
Astronomy 8824: Problem Set 7

Due Monday, December 11, BY NOON

Systematics and Nuisance Parameters

There will not be a final exam for the course.

Problems 2 and 3 illustrate two different ways of dealing with calibration errors and their impact
on a measurement of H0. You’ll compare results at the end, but don’t automatically carry your
ideas from Problem 2 over to Problem 3.

1. Best-fit slope and intercept with correlated errors

In Part 4 of PS 5 you generated 10 sets of data points using five different covariance matrices and
two random number seeds for each.

For each of these ten realizations compute the best-fit slope and intercept, using the appropriate
covariance matrix for each case.

(Hint: Stats Notes 4, p. 6)

2. Calibration errors in H0 measurement, treated via error covariance

You would like to estimate the Hubble constant using Type Ia supernova distances to galaxies.

Assume (unrealistically) that you have calibrated the mean absolute magnitude (at peak luminosity)
of Type Ia SNe with no uncertainty, from local galaxies whose distance is known by other means
but which are too close to estimate H0 because of peculiar velocities.

By comparing the peak apparent magnitude of SNe found in distant galaxies to this absolute
magnitude, you get an estimate of ln d to each of these galaxies. Assume that the error in ln d has
a constant value σ for all of your sample galaxies, which may be realistic if the error is dominated
by the intrinsic scatter of supernova luminosities rather than by measurement uncertainties. I’m
using ln d rather than d because a realistic error distribution is closer to Gaussian in ln d.

You also measure the recession velocity v for each galaxy, with negligible uncertainty (which requires
your galaxies to be distant enough that peculiar velocities can be ignored).

Hubble’s law, v = H0d, can thus be written ln d = ln v − ln H0. If we think of the velocities as our
independent variables xi and the distance measurements as our data values yi, then inferring H0

comes down to determining the intercept of y = x + b, where the slope is fixed to unity because we
are assuming that Hubble’s law is correct for some value of H0.

(a) For 16 measurements each with σ = 0.08, what is the expected fractional uncertainty in H0?

(b) Now throw in a (realistic) wrinkle: the distant supernovae are observed with a different telescope
and filter set from the local calibrator sample, so there is an uncertainty in ln d that affects all of
the measurements in the same way.

Specifically, if the calibration error is ∆, then the observed value yi,obs will be Gaussian distributed
with dispersion σ about yi,true + ∆, where yi = ln di.

We don’t know ∆, of course, or we would just remove it and calibrate our data to the same system.
However, we may know the plausible range of ∆ — i.e., the calibration uncertainty σ2

∆
= 〈∆2〉.

(We’ve done the best we can on calibration, so 〈∆〉 = 0.)

The value of σ∆ is just about half the uncertainty of the photometric calibration in magnitudes.
(Why?) A realistic value for good observations might be σ∆ ≈ 0.01 − 0.02.
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Give a mathematical argument that the covariance matrix of the errors in this case is

Cij = σ2δij + σ2

∆,

where δij is the Kronecker-delta. (Hint: go back to the basic definition of Cij , and think about
what happens when you take expectation values.)

(c) For N = 16, σ = 0.08, σ∆ = 0.02, what is the uncertainty in H0?

(d) More generally, for what conditions on N , σ, and σ∆ does the calibration uncertainty make an
important contribution to the overall uncertainty in H0?

(e) Suppose that the sample of 16 comes from two different telescopes, i = 1, 8 from telescope 1
and i = 9, 16 from telescope 2, each with its own calibration uncertainty σ∆,1 and σ∆,2. Assume
that the two calibration errors are uncorrelated with each other. What is the covariance matrix for
the full data set?

(f) What is the uncertainty in H0 for σ∆,1 = σ∆,2 = 0.02? For σ∆,1 = σ∆,2 = 0.04? For
σ∆,1 = σ∆,2 = 0.01?
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3. Calibration errors in H0 measurement, treated via marginalization

Consider the following data set, available on the web page as h0.data, for ln(v/km s−1), ln(d/Mpc):

1 8.775 4.399
2 8.583 4.327
3 9.098 4.930
4 8.972 4.818
5 8.556 4.328
6 8.576 4.296
7 9.140 4.928
8 8.986 4.880
9 8.912 4.536
10 8.963 4.582
11 8.851 4.523
12 8.652 4.465
13 8.658 4.368
14 8.774 4.463
15 8.698 4.422
16 8.596 4.398

Data points 1 − 8 come from Telescope 1 with calibration uncertainty ∆1 and points 9 − 16 from
Telescope 2 with calibration uncertainty ∆2.

Assume that apart from the calibration uncertainty the errors σ in ln d are Gaussian with dispersion
0.08.

Treat ∆1 and ∆2 as nuisance parameters, and adopt Gaussian priors on their values:
p(∆) = (2πσ2

∆
)−1/2 exp(−∆2/2σ2

∆
) with σ∆ = 0.02 for both calibration offsets.

Adopt a flat prior on lnH0.

(a) The probability of a given set of data points depends on H0, ∆1, and ∆2:
p(Data| ln H0,∆1,∆2) ∝ exp(−χ2/2). What is the expression for χ2?

(b) Write an MCMC program for the 3-dimensional parameter space ln H0, ∆1, ∆2, using the data
points above.

From your MCMC chain, plot distributions in the three parameter planes ln H0 vs. ∆1, ln H0 vs.
∆2, ∆1 vs. ∆2.

(c) What is your estimate of H0 and its fractional error, marginalized over ∆1 and ∆2?

What can you infer from your data about the relative values of the calibration errors ∆1 and ∆2?

(d) If you widen your prior on the calibrations to σ∆ = 0.04, how does your fractional error on H0

change?

If you sharpen your prior on the calibrations to σ∆ = 0.01, how does your fractional error on H0

change?

(e) How do the uncertainties in H0 that you find from this marginalization approach compare to
the ones you computed via the covariance matrix approach in Problem 2?


