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Suggested background reading

Observational Probes of Cosmic Acceleration (OPCA), by Weinberg, Mortonson, Eisenstein, Hirata,
Riess, and Rozo 2013, Phys Rep 530, 87-255 (arXiv:1201.2434), especially chapters 1, 2, 9.

Lecture 1: Questions and Methods

Cosmological Questions

Broad categories

“Fundamental” questions: matter and energy contents of the universe, initial conditions, global
structure, origin

“Astrophysical” questions: physics of galaxy formation, intergalactic medium, clusters, etc.

These lectures will focus mainly on the former category.

Less closely intertwined than they used to be, since uncertainties in the cosmological model are
no longer a major source of uncertainty in galaxy formation, and we have many more probes of
cosmology besides galaxy clustering.

Fundamental cosmology questions, circa 1990

• Is the gravitational instability picture basically correct?

• What were the properties of the initial fluctuations, and where did they come from?

• What is the dark matter?

• What is Ω?

——

• What is the relation between the distribution of galaxies and the underlying distribution of mass?

Largely answered!! Or at least the range of possible answers has been sharply curtailed in all cases.

Fundamental cosmology questions, today

• Why is the universe accelerating?

• What is dark matter?

• What are the masses of neutrinos?

• What are the departures of initial conditions from scale-invariant, Gaussian, adiabatic, scalar
perturbations?

• What is the physics of inflation? (Is inflation correct?)

The last two bullets are observational and theoretical formulations of the same theme.

More generally, we can search for cracks in the “standard cosmological model.”
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The Standard Cosmological Model

Over the past two decades, cosmologists have converged on a “standard cosmological model,”
known as ΛCDM, that explains an impressively wide range of observational data with relatively
few adjustable parameters.

The physics of ΛCDM

ΛCDM can be summarized as “inflationary cold dark matter with a cosmological constant.”

In its simplest “vanilla” form, it assumes:

• Primordial fluctuations as predicted by simple inflation models: adiabatic (present equally in
matter, radiation, etc.), Gaussian, and nearly scale-invariant — P (k) ∝ kns with ns ≈ 1

• Dark matter that is weakly interacting (or has purely gravitational interactions), non-baryonic,
and “cold” in the sense that its initial thermal velocities were too small to affect galaxy formation

• A cosmological constant Λ, with energy density that is constant in space and time

• A flat universe (Ω = 1), as predicted by inflation

The model has some adjustable parameters. In minimal form, these can be reduced to six, which
can be taken as:

Ωch
2 – physical density of CDM

Ωbh
2 – physical density of baryons

ΩΛ – energy density of cosmological constant

As – amplitude of primordial power spectrum

ns – index of primordial power spectrum (“tilt” is ns − 1)

τ – the Thomson optical depth for CMB photons, depends on redshift of reionization

The radiation energy density Ωrh
2 is known from the CMB temperature plus standard neutrino

physics to give the neutrino contribution (I’m glossing over neutrino masses for the moment).

With a flat universe Ωc+Ωb+Ωr+ΩΛ = 1, so the Hubble constant h is not a separately adjustable
parameter.

τ is a (physically interesting) “astrophysical nuisance parameter,” necessary because the observed
amplitude of the CMB power spectrum is (on most scales) proportional to Ase

−2τ , not simply As.

At low redshift, we often refer to the matter fluctuation amplitude in terms of σ8, the rms fluctuation
in 8h−1 Mpc spheres as predicted by linear perturbation theory.

The empirical basis of the standard model

Vanilla ΛCDM gives an impressively good match to:

• CMB temperature and polarization anisotropies over the full observed range

• Measurements of the cosmic expansion history from supernovae and baryon acoustic oscillations
(BAO)

• The shape of the power spectrum of matter clustering as inferred from galaxy clustering and the
Lyα forest

• The amplitude of matter clustering as inferred from the abundance of galaxy clusters, weak
gravitational lensing, redshift-space distortions, the Lyα forest
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With plausible assumptions about baryonic physics it yields reasonably good explanations for the
observed properties and evolution of galaxies, galaxy clusters, and the intergalactic medium, over
redshifts z ≈ 0− 6.

