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Astronomy 8824: Statistics Notes 2

Bayesian Parameter Estimation

In Bayesian parameter estimation, one has a model that is assumed to describe the data,
and the task is to determine its parameters.

Hypothesis is “true value of parameter is θtrue = θ” (discrete) or “true value of parameter
is θ ≤ θtrue ≤ θ + dθ” (continuous).

p(θ|DI) = p(θ|I)
p(D|θI)

p(D|I)
.

If θ is continuous, then, technically, p(θ|DI) and p(θ|I) both have a dθ attached.

A Bayesian searches for the parameter value with maximum posterior probability p(θ|DI).

If p(θ|I) is flat, then this is also the value with maximum likelihood p(D|θI).

Maximum likelihood estimators play a major role in both Bayesian and classical ap-
proaches.

A simple example: mean of data

Estimate mean from N measurements xi, when dispersion σ is known, and xi are Gaussian
distributed and independent. (Following Loredo, §5.2.2; see also Ivezic et al. §5.6.1)

Flat prior: p(µ|I) = (µmax − µmin)−1.

Likelihood:

p({xi}|µI) =
∏

i

(2πσ2)−1/2 exp

[

−(xi − µ)2

2σ2

]

= (2πσ2)−N/2 exp

[

− 1

2σ2

∑

i

(xi − µ)2

]

= (2πσ2)−N/2 exp

[

−Ns2

2σ2

]

exp

[

− N

2σ2
(x − µ)2

]

,

where x = 1

N

∑

xi is sample mean and s2 = 1

N

∑

(xi − x)2 is sample variance.

Global likelihood: p({xi}|I) =
∫ µmax

µmin

p({xi}|µI)dµ.

Final result is

p(µ|{xi}I)dµ = K

(

N

2πσ2

)1/2

exp

[

− N

2σ2
(x − µ)2

]

, µmin ≤ µ ≤ µmax,

a Gaussian with mean x and dispersion σ/
√

N , truncated at µmin and µmax, with K a
normalization constant such that the probability integrates to one.
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Some comments on priors

In the above example, as long as prior range is big compared to σ/
√

N , the prior doesn’t
matter.

Otherwise it does, by truncation and normalization K > 1.

If new measurements come in, they can be incorporated by taking output of this result as
prior for new analysis.

At least at informal level, this is often done, e.g., H0 priors on CMB analyses.

To have p(θ|DI) ∝ p(D|θI), we need the prior p(θ|I) to be flat in the range allowed by
the data, not universally.

For example, we may know that µ > 0 on physical grounds. If x̄ ≫ σ/
√

N , then p(µ|I)
is approximately flat in the allowable range if it is “broad” compared to σ/

√
N . But if

x̄ ∼ σ/
√

N , then a flat prior cannot be a good approximation.

For a positive-definite parameter where we have essentially no prior knowledge about its
value, a common choice of prior is p(θ|I) ∝ 1/θ, i.e., flat in ln θ instead of θ itself.

Maximum Posterior vs. Maximum Likelihood

From a Bayesian point of view, the end result of a parameter estimation calculation is the
posterior probability distribution p(θ|DI). Recall that

p(θ|DI) = p(θ|I)
p(D|θI)

p(D|I)
.

For a flat prior p(θ|I), the posterior is proportional to the likelihood P (D|θI).

Frequentist parameter estimation methods often focus on maximum likelihood estimators,
so there is much in common between frequentist and Bayesian approaches. Parameter
estimates based on p(θ|DI) or p(D|θI) will be similar if p(θ|I) is flat in the region of
parameter space allowed by the data.

If you give an expression for, table of, or plot of the likelihood function, then you have
presented all of the evidence of the data, and others can apply prior probabilities or
frequentist assessments as they wish. Thus, if statistics are important to your answer,
there is much to be said for presenting things this way if you can.

A maximum likelihood example: weighted mean

Suppose that we are estimating the mean from N data points that have different errors
(“heteroscedastic” data):

Likelihood:

p({xi}|µI) =
∏

i

(2πσ2

i )−1/2 exp

[

−(xi − µ)2

2σ2
i

]

.

