
A8873: Cosmology Course Notes

X. Non-linear clustering, halos, and galaxies

We will touch lightly on some voluminous topics.

Some of this material is covered in §§9.5-9.7 of Huterer.

I have a much more extensive set of lecture notes available from my home page under
the “ICTP Advanced Cosmology School” bullet. Lecture 2 is particularly relevant to this
section. There are many suggestions for further reading in there.

Some other references are suggested below.

Tools for non-linear clustering

The Zeldovich approximation

We have expressed linear theory in terms of the density contrast δ(x, t).

You can also use linear theory to compute the displacements and peculiar velocities of
particles given the linear density field.

Comoving displacements are proportional to the gravitational acceleration computed from
δ(x, t).

Peculiar velocities are proportional to displacements and to f(Ωm) ≈ Ω0.55
m .

This linear perturbation theory for positions and velocities remains usefully accurate well
after linear theory for δ(x, t) has broken down, in part because the densities predicted from
the particle positions never goes negative.

Because it tracks moving particles rather than fixed comoving positions, this is referred to
as linear Lagrangian perturbation theory as opposed to Eulerian perturbation theory.

This approach was introduced by Yakov Zeldovich (1970). I commend the description and
application of this approximation and a powerful extension called the adhesion approxi-
mation from one of my thesis papers, Weinberg & Gunn (1990).

A very short version:

The linear continuity equation implies that the displacements ∆x(q, t) obey

~∇ ·∆x(q, t) = −δ(q, t) .

The associated peculiar velocities are

v = a ˙(∆x) =
Ḋ

D
(a∆x) ≈ Ω0.55

m ·H(a∆x) .

Higher order perturbation theory

You can go to higher order in perturbation theory, keeping terms of order δ2, δ3, etc.

This can be done in either Eulerian or Lagrangian form.
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Nth-order perturbation theory is most useful for calculating quantities that are zero in (N-
1)th-order pertubation theory, e.g., computing skewness induced by gravity from Gaussian
(zero-skewness) initial conditions.

One can also use second-order perturbation theory to predict small departures from the
linear theory P (k) or ξ(r).

Predicting galaxy clustering with perturbation theory is more complicated because you
need to model the relation between galaxy and matter density fields (a.k.a. galaxy bias,
to be discussed more later) to the same order.

Techniques known generically as “effective field theory of large scale structure” try to
combine perturbation theory with some free parameters to represent terms that can’t be
calculated from first principles.

Spherical collapse and other exact solutions

The spherical collapse solution (PS 5 and further discussion below) is extremely useful.

Some other exact non-linear solutions (e.g., a plane-parallel perturbation) exist and are of
some use, at least as a source of intuition.

N-body simulations

Fully numerical calculations that model the evolution of a distribution of N particles in a
large cosmological volume.

N-body simulations

Initial conditions:

Create a linear density field δ(x, ti) by randomly drawing the amplitudes and phases of
Fourier modes from a Gaussian distribution with the desired P (k), then FFT.

Place particles on a uniform grid (or a smooth “glass.”)

Compute initial particle displacements and velocities with the Zeldovich approximation
(or second-order Lagrangian perturbation theory, a.k.a. 2LPT).

Evolution

At each timestep

1. Compute gravitational accelerations from the particle distribution.

2. Update particle velocities.

3. Update particle positions.

4. Repeat.

Output positions and velocities at desired redshifts.

Numerical considerations
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Soften gravitational forces to avoid collisionality and suppress time integration errors.

Tradeoff between resolution and volume.

Many, many details of how to do N-body simulations efficiently and accurately.

Spherical collapse

As you know from PS 5, the evolution of a spherically symmetric perturbation in an Ωm = 1
universe can be solved analytically up to the point of collapse.

The post-collapse state is more guesswork, confirmed/guided by simulations.

Key features:

ρ/ρ̄ ≈ 5.5 at turnaround

Collapse at epoch when δlin ≈ 1.69

Formation of a bound structure with ρ/ρ̄ ≈ 200

Halos and subhalos

A rough model for a dark matter halo is a singular isothermal sphere, ρ(r) ∝ r−2, with a
faster decline beyond R200.

GMore general isothermal spheres can have constant density cores.

An empirical model that describes the average halo profiles found in N-body simulations
remarkably well is the NFW (Navarro, Frenk, & White 1996, 1997) profile:

ρ(r) =
ρ0

r
rs

(

1 + r
rs

)2 . (1)

The profile transitions smoothly from r−1 at small radii to r−3 at large radii, being roughly
r−2 at the scale radius rs.

The behavior at small radii is an r−1 “cusp” instead of a constant density core.

The scale radius is often specified in terms of the virial radius (which often but does not
always mean R200) and the concentration parameter

c = Rvir/rs .

For a 1012M⊙ halo, a typical c is 10-15, but concentrations are lower at higher masses and
vice versa.

For more info, see the NFW wikipedia page, read the excellent NFW97 paper, or some of
the 8000+ papers that cite it. (NFW96 is also good, but if you are choosing one, choose
NFW97.)