Caveats:

Multiple tensions at the roughly 2σ level:

• the lowest CMB multipoles

• Lyα forest BAO measurement

• direct (distance ladder) measurements of H0

• low redshift measurements of matter clustering, most of which yield lower amplitudes than pre-
dicted by forward extrapolation from the CMB

All of these may go away with improved data and/or modeling. I think the last one has the best
chance of being a real discrepancy with interesting physical implications.

Also:

• There is long-standing controversy about whether CDM predicts the correct properties of galaxies,
particularly the inner density profiles and the abundance of low mass galaxies.

The galaxy formation tensions could indicate something interesting about the properties of dark
matter (warm, self-interacting), but the uncertainties in the baryonic physics are large enough that
it is hard to make this case convincing.

Alternatives: What kinds of physically interesting variants might there be?

Many cosmological models that would be plausible a priori (e.g., a universe with only baryonic
matter) are firmly ruled out by the rich array of high-precision measurements that underpins the
standard model.

Any alternative model has to pass the tests that ΛCDM has already passed.

Observations place ever tighter constraints on the parameters of the standard model, and we can
hope that they will yield inconsistencies that point to new physics.

A “guaranteed” extension of the standard model is

• Neutrinos have non-zero mass, change from “radiation” to “matter.” Ωνh
2 should be measurable.

A “plausible” extension of the standard model is

• tensor contributions to the CMB from primordial gravity waves, introducing new parameters
r = At/As and nt

Other extensions that are not “expected” but would be physically interesting revisions within the
standard framework are:

• dynamical dark energy, not constant in space and time, described by w(z) not w = −1

• extra relativistic species, usually referred to by Nν 6= 3.046

• significant curvature or features in the inflationary power spectrum, “running” or steps

• non-Gaussianity of primordial fluctuations, with implications for inflation

• non-flat universe, Ωk 6= 0, important implications for inflation and global structure of universe
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More radical revisions include:

• departure from GR, a gravitational explanation for cosmic acceleration

• decaying dark matter

• other variations of DM properties that change galaxy formation physics

• isocurvature fluctuations

Cosmological Probes and Their Information Content

Brief overviews here. Some treated in more detail in other lectures.

The cosmic microwave background (CMB)

Suggested reading: Cosmic Microwave Background Anisotropies by Hu & Dodelson 2002, Ann Rev
Astron Astrophys 40, 171-216. You can get a copy from Wayne Hu’s web page.

Hu, Sugiyama, & Silk 1997, Nature 386, 37 is a classic short introduction to CMB physics

For current observations, Planck 2015, especially paper XIII.

The virtues of the CMB as a cosmological probe are:

• Controllable observational systematics, usually limited by detector noise and/or cosmic/sample
variance. Polarization systematics (instrumental and foregrounds) remain challenging.

• Linear physics, usually not limited by theoretical uncertainty

• CMB power spectrum responds to many different physical effects, lots of power to constrain
cosmological parameters

Rough summary of information content:

• Heights of peaks constrain Ωch
2, Ωbh

2. Given these, and radiation content (CMB + standard
neutrinos), can compute sound horizon

rs =

∫ t∗

0

cs(t)

a(t)
dt, cs(t) =

c√
3

[

1 +
3ρb(z)

4ργ(z)

]

−1/2

• Angular scale of peaks determines rs/DA(z∗) with near perfect accuracy. Very sensitive to
curvature, also depends on other parameters.

• Overall shape of spectrum constrains ns, other departures from scale invariance

• Amplitude constrains Ase
−2τ

• Low multipole polarization constrains τ

• Damping tail constrains history of recombination, any departures from standard model prediction

• Low multipoles constrain tensor/scalar ratio

• Lensing (4-point correlations, details of power spectrum shape, B-mode polarization) constrains
amplitude of matter clustering, most sensitive to z = 1− 4

• High-l sensitive to SZ contributions, from clusters and IGM, depends on matter clustering and
gas physics.