Take log and set d lnL(µ)/dµ = 0.

A few-line derivation shows that the maximum likelihood estimator is

µ̂w =
1

∑

i 1/σ2
i

∑

i

xi

σ2
i

.
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The contribution of each data point is weighted by its inverse variance.

The variance of this estimator is

Var(µ̂w) =
1

∑

i 1/σ2
i

.

ML vs. MAP example: mean of Poisson data

(From Bailer-Jones, §4.4.5)

Suppose we have data {yi} drawn from a Poisson distribution with unknown λ.

For example, we might have a few X-ray photons detected from an astronomical source,
and we want to estimate its flux.

We have (for some reason) a prior P (λ) = exp(−λ/a) where a is known.

Likelihood:

L(λ) =
∏

i

e−λλyi

yi!
.

Thus
lnL(λ) =

∑

i

[yi lnλ − λ − ln(yi!)] .

Setting d lnL(µ)/dλ = 0 gives

∑

i

(yi

λ
− 1

)

= 0 =⇒ λ =
1

N

∑

i

yi.

The maximum likelihood estimate is simply the mean of the data.

For the maximum posterior estimate we want to maximize

lnP (λ|{yi}) = lnL(λ) + lnP (λ) + const

with the normalized prior

P (λ) =
1

a
e−λ/a =⇒ d lnP (λ)

dλ
= −1

a
.

Differentiating and setting to zero gives

∑

i

(yi

λ
− 1

)

− 1

a
= 0 =⇒ λ =

1

N + 1/a

∑

i

yi.

The prior favors smaller λ and therefore reduces the estimate.

As the number of data points increases, the influence of the prior decreases because 1/a
must become smaller relative to N .
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In the limit a → ∞ the prior is flat and the solution goes to the maximum likelihood
solution.

Confidence intervals

We often summarize the results of a calculation with an estimate and a confidence interval.
Bayesians seem to prefer the term “credible region” to “confidence interval,” but they
seem to me nearly interchangeable, even though they are based on different concepts of
probability.

Typically, one would quote the maximum likelihood (or maximum posterior probability)
value as the estimate, though if the likelihood function is far from Gaussian people some-
times quote the likelihood weighted mean.

The confidence interval is a region of highest likelihood (or posterior probability) and is
characterized by the fraction of the probability that it contains.

For a 1-dimensional problem (1 parameter), this is usually straightforward, though even
here a complicated likelihood function may have multiple maxima.

For a Gaussian likelihood function,

lnL = lnLmax − 1

2
∆χ2, L = Lmaxe

−∆χ2/2.

(We’ll have more to say about χ2 and ∆χ2 shortly, but for now you can regard ∆χ2 as a
measure of the deviation of p(D|θI) from its maximum value.)

The regions ∆χ2 ≤ 1, ∆χ2 ≤ 4, and ∆χ2 ≤ 9 contain 68.3%, 95.4%, and 99.73% of the
probability. Since a Gaussian is (2πσ2)−1/2e−x2/2σ2

, these values of ∆χ2 correspond to
1σ, 2σ, and 3σ deviations.

For a non-Gaussian likelihood function, it can be useful instead to quote the values where
L falls to some fraction of its maximum value, say 0.1, in which case the parameter value is
10 times less probable than its most probable value. This particular fraction corresponds
in the Gaussian case to 2.14σ, since e−2.142/2 = 0.1.

If there are multiple parameters, errors on different parameters may be correlated.

Confidence intervals are defined by contours in a multi-dimensional parameter space.

If the likelihood function is a multi-variate Gaussian, then the confidence contours are
ellipses, with the direction of the ellipse axes depending on the covariance of the errors in
the parameters.

For the 2-d case, the contours ∆χ2 = 2.30, 6.17, and 11.80 enclose 68.3%, 95.4%, and
99.73% of the probability. (∆χ2 = 0.21 contains 99%.) See the Numerical Recipes chapter
on “Modeling of Data” for higher dimensions and more discussion.