A long-standing challenge for CDM is that observed galaxy rotation curves are usually
well fit by halo profiles with cores, and the cuspy NFW profile predicts excessively high
densities and rotation velocities in the inner regions of galaxies.
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This is sometimes called the cusp-core problem, though an NFW profile is usually OK if
the concentration is low enough.

If dark matter is warm rather than cold, concentrations are lower and the central profile
may be flatter than ρ−1.

Self-interacting dark matter (SIDM) could also change halo profiles.

Baryonic effects might also redistribute dark matter away from the profile predicted by
purely gravitational simulations.

The most obvious impact of baryons is to concentrate the DM by pulling it inward, ex-
acerbating the CDM problems. However, models with fairly violent, episodic feedback in
the baryon component can reduce DM densities.

For a concise review of this topic, see Weinberg, Bullock, Governato, Kuzio de Naray, and
Peter (2015).

Halos contain bound sub-halos, which themselves contain ∼ 10% of the mass within the
halo virial radius.

The halo mass function

A characteristic mass scale for non-linear structure is the mass M∗ at which linear theory
gives

σ(M∗) = δc (2)

where δc ≈ 1.69 is the critical threshold for spherical collapse.

If the initial fluctuation power spectrum is P (k) ∝ kn The rms fluctuation amplitude scale
with mass as

σ(M) = δc(M/M∗)
−α, α = (3 + n)/6

(see notes at end of §8). Scales M ≫ M∗ should still be well described by linear theory.

What matters for purposes of the mass function is the effective slope n on scales close to
M∗, not the large scale n ≈ 1 corresponding to scale-invariance.

For a CDM power spectrum, the relevant slope is typically n ≈ −1 to −1.5.

If the initial conditions are Gaussian with a power-law P (k), the mass function of halos is
approximately

dN

dM
∝ M−1+α exp

[

−(M/M∗)
2α
]

. (3)

Equation (3) was first derived with a combination of brilliance and luck by Press &
Schechter (1974) and is referred to as the Press-Schechter mass function.

The rough argument: On each scale M , use Gaussian statistics to compute what fraction
of the mass distribution smoothed on this scale is above the collapse threshold δc and
therefore presumed to be in a bound halo. Differentiating this quantity gives the bound
mass fraction in the range M → M +dM , and dividing by the halo mass gives the number
of halos.
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This argument is put on firmer footing (though still with approximations) by Bond, Cole,
Efstathiou, & Kaiser (1991).

More accurate models are calibrated on N-body simulations, famously J. Tinker et al.
(2008).

Roughly speaking, the sub-halo mass function within a given halo has a Press-Schechter
like form truncated at ∼ 5− 10% of the halo mass.

Again, there are detailed numerical studies (e.g., F. van den Bosch et al. 2005).

Galaxy formation

Big topic!

Big picture sketch

Baryons fall into halos alongside dark matter.

However, a fraction of these baryons can dissipate energy and sink to the center.

These may typically form a disk, supported by angular momentum, which is not easily
dissipated. Typical size Rdisk ∼ 0.05R200.

Gas forms stars.

Star formation injects energy, may eject gas out of the galaxy and back to the circum-
galactic medium (CGM) or intergalactic medium (IGM).

Galaxies can merge.

Semi-analytic models

Semi-analytic models describe the above steps (and more) by physically motivated pre-
scriptions, with free parameters that are chosen to reproduce some observations.

They can then be tested against other observations.

Cole, Aragon-Salamanca, Frenk, Navarro, & Zepf (1994) is a great paper in this genre, as
is its successor, Cole, Lacey, Baugh, & Frenk (2000).

The paper of Mo, Mao, & White (1998) is also very illuminating, based on a simpler model.

Numerical simulations

One can add gas dynamics to N-body simulations and follow the formation of galaxies
numerically, either in cosmological volumes or in “zoom” simulations that zero in on indi-
vidual forming systems.

Voluminous literature. Hopkins et al. (2014), introducing the FIRE simulation suite, is
one good starting point for recent work.

Some robust insights

Galaxy formation is inefficient: only a small fraction of baryons within a halo end up in
the stellar component of the galaxy.
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Either galaxies eject a large fraction of their baryons, or some process prevents accretion
in the first place.

This suppression is a bigger effect at lower halo masses.

Below Mhalo ∼ 109M⊙ (more precisely, vc ∼ 30 km/s), reionization suppresses galaxy
formation (Bullock, Kravtsov, & Weinberg 2000).

In halos Mhalo < 1012M⊙, much of the gas is accreted “cold” along filamentary streams,
without ever heating to the halo virial temperature (Keres, Katz, Weinberg, & Davé 2005;
Birnboim & Dekel 2003, 2006).

Usually the most massive galaxy in a halo forms near the halo center.

When smaller halos merge into a larger one, they bring in satellite galaxies that orbit the
central galaxy.

Galaxy bias

If galaxies form at special locations, they may be biased tracers of the underlying mass
distribution.

The observed color and luminosity dependence of galaxy clustering implies that they must
be biased tracers to some degree — at most one population of galaxies can have the same
clustering as the matter.