• Large angle B-mode polarization can detect inflationary gravity waves
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Interlude: Some Important Equations

The Friedmann equation

H2(z)

H2
0

= Ωm(1 + z)3 +Ωr(1 + z)4 +Ωk(1 + z)2 +Ωφ
uφ(z)

uφ(z = 0)

Evolution of Ωm

Ωm(z) ≡ ρm(z)

ρcrit(z)
= Ωm(1 + z)3

H2
0

H2(z)

Comoving distance

DC(z) =
c

H0

∫ z

0

dz′
H0

H(z′)

Comoving angular diameter distance

DA(z) ≈ DC

[

1 +
1

6
Ωk

(

DC

c/H0

)2
]

Linear growth of fluctuations

δ(x, t) ≡ ρm(x, t)− ρ̄m(t)

ρ̄m(t)
= δ(x, ti)×

G(t)

G(ti)

G̈GR + 2H(z)ĠGR − 3

2
ΩmH2

0 (1 + z)3GGR = 0

Approximations for linear growth rate and growth factor

fGR(z) ≡
d lnGGR

d ln a
≈ [Ωm(z)]γ

γ = 0.55 + 0.05[1 + w(z = 1)]

GGR(z)

GGR(z = 0)
≈ exp

[

−
∫ z

0

dz′

1 + z′
[Ωm(z′)]γ

]

Evolution of dark energy density

uφ(z)

uφ(z = 0)
= exp

[

3

∫ z

0

[1 + w(z′)]
dz′

1 + z′

]
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Type Ia supernovae and other standard candles

Suggested reading: OPCA ch. 3, Betoule et al. 2014 (1401.4064)

Type Ia supernovae measure the relative distance scale, i.e., DL(z2)/DL(z1).

With good observations, the rms distance error per SNIa is 5-8%, so many supernovae can yield
very high precision.

Key challenges are observational systematics — photometric calibration, dust extinction — and
possible redshift evolution of the SNIa population.

Current data yield ∼ 1− 2% relative distance measurements over range z = 0− 0.8, limited mainly
by observational systematics.

Absolute distance measurements require absolute calibration of the SNIa luminosity scale, which
is difficult.

Baryon acoustic oscillations (BAO)

Suggested reading: OPCA ch. 4, Aubourg et al. 2015 (1411.1074)

BAO measure absolute distances and expansion rates, DA(z) and H(z), calibrated to rs, which
(for standard matter and radiation content) is known to 0.4% precision from current CMB data.

Achievable precision grows with redshift because more volume available to measure high precision
clustering.

Same standard ruler measured by CMB, providing long redshift baseline.

Current measurements are 1− 2% precision, limited by statistics.

Likely to remain statistics limited even for cosmic variance limited surveys to z ∼ 3.

Much more in Lecture 3.

Clusters of galaxies

Suggested reading: OPCA ch. 6, Mantz et al. 2014 (1407.4516)

Abundance of clusters as a function of mass constrains a parameter combination that is approxi-
mately σ8(z)Ω

α
m with α ≈ 0.3− 0.5. (Note that Ωm is the z = 0 value.)

Can find clusters by X-ray emission, optical richness, SZ decrement.

Biggest challenge is accurate calibration of cluster mass scale.
Weak lensing is most promising route to achieving percent-level precision.

Current measurements are 5-10% precision in σ8Ω
α
m, limited by mass calibration uncertainty.

Weak lensing

Suggested reading: OPCA ch. 5, Heymans et al. 2013 (1303.1808)

Cosmic shear weak lensing measures combination of matter clustering amplitude and distances.

Intuitively useful formula for linear theory shear variance for sources at zs and lenses at zs/2 in a
flat universe:

∆2(l) ≡ l2

2π
CEE(l) = 1.8× 10−4σ2

8

[(

1 +
zs
2

)

G
(zs
2

)]2

Ω2
m[H0DC(zs)]

2.3l0.7
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At present, especially useful as a constraint on matter clustering amplitude given expansion history
constrained by other probes.

With future surveys like LSST, Euclid, WFIRST, also becomes very high precision test of expansion
history because of sensitivity to distances.

Key challenges are shear measurement systematics, photo-z uncertainties, contamination of signal
by intrinsic galaxy alignments, baryonic effects on predicted signal.

Very tough but great potential.

