (ignoring the star). I do
the conversion to a ẏm in system units in the star’s frame within my python integration script.

Calculate and plot the case with xm = 1.1, again with ẏp = 1 and ẏm chosen to put the moon in a
circular orbit about the planet.

Repeat for xm = 1.2.

Comment on the results for these three cases. At what separation is the orbit of the moon no
longer well described as a circular orbit centered on the moving planet? Can you explain the value
of this critical separation physically? (Hint: think about tidal forces.)

Go back to xm = 1.05, but now set ẏp = 0.7, so the planet is in an elliptical orbit. Compute, plot,
comment.

Set ẏp = 1 but choose the moon velocity relative to the planet to be 0.7vc – i.e., 70% of the velocity
required to put the moon in a circular orbit. Compute, plot, comment.

Increase to xm = 1.10 and try a retrograde orbit for the moon (negative ẏm), first at the circular
speed, then at 70% of the circular speed. Compute, plot, comment.

Finally, consider a lighter planet and moon: Mp = 0.01, Mm = 0.0001. Do just the cases with
ẏp = 1 and a circular orbit for the moon, setting xm = 1.05 1.08, 1.10. Comment on the similarities
and differences from the case with Mp = 0.1, Mm = 0.01.

Part IV: The Three-Body Problem

Time permitting, experiment with cases in which all three bodies have equal mass. You may need
shorter timesteps for some cases.

See if you can set up a “hierarchical triple,” in which a distant tertiary star orbits in an approxi-
mately circular orbit around a tight inner binary.

After that, play around and see what you find. Include plots of your most interesting results and
interpret them.

An interesting set of controlled cases is to set up an inner binary in an approximately circular orbit,
then “drop in” a third body from different distances along the +x axis, always setting its initial ẏ
equal to that of the binary center-of-mass so that the third body drops straight down the x-axis.


