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IV. Homogeneous Cosmological Models: Dynamics

The Friedmann Equations

Gravity hasn’t entered the picture yet. But to go any further, we need a(t).

Assume GR is correct. We could get equations for a(t) by plugging the FRW metric into
the field equation. This yields two non-trivial equations, one of which is the integral of the
other.

Instead of following this derivation, we’ll use the Newtonian limit, ∇2Φ = 4πG(ρ + 3p),
which will get us almost all the way. (Caution, I’m still using c = 1 here so that ρ and p
have the same units.)

My order of doing things is different from Huterer’s, though the end results are the same.

We appeal to Birkhoff’s theorem, which implies that we can think about a small spherical
volume in isolation, ignoring the gravitational effects of the rest of the universe (which
cancel out in spherical symmetry).

We will typically think of ρ as a mass density, but for more general forms of energy we
could substitute ρ = ε/c2 where ε is the energy density.

Consider a shell of physical radius R comoving with the Hubble flow:

R̈ = −4π

3
G(ρ+ 3p)R3 × 1

R2
.

But R = ar with r constant, so R̈ = är. Thus,

ä = −4π

3
G(ρ+ 3p)a = −4π

3
G [3(ρ+ p)a− 2ρa] .

This equation can be written

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
, (4.1)

where I put in the c2 for clarity [Huterer 3.7].

If we write this in terms of energy density (like Ryden does):

ä

a
= −4πG

3c2
(ε+ 3p) .

This is an “acceleration” equation for the cosmic expansion. We see already that ä < 0 if
ρ+ 3p > 0, gravity slows expansion.

We would like to have an “energy” equation for ȧ, which we can get by integrating if we
know how ρ and p change with a.
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Use the first law of thermodynamics (energy conservation), assuming that the expansion
is adiabatic:

−pdV = dU = d(ρV ) = ρdV + V dρ

=⇒ dρ = −(ρ+ p)
dV

V
= −3(ρ+ p)

da

a

Differentiate w.r.t. t and rearrange to get

ρ̇+ 3
ȧ

a

(
ρ+ p/c2

)
= 0, (4.2)

where I again inserted the correct power of c2 [Huterer 3.6].

In energy density this would be written

ε̇+ 3
ȧ

a
(ε+ p) = 0.

This is the continuity equation for an adiabatic fluid in an expanding universe. The adia-
batic assumption — no change of entropy — is valid during most of the cosmic expansion,
but it is violated at some special epochs when the number of particles changes substantially.

For our immediate purposes it is useful to instead write

ȧ =
−a

3(ρ+ p)
ρ̇.

Multiply both sides of the acceleration equation by ȧ to get

ȧä = −4π

3
G
[−a2ρ̇− 2ρaȧ

]
=

4π

3
G

[
a2ρ̇+ ρ

d(a2)

dτ

]
.

Recognize that ȧä = d(ȧ2/2)/dt and that the term in [ ] is d(a2ρ)/dt. Integrate with
respect to t to get

ȧ2 − 8πG

3
ρa2 = constant.

Unfortunately, deriving the integration constant really does require the GR field equation.

We can guess that if the density ρ is high, space will be positively curved, and the universe
will be gravitationally bound, making the constant (which plays the role of a potential
energy) negative.

Conversely, if ρ is low, space will be negatively curved, and the universe will be unbound,
with a positive constant.

GR leads to the conclusion that the integration constant is −kc2/R2
0.
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In dimensionally correct form, the Friedmann equation can be written

(
ȧ

a

)2

− 8πG

3
ρ+

kc2

a2R2
0

= 0. (4.3)

[Huterer 2.46] There is no p in this equation, but if we have forms of energy other than
matter we should substitute ρ = ε/c2 where ε is the energy density.

We will sometimes refer to the first term as the “kinetic” term, the second as the “gravi-
tational” term, and the third as the “curvature” term.

The density parameter

Note that ȧ/a = H, so if k = 0 the Friedmann equation =⇒ρ = 3H2/(8πG). Define the
“critical density”

ρc =
3H2

8πG
= density of a k = 0 Friedmann universe. (4.3)

We can define a dimensionless “cosmological density parameter”

Ω =
ρ

ρc
(4.4)

If Ω � 1 then the gravitational term of the Friedmann equation is much smaller in mag-
nitude than the kinetic and curvature terms.