Galaxy-galaxy lensing and cluster-galaxy lensing are also potentially powerful, with somewhat
different systematics.

More on these in Lecture 2, and more on weak lensing in Jain lectures.

Redshift-space distortions (RSD) and the Alcock-Paczynski (AP) effect

Suggested reading: OPCA §7.2, Reid et al. 2012 (1203.6641)

In linear theory, redshift-space distortions of galaxy clustering constrain a parameter combination
f(z)σ8(z) where f(z) is the clustering growth rate d lnG/d ln a.

Non-linear effects allow some degeneracy breaking, but also complicate modeling.

Key challenge, especially going forward, is modeling RSD at level of precision achievable with
observations. Constraining power is a strong function of kmax or smin.

Current constraints at ∼ 10% level in f(z)σ8(z), limited by combination of statistics and modeling
systematics.

In absence of peculiar velocities, clustering would be isotropic if one assumes the correct ratio of
DA(z)/H

−1(z) = DA(z)H(z) to relate angular and redshift separations (AP test).

BAO automatically gets DA(z)H(z) by measuring both separately, but isotropy can constrain
product using higher precision clustering measurements on smaller scales.

Key challenge is modeling RSD well enough to remove its effect.

Measurements that extend to BAO scale are good for breaking AP/RSD degeneracy.

More in Lecture 2.

Galaxy clustering

In addition to RSD and AP, galaxy clustering can constrain parameters through shape of power
spectrum.

Analogous to CMB, but baryonic effects on galaxy P (k) shape are much weaker.

Turnover scale probes Ωm/Ωr.

Tilt probes ns.

Large vs. small scale can probe Ων .

Sensitivity to h because observed scales are h−1 Mpc.

Key challenge is modeling non-linear evolution of matter power spectrum and, especially, scale-
dependent bias between galaxies and matter.

Current measurements in good agreement with ΛCDM, strengthen constraints for flexible models.

7



Precision Cosmology with Large Scale Structure David Weinberg

Further discussion in Lecture 2.

The Lyα forest

The Lyα forest traces fluctuating neutral hydrogen absorption, which in turn traces underlying
matter fluctuations.

Powerful probe of structure at z = 2− 4, where Lyα is accessible to ground-based observations and
forest absorption is not saturated.

Basic physics is straightforward, though details are complex.

Before SDSS-III/BOSS, Lyα was a “1-d” subject, with each quasar spectrum providing an inde-
pendent map of structure along its line of sight.

BOSS was designed to allow 3-d measurements from sightline cross-correlations.

BOSS has enabled first measurements of BAO in the Lyα forest.

Smaller scale measurements, 1-d and 3-d, can probe shape and amplitude of matter power spectrum
at sub-Mpc to multi-Mpc scales. Growth factor at high z, neutrino masses, tilt, etc.

Current BAO measurement precision is 2%, limited (probably) by statistics.

1-d P (k) measurements are very high precision, yielding tightest upper limit on neutrino masses
(
∑

mν < 0.15 eV, Palanque-Delabrouille et al. 2014). Limited by accuracy of theoretical modeling.

Direct measurement of H0

Reading: OPCA §7.1.
Value of H0 determines the present day critical density. Maximum lever arm compared to CMB.

Many challenges in direct distance ladder measurement, including photometric calibration, extinc-
tion, blending, basic calibration of Cepheid distance scale.

Intriguing tension between values H0 ≈ 70−75 km s−1 Mpc−1 from best direct studies and H0 ≈ 67
predicted for ΛCDM with Planck CMB constraints.

BAO+SN “inverse distance ladder” measurement in Aubourg et al. (2015) yields H0 = 67.3 ±
1.1 km s−1 Mpc−1, excellent agreement with ΛCDM predictions.

Could be reconciled with direct distance ladder by modifying pre-recombination physics to decrease
sound horizon (e.g., adding radiation or early dark energy).

But probably indicates that direct measurements are too high.

21cm at high redshift

A new frontier in observational cosmology is mapping very high redshift structure (z ∼ 6 − 20)
using (redshifted) 21cm emission and absorption.

In principle this opens access to an enormous comoving volume and thus huge numbers of Fourier
modes.

