
Problem Set 4: WIMP Dark Matter Freeze-out

Due Wednesday, March 20

Introduction

The goal of this problem set is to compute the relic abundance of thermal WIMPs (weakly
interacting massive particles) from the early universe. I’ve formulated this in an approx-
imate way that I think is basically correct and gives a reasonable answer, but it’s not a
form I’ve seen elsewhere so there could be errors. The definitive calculation is the highly
cited paper by Steigman, Dasgupta, and Beacom (2012), which is a more sophisticated
version of the calculation described in §6.1.2 and Box 11.2 of Huterer.

Unless otherwise specified, quantities like m and n refer to the mass and number densities
of WIMPs.

For early universe problems, it is often convenient to adopt “high energy physics” units
in which h̄ = c = kB = 1 (kB =Boltzmann’s constant) and the fundamental dimension is
energy. One goal of this problem set is to give you experience in doing a calculation this
way.

A traditional and convenient unit of energy is 1 GeV= 109 eV, and in the high energy
system of units:

1 GeV = 1.16×1013 K = 1.78×10−24 g = (1.97×10−14 cm)−1 = (6.58×10−25 s)−1.
(1)

Newton’s gravitational constant enters into calculations via the Planck mass,

mPl ≡ (h̄c/G)1/2 = G−1/2 = 2.18× 10−5 g = 1.22× 1019 GeV. (2)

As discussed in class and in Huterer §4.2, the energy density of relativistic particles can
be written
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the sums are over all species of particles relativistic at temperature Ti, and we have allowed
for the possibility that each species i is characterized by a different temperature Ti. Figure
4.1 of Huterer shows the evolution of g∗ as a function of time t and temperature T .

WIMPs are non-relativistic at the time of freeze-out, so their number density is (Huterer
4.23)
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1. Friedmann equation

Using the Friedmann equation for a k = 0, radiation dominated universe, show that the
Hubble parameter H(T ) at the time that the temperature of relativistic species is T is
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ȧ

a

)

= 1.66g
1/2
∗

T 2
γ

mPl
. (6)

2. Freeze-out condition

Approximate WIMP freeze-out by assuming that WIMP/anti-WIMP annihilation main-
tains the number density at the thermal equilibrium value of eq. (5) until the annihilation
rate falls to

Γf = nf 〈σv〉 = αfH , (7)

after which WIMP annihilation stops completely and the number density changes only by
dilution from cosmic expansion. Here the subscript f denotes freeze-out, nf is the WIMP
number density at freeze-out, 〈σv〉 is the thermally averaged annihilation cross-section,
and αf is a dimensionless fudge factor we are carrying to check sensitivity to the details
of this assumption.

If the freeze-out temperature is high enough that many particle species are relativistic, we

have g
1/2
∗ ≈ 10 (g∗ ≈ 100, see Huterer Fig. 4.1). Adopting this value for g

1/2
∗ and g = 2

for WIMPs, show that the freeze-out condition (7) implies

(

m

Tf

)3/2

e−m/Tf =
5× 1.66× (2π)3/2αf

〈σv〉mPlTf
. (8)

3. Estimate m/Tf

For the thermally averaged cross-section, we will take a value typical (at order-of-magnitude
level) for weak interactions,

〈σv〉 = 3× 10−9GeV−2 .

Note that the combination 〈σv〉mPlTf is dimensionless.

By taking the natural-log of both sides of equation (8), write an expression for the ratio
m/Tf .

This expression is not one you can solve analytically, but you can easily find an approximate
answer by trial and error. Taking Tf = 4GeV as a guess, and assuming αf = 1, use your
expression to show that

m

Tf
≈ 30 .

How sensitive is your result to the assumed values of Tf and αf? Why is this sensitivity
so weak?



Optional: Compare this value to Fig. 1 of Steigman et al. (2012).

4. Number density at freeze-out

Go back to the freeze-out condition (7). Show that the number density of WIMPs at
freeze-out is
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5. Number density today

As discussed in Huterer §4.3 and briefly in class, the quantity

g∗ST
3a3 = const. (10)

throughout cosmic evolution, where g∗S is defined like g∗ in equation (4) but with 3rd-
powers instead of 4th-powers. Based on Huterer Fig. 4.1, take g∗S(Tf )/g∗S(T0) ≈ 100/4 =
25, where T0 = 2.39× 10−4 eV is the CMB temperature today.

Show that the current day WIMP density is

n0 ≈ nf ×
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. (11)

6. Mass density today

By combining equation (11) with the nf formula (9) and the WIMP mass m, show that
the present-day mass density of WIMPs is
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What are the units of this expression? Are these correct units for a mass density? (Look
back at equation 1.)

7. Ratio to the radiation density

We could restore the necessary constants, evaluate equation (12) in g cm−3, and compare
to the critical density. Instead we’ll take a ratio to the present-day energy density of the
CMB, ργ,0, and use the empirical result (see Huterer Table 3.1) that

Ωγh
2 = 2.47× 10−5 . (13)

Recall that

ργ,0 =
π2
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(using g = 2 for photons). Demonstrate that
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8. The dark matter density today

Evaluating equations (13) and (14), what is the predicted value of the WIMP density
Ω0h

2?

How does the predicted Ω0h
2 depend on the assumed WIMP mass? (Think carefully.)

How does the predicted Ω0h
2 depend on the assumed αf?

How does the predicted Ω0h
2 depend on the assumed 〈σv〉? Explain the direction of this

dependence.

What other comments do you have on this result or your derivation of it?