These are sometimes referred to as “1σ”, “2σ”, and “3σ” regions, when there are multiple
dimensions this usage is loose at best and can be misleading.

In some cases, a sensible choice of parameters will eliminate or minimize covariance, making
results easier to interpret. An obvious case is the slope and intercept of a linear fit. These
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are usually highly correlated, but the covariance can be eliminated by defining the intercept
at an appropriate “pivot point,” fitting y = a(x − xp) + b instead of y = ax + b.

Marginalization

Suppose that we are simultaneously fitting multiple parameters θi but that we would like
to know the confidence interval for one of them in particular, e.g., θ1.

One of the strengths of Bayesian statistics is that it offers a clear way of doing this:

p(θ1|DI) =

∫

p({θi}|DI)dθ2dθ3...dθn.

This procedure of integrating over “nuisance parameters” is called “marginalization.” (The
above expression is the marginal pdf of θ1.)

The approach doesn’t make sense in the frequentist framework because one cannot talk
about the probability of a parameter value.

Example: Suppose we have data that we are using to estimate the slope a, intercept b,
and intrinsic scatter σ of a linear relation between x and y.

If we just want to know the posterior distribution for the slope, we can find it from

p(a|DI) =

∫

∞

−∞

db

∫

∞

0

dσp(abσ|DI).

We don’t have to go down to a single dimension, e.g., if we don’t care about the dispersion
σ but would like to know the joint distribution of a and b:

p(ab|DI) =

∫

∞

0

dσp(abσ|DI)dσ.

Marginalization plays a crucial role in, for example, cosmological analyses of CMB and
large scale structure data, where the cosmological model being fit typically has 6-10 free
parameters but we are often interested in learning about constraints on specific ones, such
as H0 or the effective number of neutrino species.

Systematic uncertainties in the measurements can often be treated by introducing a nui-
sance parameter that describes them, such as a calibration offset, imposing some prior,
and then marginalizing over these nuisance parameters when fitting for other parameters
of physical interest.

Of course, sometimes one astronomer’s nuisance is another astronomer’s science, and vice
versa.

Straight line fitting: the “standard” case

Determine maximum likelihood values of a and b in a linear fit y = ax + b, given data
points with known errors on y, assuming Gaussian error distribution:

p(ŷi|yi) = (2πσ2

y,i)
−1/2 exp

[

−(ŷi − yi)
2

2σ2
y,i

]

,
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where yi is the true value and ŷi is the observed value.

Likelihood
L = p({ŷi}|a, b) =

∏

i

p(ŷi|axi + b)

=
∏

i

(2πσ2

y,i)
−1/2 exp

[

−(ŷi − axi − b)2

2σ2
y,i

]

.

It is often convenient to work with the logarithm of the likelihood

lnL = −1

2

∑ (ŷi − axi − b)2

2σ2
y,i

+ C,

where C depends on the (known) errors σy,i but is independent of a and b.

The maximum likelihood solution is thus the solution with minimum

χ2 =
∑ (ŷi − axi − b)2

σ2
y,i

,

and lnL = −χ2/2 + C.

For this problem, one can find standard analytic expressions (e.g., Numerical Recipes
§15.2) for a and b in terms of the data and error bars by solving the equations that define
the maximum of the likelihood function,

∂lnL
∂a

= 0,
∂lnL
∂b

= 0.

Straight line fitting: a non-standard but very useful case

Now consider a more complicated variation of this problem: fit y = ax + b, with measure-
ment errors in x and y and intrinsic scatter in the relation between y and x.

A model with intrinsic scatter (here assumed constant from point to point and denoted σ)
is usually more realistic than the commonly adopted, perfect correlation model.