This could ultimately yield cosmological measurements that are much higher precision than those
possible with galaxy or Lyα forest surveys, as well as access to a new redshift range.

There are many instrumental, astrophysical foreground, and modeling uncertainties to overcome.

At z = 0.5 − 3, “21cm intensity mapping” offers a potentially inexpensive way to achieve cosmic
variance limited BAO measurements.
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Forecasting Experimental Performance

Forecasting the ability of an experiment or survey to constrain cosmological parameters or test
models has become a major area of research in itself.

Forecasting can be useful for making the case for a survey or space mission, for optimizing strategy
or instrument design, for understanding the interplay among different empirical constraints, and
for understanding the influence of systematic and statistical uncertainties.

Basic idea: Assume a fiducial model, and estimate the errors and error covariances for your proposed
experiment. Translate these errors into errors on the parameters of interest.

The most frequently used approach is Fisher matrix forecasting, which relies on some simplifying
assumptions about the errors.

There is a pretty good high-level discussion of this topic in section 2 of Tegmark, Taylor, & Heavens
(1997, ApJ, 480, 22) and a valuable but dense presentation in very different notation by Gould
(2003, arXiv:astro-ph/0310577).

Caution: The output of a forecast is only as good as the assumptions that go into it.

Warmup:

Suppose we have an observable y1 that we can predict given some model parameter θ1, and that
we measure y1 with some observational error σ(y1).

Simple “chain rule” error propagation then tells us that the error on θ1 is

σ(θ1) =

(

d y1
dθ1

)

−1

σ(y1).

Often we are interested in the fractional error

σ(θ1)

θ1
= σ(ln θ1) =

(

d ln y1
d ln θ1

)

−1

σ(ln y1).

For example, if y1 ∝ θ31, then the fractional error on θ1 is only 1/3 the fractional error on y1.

If we can anticipate the observational error we will get from some measurement or data set, then
we can forecast the error we will get on the parameter θ.

More general case:

If we have a parameter vector ~θ, the Fisher information matrix is defined by

Fij = −
〈

∂2 lnL

∂θi∂θj

〉

.

To the extent that the likelihood is well described by a quadratic Taylor expansion about the
maximum likelihood value, the expected error on parameter θi is

σi ≡ σ(θi) = (F−1
ii )1/2

if all of the parameters are being estimated from the data set and

σi ≡ σ(θi) = (Fii)
−1/2
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if all parameters other than θi are known.

Under more general conditions, the error of any unbiased estimator must be greater than or equal
to these values, a result known as the Cramér-Rao Bound.

In Fisher matrix forecasting, we assume a fiducial model and properties of a data set to predict the
Fisher matrix and thereby forecast the errors that will be obtained on model parameters.

Fisher matrix for Gaussian likelihoods

Suppose we have a Gaussian likelihood function for N data points

− lnL =
N

2
ln(2π) +

1

2
ln[det(C)] +

1

2
∆kC

−1
kl ∆l,

where ∆k = yk − ymod(xk) and the covariance matrix is

Cij = 〈(yi − 〈yi)(yj − 〈yj)〉 .

Assume that we can ignore any dependence of the covariance matrix on the model parameters. This
is a non-trivial assumption that will not always hold. For example, in cosmological applications
we sometimes have “cosmic variance” errors that depend on the amplitude of matter or galaxy
clustering, and the expected size of these errors depends on the cosmological parameters.

If we make this assumption, the derivative of detC with respect to parameters vanishes, and the
Fisher matrix becomes

Fij =
1

2

〈

∂2∆kC
−1

kl ∆l

∂θi∂θj

〉

.

which after some manipulation can be reduced to

Fij =
∂∆k

∂θi
C−1

kl

∂∆l

∂θj
.

(Einstein summation convention in use.)

Though notationally different, I think this is equivalent to equation (15) of Tegmark et al. (1997),
except that the term AiAj in that equation has vanished because we have assumed that the
dependence of Cij on the parameters can be neglected.

Sensitivity and observational errors

We can decompose a Fisher matrix into a matrix product:

Fij = −
〈

∂2 lnL

∂θi∂θj

〉

= −
〈

∂yk
∂θi

· ∂2L

∂yk∂yl
· ∂yl
∂θj

〉

.

