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XII. Inflation

Readings

This topic is covered in Huterer, chapter 7.

A good introduction to the basics is Ryden, chapter 11.

Alan Guth’s “Inflationary Universe” paper (Phys Rev D, Vol. 23, p. 347, 1981) is a classic,
well worth reading.

Extending the standard model

Strengths of the “standard cosmological model” (a.k.a. the big bang theory):

Given GR, the cosmological principle, and known atomic/nuclear/particle physics, it
explains

• the dark night sky

• Hubble expansion

• approximate agreement between 1/H0 and the ages of the oldest stars.

• the existence of a CMB with a blackbody spectrum

• the primordial abundances of helium, D , 3He , and 7Li

Shortcomings of the standard model:

It doesn’t explain

• the baryon asymmetry

• the homogeneity of the universe

• the fact that Ωtot ≈ 1 and, consequently, that the entropy (∼ number of photons)
within the curvature radius is enormous

• the origin of irregularities leading to the formation of galaxies and galaxy structures

To explain these, one looks to extensions of the standard model, just as particle physicists
look to extensions of the standard particle physics model to explain particle masses and
interactions.

Indeed, the two extensions may be linked, which is one reason particle physicists are
interested in cosmology and cosmologists are interested in particle physics.

In each case, the motivation for extension of the standard model is its incomplete explana-
tory power rather than a demonstrable failure to fit observations.

Inflation is an extension of the standard model intended to explain the last 3 of the above
items. Let’s first consider the homogeneity problem and the Ω problem, a.k.a. the “horizon
problem” and the “flatness problem”
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The Horizon Problem

Suppose that a(t) = Atα with 0 < α < 1. At time t, a photon emitted at t = 0 has traveled
a physical distance

RH(t) ≡ a(t)r = a(t)

∫ t

0

c dt′

a(t′)
= Atα

∫ t

0

c dt′

At′α
=

ct

1− α
. (12.1)

RH(t) is the radius of the particle horizon, the maximum distance over which a causal
signal can propagate in the age of the universe.

If 0 < α < 1 and α is not very close to 1, RH is always ∼ ct.

Radiation dominated =⇒α = 1/2, RH = 2ct.

Matter dominated =⇒α = 2/3, RH = 3ct.

RH(t) grows faster than a(t), and the ratio of the comoving horizon volume today to some
earlier time is

R3
H(t0)/a

3(t0)

R3

H(t)/a3(t)
=

(a0
a

)3/α−3

= (1 + z)3/α−3.

For α = 2/3 and z = 1000, this ratio is 10003/2 ≈ 3×104, so at last scattering of the CMB
the presently observable universe contained ∼ 30, 000 causally disconnected patches.

Why is the CMB uniform?

The horizon problem in a nutshell: In the standard cosmological model, no causal process
can establish homogeneity within the presently observable universe. Homogeneity must be
accepted as a mysterious initial condition.

The flatness problem

The Dicke coincidence argument

Friedmann equation:

(

ȧ

a

)2

−
8πG

3

[

ρm,0

(a0
a

)3

+ ρr,0

(a0
a

)4

+ ρΛ,0

]

+
kc2

a2
= 0.

The value of a has changed by a factor ∼ 0.1MeV/10−4eV ∼ 109 since big bang nucle-
osynthesis, and ∼ 1019GeV/10−4eV ∼ 1032 since the Planck epoch.

It would therefore be a surprising coincidence to come along at a time when the curvature
term kc2/a2 is of the same order as the gravitational term.

Specifically, if the curvature term is comparable to the gravitational term today, then it
had to be extremely small compared to the gravitational term in the very early universe.
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For example, to have 0.1 <∼ Ω <∼ 10 today requires Ω ≈ 1 ± 10−4 at z = 104 (matter-
radiation equality), Ω ≈ 1± 10−14, at z = 109 (nucleosynthesis), and still finer tuning at
higher redshift.

Dicke’s conclusion: Probably Ω = 1 (k = 0) or Ω very close to 1 (a ≫ cH−1) so that we
are not living at a “special” time.

Whether or not Dicke’s conclusion is correct, the curvature term was tiny compared to the
gravitational term in the early universe.