If all of the scatters are Gaussian distributed, we have

p(yi|xi) = (2πσ2)−1/2 exp

[−(yi − axi − b)2

2σ2

]

p(ŷi|yi) = (2πσ2

y,i)
−1/2 exp

[

−(ŷi − yi)
2

2σ2
y,i

]

p(x̂i|xi) = (2πσ2

x,i)
−1/2 exp

[

−(x̂i − xi)
2

2σ2
x,i

]

.

In this case we want to maximize

L =
∏

i

p(ŷi|x̂i) =⇒ lnL =
∑

i

ln p(ŷi|x̂i).

6



Astronomy 8824, Autumn 2017 David Weinberg

So we need the expression for p(ŷi|x̂i).

p(ŷi|x̂i) =

∫

∞

−∞

dyi p(ŷi|yi) p(yi|x̂i)

=

∫

∞

−∞

dyi p(ŷi|yi)

∫

∞

−∞

dxi p(yi|xi) p(xi|x̂i).

Now assume a flat prior on xi, p(xi) =const., so that p(xi|x̂i) = p(x̂i|xi) (by Bayes’ theorem
and the requirement that probabilities integrate to one). This assumption is non-trivial,
but usually OK because we only require flatness over the range allowed by x̂i.

We can now substitute our expressions for the probabilities, and several pages of algebra
and integrals lead eventually to the expression

p(ŷi|x̂i) = (2π)−1/2(σ2 + σ2

y,i + a2σ2

x,i)
−1/2 exp

[

− (ŷi − ax̂i − b)2

2(σ2 + σ2
y,i + a2σ2

x,i)

]

.

This expression looks eminently sensible. For σx,i = 0, we get a Gaussian whose width is
the quadrature sum of the intrinsic and observational scatter in y. Non-zero σx,i increases
the probability of larger deviation between observed and predicted yi by allowing the true
value of axi + b to be closer to ŷi than ax̂i + b.

A deviation ∆yi/σy,i has similar weight to a deviation a∆xi/σx,i. If you think of x and
y as having different units, then it is obvious that a factor of a is needed to give σy,i and
aσx,i the same dimensions.

The maximum likelihood solution requires maximizing

∑

i

ln p(ŷi|x̂i) = − 1

2

∑

i

ln(σ2 + σ2

y,i + a2σ2

x,i)

−
∑

i

(ŷi − ax̂i − b)2

2(σ2 + σ2
y,i + a2σ2

x,i)
+ constant,

and thus solving the equations

∂lnL
∂a

= 0,
∂lnL
∂b

= 0,
∂lnL
∂σ

= 0.

There is a straightforward algebraic solution for b,

b =
−∑

i(ax̂i − ŷi)Wi
∑

i Wi
,

where the weights are

Wi =
1

2(σ2 + σ2
y,i + a2σ2

x,i)
.
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This is just an inverse-variance weighted average of the individual estimates of b.

I couldn’t find algebraic solutions for a and σ, but it is straightforward to search a grid of
(a, σ), finding the best b for each (a, σ) from the above equation and evaluating the overall
likelihood.

There are a couple of points worth noting about the likelihood expression.

First, you might naively have thought that with intrinsic scatter as a free parameter, the
maximum likelihood solution would be to have a very large intrinsic scatter, since then
each deviation would contribute very little to χ2.

However, while the second term in the likelihood always rewards large σ2, the first term
penalizes it, basically because the prediction ax + b is diluted by being spread over a large
range, so it doesn’t get much “credit” when it is close.

If a significant fraction of points have deviations that put them on the exponential tail of
the Gaussian, then raising σ will increase the likelihood, but once the typical deviation
falls to ∼ 1σ, raising σ will decrease the likelihood.

This is, of course, what ought to happen. If the prediction is a scatterplot (as happens in
the limit of large intrinsic scatter), then it is unlikely to actually have the points lie close
to a line.

Second, if we reverse the roles of y and x, letting the intrinsic scatter be on x rather than
y, then the solution for a and b (especially a) will be different.

Intrinsic scatter on y is a different hypothesis from intrinsic scatter on x, and the corre-
sponding best fit slopes and intercepts are different.

The difference goes away if σ is small compared to the observational errors.
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