If the errors on the observables are Gaussian and independent of the model parameters, then

∂2 lnL

∂yk∂yl
= C−1

kl ,

the inverse covariance matrix.
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Thus, the Fisher matrix has an “outer” piece ∂~y/∂~θ that represents the sensitivity of the observables
to the parameters and an “inner” piece that represents the errors on the observables themselves.

If we consider the 1-parameter, 1-observable case, we get

F11 =
∂y

∂θ
· 1

σ2
y

· ∂y
∂θ

,

implying

σ2(θ) = 1/F11 = σ2
y

(

∂y

∂θ

)

−2

,

in agreement with our earlier chain rule result.

For a Fisher matrix forecast of parameter errors, we compute the parameter sensitivity from our
model, and we take the expected values of the observable errors (and their covariances).

As far as I know, ∂y/∂θ doesn’t have a special name, but we can think of it as an “influence matrix”
or “sensitivity matrix.”

While computing the Fisher matrix requires assumptions about the data set, the sensitivity matrix
requires only knowledge of the model, and it can be an interesting quantity to compute even if one
doesn’t have a specific data set in mind.

Adding Fisher matrices

Suppose we have two data sets that are statistically independent.

In this case, the joint likelihood (or posterior probability) is just the product of the individual
likelihoods (or posterior probabilities), since p(x, y) = p(x)p(y) for independent variables.

Therefore, one obtains 〈lnL〉 for the two data sets by adding the two individual values of 〈lnL〉,
and the Fisher matrix for the two data sets is just the sum of the Fisher matrices for the individual
data sets.

This still holds even if the data sets are quite different in character provided they constrain the
same underlying parameters.

For example, one can forecast cosmological parameter errors that will be obtained by joint fits to
CMB data, supernova data, and a direct measurement of H0 by adding the Fisher matrices for the
three data sets.

This is a powerful technique.
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Lecture 2: Theoretical Approaches

Dark Matter Clustering

Linear perturbation theory

N-body simulations

Higher order perturbation theory

Treated in much more detail in Zaldarriaga lectures

Halo model of dark matter clustering

A Sketch of Galaxy Formation Theory

Modeling Galaxy Clustering

Hydrodynamic simulations

(Methods discussed in Borgani lecture)

Populating DM halos via semi-analytic models

Abundance matching and age matching

Halo occupation distribution (HOD) modeling

Galaxy-galaxy lensing and cluster-galaxy lensing

Theory of redshift-space distortions (RSD)

Linear theory and its failings

Ways to go further

The Lyα forest

Basic phenomenology and physics

Hydro simulations

1-d and 3-d measures of Lyα forest structure

Methods for modeling large volumes

How accurate does theory need to be?
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Lecture 3: Observational Prospects

Where are we now?

Current major data sets in CMB, supernovae, BAO, galaxy clustering, Lya forest, weak lensing,
clusters

BAO surveys and analysis

These are interesting in their own right, and they illustrate points relevant to other observational
probes.

Basic BAO methodology

Sampling and volume: shot noise vs. sample variance

Reconstruction

Fitting and nuisance parameters

Estimating errors and covariance matrices

Observational systematics

Theoretical systematics

BAO with the Lyman-alpha forest

BAO with 21cm intensity mapping

Principles of survey design

Figures of Merit and their perils

Sources of statistical error

Observational systematics

Theoretical systematics

Statistical and systematic errors

What will dominate your total errors and how do you control it?

Mitigating systematics by marginalization

Survey design: observational aspects

Imaging vs. spectroscopic surveys

Telescope aperture and field of view

Pixel size and sampling

Spectroscopic multi-plexing

Object noise, sky noise, read noise

The basic trade: area vs. depth

What’s on the horizon?

13



Precision Cosmology with Large Scale Structure David Weinberg

I’ll spend most time on the ones marked with +, as I know them the best and they illustrate most
of the principles

Dark Energy Survey+

Hyper-Suprime Cam

eBOSS

HETDEX

DESI+

Subaru PFS

LSST

Euclid

WFIRST+

Where might we be in 2030?
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