The Friedmann equation can also be written

H2(1− Ω) =
−kc2

a2R2
0

.

Matching signs implies

Ω > 1 −→ k = +1, closed universe

Ω = 1 −→ k = 0, flat universe

Ω < 1 −→ k = −1, open universe

Note that Ω = Ω(t), but because k doesn’t change, Ω always remains within whichever of
these 3 regimes it starts in.

If we define
Ωk = 1− Ωtot (4.5)

where Ωtot is the sum of all other energy densities relative to ρc, then the above equation
implies

R0 =
c

H0
|Ωk|−1/2.
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Evolution of energy density

Consider an energy component with equation of state p = wρc2.

The continuity equation derived previously from the first law of thermodynamics,

ρ̇+ 3
ȧ

a

(
ρ+ p/c2

)
= 0,

can be written
ρ̇

ρ
= −3(1 + w)

ȧ

a
.

Integrating yields
ρ ∝ a−3(1+w).

Pressureless matter: w = 0, ρ ∝ a−3 (dilution)

Radiation: w = 1/3, ρ ∝ a−4 (dilution plus redshift)

A cosmological constant has ρ =const. by definition, implying w = −1.

If these are the energy components in the universe, then the Friedmann equation becomes

(
ȧ

a

)2

− 8πG

3

[
ρm,0

(a0
a

)3
+ ρr,0

(a0
a

)4
+ ρΛ,0

]
= − kc2

a2R2
0

.

Here the subscript 0 can represent any fiducial time t0.

If it represents the present day, then a0/a = (1 + z).

Note that even if the curvature term is comparable to the gravitational term today, it will
be negligible at sufficiently high redshift because the ρm and ρr terms grow more rapidly
with (1 + z).

Thus, flat universe (k = 0) solutions are always accurate at high z.

You will show in PS 2 that the Friedmann equation can be written in the form

H(z) = H0

[
ΩΛ,0 + Ωk,0(1 + z)2 +Ωm,0(1 + z)3 + Ωr,0(1 + z)4

]1/2
, (4.6)

a form that is frequently useful for cosmological calculations.

The subscript 0 refers to present-day values of the density parameters, but these are often
just written Ωm, Ωk, etc., with the z-dependence written explicitly when referring to
evolving values, e.g., Ωm(z).

Solutions of the Friedmann equation: single component universe

Empty universe: ρ = 0, k = −1 (
ȧ

a

)2

=
c2

a2R2
0

.
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Solution a = ct/R0, R0 = ct0.

Metric and expansion rate of the Milne cosmology.

Flat universe: k = 0, ρ = ρ0
(
a0

a

)3(1+w)
.

(
ȧ

a

)2

=
8πG

3
ρ0

(a0
a

)3(1+w)

.

Solution a ∝ t2/[3(1+w)].

Pressureless matter: w = 0, a = a0(t/t0)
2/3.

Radiation: w = 1/3, a = a0(t/t0)
1/2.

(Our standard notation has a0 = 1.)

It is easy to show that the age of the universe for a ∝ tα is

t = α× 1

H
.

Λ-dominated flat universe: k = 0, ρ = ρΛ

(
ȧ

a

)2

=
8πG

3
ρΛ.

Since ȧ ∝ a, solution is exponential growth:

a = a0e
t/tH , tH =

(
8πGρΛ

3

)−1/2

.

Solutions of the Friedmann equation: two component universe

With two components, you can usually figure out the early and late time behavior from
the Friedmann equation, with this form being particularly useful:

H2(z) = H2
0

[
ΩΛ,0 + (1− Ω0)a

−2 + Ωm,0a
−3 + Ωr,0a

−4
]

where I wrote 1 − Ω0 in place of Ωk,0 and I have expressed the expansion in terms of a
(with a0 = 1) instead of (1 + z) to help think about the future when a > 1.