Early models of this phenomenon focused on the bias of peaks in the initial density field:
high peaks of a Gaussian field are “born clustered” (Kaiser 1984 and the much more
voluminous tome of Bardeen, Bond, Kaiser, & Szalay 1985).

More generally, if the galaxy density depends on the “local” mass distribution, then the
bias of ξ(r) or P (k) is scale-independent in the linear regime. In equations

δg(x) = F [δR(x)]

implies

ξgg(r) = b2gξmm(r), Pgg(k) = b2gPmm(k) (4)

on scales where r ∼ π/k ≫ R and σ(r) ≪ 1.

This statement is not obvious, and it may not be totally general, but it is supported by a
variety of numerical and analytic arguments.

At second order (i.e., including terms proportional to δ2m or δ2g), galaxy bias can be more
complex and requires more parameters to describe it.

Early discussions of galaxy bias centered on whether one could reconcile theoretically
simpler, Ωm = 1 models with observations of galaxy clustering and peculiar velocities
implying Ωm ∼ 0.2.

This would be possible if the underlying matter was less clustered than the galaxies, with
bg ∼ 2.
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Voids in the galaxy distribution might be underdense in matter but less empty than they
appeared, and because they occupy a large volume they could contain a substantial amount
of matter.

Although we now have convincing evidence that Ωm < 1, galaxy bias remains important
for trying to infer cosmological parameters from or test cosmological models against any
data involving galaxy clustering.

Halo-based models of galaxy bias

Halo bias

The clustering of dark matter halos depends on their mass.

A good approximation (Mo & White 1996, also Cole & Kaiser 1989) expresses the bias
factor halos of mass M in terms of

ν ≡
δc

σ(M)

where δc ≈ 1.69 is the linear theory collapse threshold and σ(M) is the rms fluctuation on
mass scale M .

Extending the (modern version of) arguments that lead to the Press-Schechter mass func-
tion leads to the approximation

bh(ν) = 1 +
ν2 − 1

δc
.

This approximation is pretty good, and Tinker et al. (2010) provide more accurate, nu-
merically calibrated modifications of this formula.

Note that for P (k) ∝ kn, our previous formula for σ(M) implies

ν = (M/M∗)
(3+n)/6.

Thus, at redshift z, the bias of halos of mass M depends on the ratio M/M∗(z).

Halo occupation distribution (HOD) modeling

One of the most widely used approaches for modeling non-linear clustering parameterizes
the relation between galaxies and DM halos with the halo occupation distribution

P (N |M) = probability a halo of mass M contains N galaxies . (5)

One must also specify the spatial and velocity distribution of galaxies within halos.

P (N |M) depends on the luminosity and color (and maybe other proporties) of the galaxy
population being considered, e.g., a 1012M⊙ halo might contain one galaxy with L > L∗

but several with L > 0.1L∗.
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HOD models usually adopt separate descriptions for central galaxies and satellites, assum-
ing that the former move near the halo mean velocity and the latter trace the dark matter
spatial and velocity distribution within the halo.

In HOD modeling, the galaxy correlation function can be separated into the “one-halo
term” of galaxy pairs within the same halo and the “two-halo term” of galaxy pairs within
different halos.

The one-halo term dominates on small scales but goes to zero on large scales, with overlap
of the two on scales corresponding to the virial radii of large halos, ∼ 1− 2 Mpc.

HOD models perform quite well in reproducing observed galaxy clustering from linear to
highly non-linear scales.

They transform number density and clustering information into physical characteristics of
galaxy formation.

One can marginalize over parameters of the HOD to infer cosmological parameters.

Foundational papers: Berlind & Weinberg (2002), Zheng et al, (2005), Zehavi et al. (2005,
2011), Zheng & Weinberg (2007).

Subhalo abundance matching

Suppose we ignore satellites and just consider one galaxy per halo.

From theory, compute the cumulative halo mass function nH(> M), the space density of
halos with mass > M .

From observations, compute the cumulative galaxy luminosity function ng(> L).

If the galaxy luminosity is a monotonic function of halo mass, we must have

ng(> L) = nh(> M) .

This condition allows one to infer the relation between galaxy luminosity and host halo
mass.

Subhalo abundance matching (sometimes abbreviated SHAM) extends this idea to popu-
late subhalos with satellite galaxies.

With “no free parameters,” this model does astonishingly well at reproducing observed
galaxy clustering as a function of luminosity and redshift (Conroy, Wechsler, & Kravtsov
2006).

In practice, in addition to the cosmological model, there is a free parameter to describe
the scatter between luminosity and halo mass, and there are choices to make about how
to assign satellites.

Nonetheless, this is a powerful method for modeling non-linear galaxy bias and for inferring
the “galaxy-halo connection” between galaxy properties and halo properties.

Some key extensions of this idea are in excellent papers by Behroozi, Wechsler, & Conroy
(2013) and Behroozi, Wechsler, Hearin, & Conroy (2019).

Moster, Naab, & White (2013) is another influential paper in this vein.
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