One would like a physical explanation for this, since naively one might expect “random”
initial conditions to have the two terms roughly equal.

The entropy argument

A different (and perhaps more compelling) view of the flatness problem:

The entropy per unit volume is s ∼ nγ ∼
(

kT
h̄c

)3
.

Since T ∝ 1/a, the entropy within the curvature radius (assuming k 6= 0) is conserved,
sa3 = constant = S.

Since Ω is not far from 1, the curvature radius is at least ∼ ct = 3000h−1 Mpc∼ 1028 cm,
and nγ ∼ 400 cm−3, so S >∼ 1086.

A closed universe with a much smaller S would have collapsed long ago, while an open
universe with much smaller S would have become freely expanding long ago.

We would like a physical explanation for this enormous dimensionless number.

High entropy within the curvature radius necessarily entails a high ratio of the gravitational
term in the Friedmann equation to the curvature term, so these two versions of the flatness
problem are closely related.

The Inflationary Solution

The inflation scenario, proposed first by Guth in 1981 (though some of the key ideas
were developed earlier and independently by Starobinsky and others), attempts to solve
these problems by positing a phase in the very early universe when the dominant form of
stress-energy is a component with negative pressure that produces accelerated expansion.

Let’s assume that this component has constant energy density ρφ, and thus pressure pres-
sure pφ = −ρφ.

Ignoring matter and radiation but including ρφ, the Friedmann equation is

(

ȧ

a

)2

−
8πG

3
ρφ +

kc2

a2
= 0.

In contrast to the matter- or radiation-dominated case, the gravitational term grows rela-
tive to the curvature term.

74



A8873: Cosmology Course Notes

Thus, Ω is driven towards one instead of away from one.

Once the curvature term is negligible, the solution to the Friedmann equation is exponential
expansion:

a = a0e
t/tH , tH =

a

ȧ
= H−1 =

(

8πGρφ
3

)

−1/2

.

The scale factor can therefore grow by an enormous factor in a moderate number of Hubble
times tH .

Solving the horizon problem

Our argument for the existence of particle horizons assumed a(t) ∝ tα with α ≤ 1.

For a model with faster growth of a(t) (exponential or a steeper power law), the argument
reverses, and instead of particle horizons there are event horizons.

If two observers are separated by a particle horizon, then it is impossible for one to have
causally affected the other in the past, i.e., no light signal can have been sent between
them.

If two observers are separated by an event horizon, then it is impossible for them to causally
affect each other in the future, i.e., neither can send a light signal that will be received by
the other.

In an exponentially expanding universe, the radius of the event horizon is ∼ cH−1.

If the inflation phase lasts long enough, then it can solve the horizon problem.

During inflation observers “lose contact” with other observers as they pass beyond event
horizons, but they regain contact after inflation ends, when they reenter the particle hori-
zon.

The presently observable universe, with Hubble radius ∼ ct, can grow from a single patch
that was causally connected before inflation occurred. Putting in numbers shows that
N >∼ 60 e-folds of inflation are required to achieve this.

In effect, inflation answers the horizon paradox by saying that we calculated the particle
horizon incorrectly, assuming that the expansion of the universe was always decelerating.

The last scales to leave the event horizon during the inflationary epoch are the first ones
to reenter the particle horizon during the subsequent radiation/matter dominated era.

This is sometimes referred to as the “LIFO” rule (last-in, first-out).
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(Above) The evolution of the Hubble radius (solid line) during inflation (flat), radiation
domination, and matter domination (note inflection). Dashed, dotted, and dot-dashed
lines show the physical length of three constant comoving scales. The scale corresponding
to the current Hubble radius cH−1

0
first “left the horizon” about 60 e-folds before the end

of inflation (open circle).

Solving the flatness problem

N >∼ 60 e-folds of exponential expansion makes the universe very flat at the end of inflation,
since the curvature term −kc2/a2 drops while the gravitational term 8πGρφ/3 remains
constant.

This can all happen in a time ∼ 60H−1 ∼ 10−34 seconds if inflation occurs at T ≈

1015 GeV, the temperature when a grand unification symmetry might break.

When inflation ends, energy conservation implies that the enormous energy in ρφ must be
converted into radiation. An enormous amount of entropy is created during this “reheating”
epoch, explaining the large entropy within the curvature radius.