Matter + curvature

H2 = H2
0

[
Ω0a

−3 + (1− Ω0)a
−2
]
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We see that for Ω0 > 1, H becomes zero at the “turnaround” epoch

amax =
Ω0

Ω0 − 1
.

For Ω0 < 1, H does not reach zero, so it cannot change sign; an expanding sub-critical
universe expands forever.

For Ω0 > 1, the solution (which can be verified by direct substitution and a bit of algebra)
can be written in the parametric form

a(θ) =
amax

2
(1− cos θ),

t(θ) =
amax

2

1

H0(Ω0 − 1)1/2
(θ − sinθ) =

R0

c
× amax

2
(θ − sinθ) .

Maximum expansion is reached at θ = π, and the universe collapses in a “big crunch” at
θ = 2π.

For Ω0 < 1, define

a∗ =
Ω0

1− Ω0
,

and the parametric solution is

a(η) =
a∗
2
(cosh η − 1),

t(η) =
a∗
2

1

H0(1− Ω0)1/2
(sinhη − η) =

R0

c
× a∗

2
(sinhη − η) .

where η runs from zero to infinity.

At late times (η � 1), the solution approaches a ∝ t as universe enters “free expansion.”

At early times (η � 1, θ � 1), both solutions approach a ∝ t2/3, as for k = 0.

Matter + Λ

For a flat universe with a cosmological constant, ΩΛ,0 = 1 − Ωm,0, and the Friedmann
equation can be written

H2

H2
0

= Ωm,0a
−3 + (1− Ωm,0).

For Ωm,0 < 1, ΩΛ,0 > 0, and the matter density and cosmological constant are equal at an
expansion factor

amΛ =

(
Ωm,0

ΩΛ,0

)1/3

.
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The relation between time and expansion factor can be written in the cumbersome but
explicit form

H0t =
2

3(1− Ωm,0)1/2
ln


( a

amΛ

)3/2

+

(
1 +

(
a

amΛ

)3
)1/2


 .

At early times

a(t) ≈
(
3

2

√
Ωm,0H0t

)2/3

,

like a flat, matter-dominated universe, while at late times

a(t) ≈ amΛ exp(
√
ΩΛ,0H0t),

giving the exponentially expanding solution for a Λ-dominated universe.

Curvature, Destiny, Topology

As the above solution shows, a matter dominated k = +1 universe eventually collapses,
while a matter dominated k = 0 or k = −1 universe expands forever.

This correspondence of closed geometry with a bound universe and flat/open geometry
with an unbound universe continues to hold if radiation is added.

But vacuum energy can change the picture.

We have so far assumed that vacuum energy is a cosmological constant, with energy density
that does not change as the universe expands.

More generally we could replace ΩΛ,0 in the Friedmann equation with Ωφ,0[ρφ(a)/ρφ,0] to
allow for a general dependence.

For a constant w, ρφ(a)/ρφ,0 = a−3(1+w).

For the universe to recollapse, we must have H(a) = 0 at some time in the future (a > 1).

If there is no vacuum energy, Ωφ,0 = 0, then this

must happen if Ωk < 0

cannot happen if Ωk > 0.

For Ωφ,0 > 0, recollapse can be avoided if ρφ(a)/ρφ,0 falls slower than a−2.

Best guess current parameters are Ωφ,0 ∼ 0.7, |Ωk,0| � 1, ρφ(a) ∼ const., implying that
the universe could be open, flat, or closed, but that expansion forever is likely.

Future recollapse is possible if Ωk,0 < 0 and vacuum energy changes its equation of state
and starts to fall faster than a−2 in the future.
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If Ωφ,0 < 0 (a negative vacuum energy is not favored by observations, but it is not obviously
impossible in principle), then one could have an Ωk > 1 (open) universe that recollapses.

GR does not prohibit the universe from having a complex topology, e.g. a toroidal topology
in which heading off in one direction eventually brings you back to where you started.

Thus, in principle, the universe could be negatively curved or flat and still be spatially
finite.

There have been some (unconvincing) claims for periodic redshifts that could be interpreted
as evidence for complex topology.

People are seriously searching for signs of complex topology in the pattern of CMB
anisotropies.
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