
Astronomy 8824: Problem Set 4

Due Tuesday, October 17

Multi-variate Gaussians and Simple MCMC

References

For bivariate and multivariate Gaussians, section 3.5 of Ivezic et al.

For MCMC, sections 5.8.1 and 5.8.2 of Ivezic et al., and section 15.8 of the 3rd edition of Numerical
Recipes, though this topic wasn’t in the 1st or 2nd edition. Useful journal article references are
Dunkley et al. 2005, MNRAS, 356, 925 and the more comprehensive review of Sharma 2017, ARAA
55, 213, arXiv:1706.01629.

For those of you who have learned to love sm (or at least to tolerate it), I have put my plotting
scripts for this solution on the web page.

1. Bivariate Gaussian

Generate 5000 random data pairs (p1, p2) where p1 and p2 are drawn independently from Gaussians
of standard deviation σ1 = 2 and σ2 = 0.5, respectively (with mean zero). (Use the python routine
np.random.normal.)

Compute new data pairs (x, y) with x = p1 cos α− p2 sinα and y = p1 sinα + p2 cos α for α = π/6.

Plot these two distributions (e.g., as tiny dots with different colors) over the top of each other, and
plot as x and y-axis histograms the marginal distributions of p1, p2, x, and y.

Using equations (3.85)-(3.87) of Ivezic et al., compute the expected values of σx, σy, and σxy. Are
the marginal distributions for x and y in your plot Gaussians with the expected widths? (Overplot
Gaussians for comparison.)

What is the covariance matrix of (x, y)? (Compute this analytically, though it may be useful to
compare it to your numerical estimate.)

Draw 5000 random data pairs from a bivariate Gaussian with this covariance matrix using
np.random.multivariate normal.
Compare this distribution and the marginal distributions of x and y to the ones you got by your
previous procedure and comment on the result.

If you want an example of using np.random.multivariate normal, you can start from my code
gauss2d example.py on the web page.

2. MCMC realization of a 2-d probability distribution

The probability distribution for the bivariate Gaussian distribution in Part 1 is:

p(x) =
1

2π
√

det(C)
exp

(

−
1

2
xT Hx

)

,

where x = (x, y), C =
(

σ2

x

σxy

σxy

σ2
y

)

, and H = C−1.

Implement a simple Markov Chain Monte Carlo (MCMC) routine:

1. Start at a user-specified location x0, y0.



2

2. At each iteration generate a trial point (xi+1, yi+1) with

xi+1 = xi + hσxN (0, 1)

yi+1 = yi + hσyN (0, 1)

where N (0, 1) is a Gaussian random variable of zero mean and unit dispersion (chosen separately
for x and y) and h is a user-specified scaling of step size.

3. If p(xi+1, yi+1) > p(xi, yi) accept the step, i.e., add the new pair to the chain and take your next
trial step from this new position.

4. If p(xi+1, yi+1) < p(xi, yi) then accept the step with probability p(xi+1, yi+1)/p(xi, yi) (draw a
uniform random deviate and compare it to this ratio). If the step is not accepted, do not add the

new point to the chain, and go back to step 2 to choose a new trial point.

5. Output (or just plot within your program) the final distribution of the chain. Also keep track
of and report the fraction of trial steps that are accepted, i.e., the ratio of the final length of the
chain to the total number of steps needed to produce it.

Use this program to generate a 5000-element chain starting from (x, y) = (1, 1) with step scaling
h = 1. Plot the distribution of points from this chain, and the corresponding marginal distributions,
over the bivariate Gaussian distribution from Part 1. If your programs are working, you should get
good agreement.

Try several different starting points and compare the results. You can just describe this comparison
in words.

Change h from 1 to 0.1. Compare the distribution to that for h = 1 (with a plot), and compare
the fraction of steps that are accepted.

Change h from 1 to 2.5. Compare the distribution to that for h = 1 (with a plot), and compare
the fraction of steps that are accepted.

In generating the initial bivariate Gaussian and computing the covariance matrix for the MCMC,
change σ2 from 0.5 to 0.1. Compare to your previous results, for h = 1.

Comment on issues of efficiency and accuracy in MCMC computations and strategies that could
improve the efficiency for the σ2 = 0.1 case.



3

3. Cosmic MCMC: Parameters of the Universe

Here we will do a simplified version of the statistical analysis in Aubourg et al. (arXiv:1411.1074).

You’ll need to adapt the program cosmodist.py that I provided for PS 3, or your own code that
does the equivalent. This time, we will use its ability to compute distances for Ωk 6= 0 and w = −1.
Refer back to PS 3 for the relevant equations. Because you’ll evaluate this integral many times,
I recommend adopting a tolerance of 3 × 10−5, which is adequate given the uncertainties of our
observational constraints.

As the cosmological constraints, take the following (the first two are from the CMB, and others are
from BAO measurements):

Ωmh2 = 0.1386 ± 0.0027.

DM (z = 1090) = 13962 ± 10 Mpc.

DM (z = 2.34) = 5381 ± 170 Mpc.

H(z = 2.34) = 222 ± 5 kms−1 Mpc−1.

DM (z = 0.57) = 2204 ± 31 Mpc.

H(z = 0.57) = 98 ± 3 kms−1 Mpc−1.

DM (z = 0.32) = 1249 ± 25 Mpc.

Compute the likelihood of the data for a given set of cosmological parameters as L ∝ e−χ2/2,
where χ2 is computed from the above data values ignoring any error covariances (i.e., χ2 =

∑

(yi −
ymod,i)

2/σ2
i ).

Adapt your MCMC code to create a chain for cosmological parameter values. You should set it up
to allow steps in 4 parameters: Ωm, h, w, and Ωk.

First consider a flat universe, with Ωk = 0, but allowing free w. Create a 2000-point, 3-d MCMC
using the parameters Ωm, h, and w, where h ≡ H0/100 kms−1 Mpc−1. (Use your 4-d code but set
the step size in the Ωk dimension to zero.) For a starting point I suggest Ωm = 0.3, h = 0.68,
w = −1, and for initial step sizes I suggest trying ∆ = 0.03 in each parameter.

Note that ∆ here refers to the actual steps in Ωm, h, and w, and I’ve chosen it because I know that
these data give parameter errors that are roughly in this ballpark. Don’t further multiply 0.03 by
the expected standard deviations of these parameters — that would be like taking h = 0.03 in Part
2, and you already saw (I hope) that h = 0.1 leads to chains that don’t explore the likelihood surface
very well. I warn you in advance that with ∆ = 0.03 your acceptance fraction in the MCMC will
be low, ∼ 1%, but if you take a much smaller step then you will not get good likelihood sampling.

Plot the distribution of your points in the planes w vs. Ωm, w vs. h, and Ωm vs. h.

Now consider a universe, with w = −1 and free Ωk. Create a 2000-point, 3-d MCMC using the
parameters Ωm, h, and Ωk. (This time set the step size in the w dimension to zero.) For a starting
point I suggest Ωm = 0.3, h = 0.68, Ωk = 0, and for initial step sizes I suggest trying ∆ = 0.03 in
the first two parameters and ∆ = 0.003 in Ωk.

Plot the distribution of your points in the planes Ωk vs. Ωm, Ωk vs. h, and Ωm vs. h.

For reference, you may want to look at Figure 8 of Aubourg et al. (the wCDM and oΛCDM panels),
but you shouldn’t expect to get exactly the same results. The main simplifications are that you
are not including covariances of the errors and that I have converted the BAO measurements to
absolute units using the best-fit value of the sound horizon rd, which is well known (to 0.4%) but
not perfectly known; a full calculation would consider its dependence on cosmological parameters.