While we have considered ρφ =const., and thus pφ = −ρφ and exponential expansion,
solving the horizon and flatness problems in this way requires only that the expansion be
accelerating (growing faster than a ∝ t).

The acceleration Friedmann equation is ä ∝ (ρ+3p), so accelerated expansion only requires
w ≡ pφ/ρφ < −1/3.

For −1 < w < −1/3, ρφ falls with time but slower than a−2, so the gravitational term still
grows relative to the curvature term.

Of course, the weaker the acceleration, the longer inflation must last to solve the horizon
and flatness problems.
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Inflation and Scalar Fields

Scalar field dynamics

A scalar field φ with a potential V (φ) [V (φ) = λφ4 is a commonly used example] has
energy density and pressure

ρ =
1

2
φ̇2 + V (φ) +

1

2
(~∇φ)2

p =
1

2
φ̇2 − V (φ)−

1

6
(~∇φ)2.

Here we are using h̄ = c = 1 units, for which φ has units of GeV, and V (φ), ρ, and p all
have units of GeV4.

If the φ̇2 and ~∇φ terms are much smaller than V (φ), then we have p ≈ −ρ and thus a
component that can produce exponential expansion.

Successful inflation thus requires a phase in which V (φ) dominates the energy and pressure
budget for a sufficiently long time.

Once inflation starts, gradients are rapidly suppressed by the exponential expansion, so
these terms are unlikely to be a problem.

Smallness of the φ̇2 terms will arise for suitable forms of the potential V (φ) and starting
values φi of the field.

The requirement of slow evolution of φ is known as the slow roll condition.

The dynamical equation for the classical evolution (i.e., ignoring quantum fluctuations) of
φ is

φ̈+ 3Hφ̇−∇2φ+
dV

dφ
= 0.

Ignoring the gradient term, this resembles the equation for a ball rolling down a potential
hill V (φ) with a friction term 3Hφ̇ caused by the expansion of the universe.

The inflationary phase

If φ̇2 and (~∇φ)2 are small compared to V (φ), as required for inflation to occur, then the
first and third terms above can be neglected, and we get the slow roll evolution equation:

3Hφ̇ = −
dV

dφ
.

Inflation occurs during the slow roll phase, while φ and the energy density V (φ) are ap-
proximately constant.

In units with h̄ = c = 1 and G = m−2

Pl
where mPl = (h̄c/G)1/2 is the Planck mass, the

Friedmann equation during inflation is

H2 =
8π

3m2

Pl

V (φ). (12.2)
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Reheating

Inflation ends when φ begins to oscillate about the minimum of V (φ), so that kinetic
energy terms dominate the density and pressure.

If there is some coupling between the field φ (known as the inflaton) and other fields and
particles, then these oscillations will be damped and the energy will be dumped into these
other fields and particles.

This is the reheating epoch.

Energy conservation suggests that the energy density in photons and relativistic particles
at the end of reheating should be close to the value of V (φ) during inflation, though details
depend on the coupling to other fields.

After reheating, the universe evolves as a normal radiation-dominated FRW universe. Any
prior inhomogeneities have been erased by the enormous expansion, and the curvature
radius has been inflated to an enormous scale, containing an enormous entropy.

Note that the value of V (φmin) must be <∼ ρΛ,0, since otherwise the universe would enter
a Λ-dominated phase when the temperature fell to T ∼ [V (φmin)]

1/4.

It is generally assumed that V (φmin) = 0, but there is no clear physical argument that this
must be so.

Inflation Models

Requirements for successful inflation

Starting: Inflation will start if a large enough volume of space (size >∼ cH−1) has V (φ)

dominating over φ̇2 and (~∇φ)2.

Lasting: The slow rolling phase must last at least ∼ 60 e−folds to solve the horizon
problem.

Ending: A successful inflation model also requires a “graceful exit” in which the universe
(or at least some part of it) stops inflating and reheats.

Smoothness: As discussed below, quantum fluctuations during inflation produce density
fluctuations, which must be at (or at least not exceed) the ∼ 10−5 level implied by CMB
anisotropy.

Old, new, and chaotic inflation

Inflation models differ in what the potential V (φ) is and how these requirements are met.

In Guth’s 1981 paper, the form of V (φ) was motivated by GUT models, and inflation
lasted a long time because φ was trapped in a metastable state by a potential barrier.

Inflation ends by φ tunneling through the barrier and rolling to V (φ) = 0.

Unfortunately, this mechanism leads to nucleation of bubbles, and these bubbles must
collide to reheat the universe.
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But the nucleation centers are being carried apart by inflation, and bubbles never collide.

Thus, Guth’s model, usually known as old inflation, fails the graceful exit test. Guth
recognized this, but wrote the paper anyway, commenting (correctly) that a successful
model incorporating similar principles might be found.

In new inflation, V (φ) has a flat plateau but no barrier; φ starts near zero and slowly rolls
down the plateau until it reaches the potential minimum, where it oscillates and reheats.

However, it is difficult to arrange φ starting near zero for a field that is weakly coupled as
required by the smoothness constraint.

Another class of models is chaotic inflation, in which the minimum of V (φ) is at φ = 0,
e.g., V (φ) = 1

2
m2φ2.

If φ starts far from the minimum, then a long slow roll period can ensue.

In old and new inflation, the inflationary phase is preceded by a “normal” radiation-
dominated phase, but in chaotic inflation it need not be.

The initial conditions are imagined to be “chaotic,” with large spatial variations in φ.

Inflation takes place in those regions where φ happens to be large.

Stochastic, eternal inflation

The classical equation of motion is modified by quantum fluctuations, which can carry φ
up or down the potential hill.

At large φ, the fluctuations dominate over the classical evolution terms (which always drive
φ down the potential hill).

Causally separated volumes will experience independent quantum fluctuations.

The regions where φ is largest will inflate most rapidly and acquire most of the volume.

This leads to Andrei Linde’s picture of eternal inflation: some regions of the universe
(occupying most of the volume) are always inflating because quantum fluctuations have
pushed φ to high values.

FRW expansion arises only in those places where φ actually reaches the potential minimum.

The cosmological principle thus breaks down dramatically, though only on scales much
larger than the present Hubble radius cH−1.

If particle physics symmetries can break in different ways, or the multi-dimensional space
incorporated in string theory can compactify in different ways, then these causally discon-
nected regions could have effectively different physical laws, perhaps even different numbers
of dimensions.

This idea is often referred to as the multiverse.

If a multiverse exists, then there is room for some aspects of physics to be explained by
anthropic arguments (the requirement that intelligent life be able to arise), which is a good
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or bad thing depending on your point of view.

Primordial density fluctuations from inflation

Origin of fluctuations

The exponential expansion during inflation “irons out” any pre-existing irregularities.

Inflation was invented to explain homogeneity, i.e., to solve the horizon problem.

But within a year, several groups (Guth and Pi; Hawking; Starobinsky; Bardeen, Stein-
hardt, & Turner) showed that it can also explain the origin of inhomogeneities.

The field φ experiences quantum fluctuations, as the uncertainty principle tells us it must.

The exponential expansion stretches these fluctuations to large scales, and they “freeze in”
as real density fluctuations.

A proper quantum mechanical treatment is subtle, but one can think of φ fluctuations as
slightly shifting the time at which reheating occurs in different parts of the universe, by
δt = δφ/φ̇.

Quantum fluctuations “ripple” the surface on which the universe is homogeneous; on the
constant t surfaces of the unperturbed universe, the density is inhomogeneous.

Magnitude of fluctuations

The typical quantum fluctuations in φ are δφ ∼ H.

One can guess this by recognizing that, in an exponentially expanding universe, H is the
only characteristic quantity with the same units as δφ (energy). Since h̄ = 1, there is no
large multiplicative constant that comes in with quantum effects in these units.

More specifically (following an argument given in Peebles, p. 402), the uncertainty principle
gives δEδt ∼ h̄ ∼ 1.

Quantum fluctuations in φ can be likened to Hawking radiation, in this case associated
with the event horizon of the expanding universe instead of the event horizon of a black
hole.

Hawking radiation has a characteristic wavelength of order the event horizon radius (there’s
no other lengthscale in town), which in this case is ∼ cH−1 = H−1.

This corresponds to energy fluctuations δφ ∼ hc/λ ∼ H.

The typical fractional density fluctuation at the time a scale leaves the horizon during
inflation is

δρ

ρ
=

[

1 +

(

δa

a

)]4

− 1 ≈ 4
δa

a
∼

ȧ

a
δt = Hδt,

where δt is the perturbation to the time at which inflation in this region ends.
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Using

δt =
δφ

φ̇
∼

H

φ̇

for δφ ∼ H and φ̇ ∼ V ′/H from the slow roll equation yields

δρ

ρ
∼

H3

V ′
,

where V ′ = dV/dφ.

Predicted fluctuation properties

Outside the horizon, perturbations do not grow in amplitude (though this statement is
complicated by the freedom to choose perturbed coordinates), so perturbations also reenter
the horizon during the subsequent FRW phase with amplitude δH .

After reentering the horizon, perturbations can grow if the universe is matter dominated.

To the extent that expansion is truly exponential, with constant H, δH is independent of
scale.

Fluctuations of this form are called scale-invariant, and are sometimes referred to as having
a Zeldovich or Peebles-Harrison-Zeldovich spectrum.

In addition to having equal density contrast at the time they enter the horizon, such
fluctuations are scale-invariant in the sense that each logarithmic range of length scales
makes equal contribution to rms gravitational potential fluctuations at fixed time.

Fluctuations on scales that we can probe observationally left the inflationary horizon ∼

50 − 60 e−folds before the end of inflation; scales that left the horizon earlier are sub-
galactic.

Since these last 60 e−folds may be near the end of the inflationary epoch, we expect
small departures from exponential expansion and thus small departures from perfect scale
invariance.

The predicted departures depend on the form of V (φ).

The small amplitude of CMB anisotropies implies δH ∼ 10−5. This observation places
stringent limits on V (φ), generally requiring the potential to be extremely flat.

In simple, single-field inflation models, the predicted fluctuations are isentropic/adiabatic
— fluctuations in energy density that are present in all particle species.

They are also Gaussian because quantum fluctuations of a weakly coupled field are Gaus-
sian.

Versions of inflation with multiple fields can generate non-Gaussian or isocurvature fluc-
tuations.

Assessment of Inflation
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Inflation offers a plausible solution to the horizon and flatness problems.

It generically predicts that space should be flat to within practical limits of measurement,
a prediction that has held up well as precision has improved.

Inflation also generically predicts a nearly scale-invariant spectrum of adiabatic primordial
fluctuations.

Combined with the assumptions of cold dark matter and dark energy, this prediction
appears very successful in matching a variety of observations.

So far so good, BUT

Inflation appears to require unusual initial conditions and an unusually flat potential V (φ),
so it is often criticized as being fine-tuned.

Also, each of its predictions is of a generic form, and many theoretical arguments assumed
a flat universe with scale-invariant Gaussian fluctuations on grounds of simplicity before
inflation came along.

One could thus imagine some alternative model coming along to explain the same things,
and there are claims that some alternatives can do so.

Arguably the best empirical evidence for inflation is that primordial fluctuations are not
perfectly scale-invariant but show a small tilt (ns ≈ 0.965 instead of 1).

Such a departure is a generic prediction of inflation, but the actual value of ns depends on
the form of the potential V (φ).

Quantum fluctuations during inflation also produce gravitational waves, a.k.a. tensor fluc-
tuations, which could be detected through large-scale B-mode polarization of the CMB.

Their amplitude relative to density fluctuations, described by the tensor-to-scalar ratio r,
depends on the energy scale of V (φ).

Combined measurements of ns and upper limits on r now rule out many previously plau-
sible models for V (φ), which is an encouraging degree of progress.

Inflation is a rather flexible scenario, so it is hard to rule it out unless an alternative model
proves more successful.

Discovery of tensor fluctuations would be good evidence for inflation and would give more
insight on the physics that produced it.

Primordial non-Gaussianity or features in the inflationary power spectrum could also give
insights on inflation physics.
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