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Abstract

The accelerating expansion of the universe is the most surprising cosmological discovery in many
decades, implying that the universe is dominated by some form of “dark energy” with exotic physical
properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound
implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with
experiments that aim to measure the history of expansion and growth of structure with percent-level
precision or higher. We review in detail the four most well established methods for making such
measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing,
and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties
in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV”
dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number
of other approaches including redshift-space distortions, the Alcock-Paczynski effect, and direct
measurements of the Hubble constant H0. We present extensive forecasts for constraints on the
dark energy equation of state and parameterized deviations from General Relativity, achievable with
Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing,
and cosmic microwave background data. We also show the level of precision required for clusters
or other methods to provide constraints competitive with those of these fiducial programs. We
emphasize the value of a balanced program that employs several of the most powerful methods in
combination, both to cross-check systematic uncertainties and to take advantage of complementary
information. Surveys to probe cosmic acceleration produce data sets that support a wide range of
scientific investigations, and they continue the longstanding astronomical tradition of mapping the
universe in ever greater detail over ever larger scales.
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1. Introduction

Gravity pulls. Newton’s Principia generalized this longstanding fact of human experience into a
universal attractive force, providing compelling explanations of an extraordinary range of terrestrial
and celestial phenomena. Newtonian attraction weakens with distance, but it never vanishes, and
it never changes sign. Einstein’s theory of General Relativity (GR) reproduces Newtonian gravity
in the limit of weak spacetime curvature and low velocities. For a homogeneous universe filled with
matter or radiation, GR predicts that the cosmic expansion will slow down over time, in accord with
Newtonian intuition. In the late 1990s, however, two independent studies of distant supernovae
found that the expansion of the universe has accelerated over the last five billion years (Riess et al.,
1998; Perlmutter et al., 1999), a remarkable discovery that is now buttressed by multiple lines of
independent evidence. On the scale of the cosmos, gravity repels.

Cosmic acceleration is the most profound puzzle in contemporary physics. Even the least exotic
explanations demand the existence of a pervasive new component of the universe with unusual
physical properties that lead to repulsive gravity. Alternatively, acceleration could be a sign that
GR itself breaks down on cosmological scales. Cosmic acceleration may be the crucial empirical clue
that leads to understanding the interaction between gravity and the quantum vacuum, or reveals
the existence of extra spatial dimensions, or sheds light on the nature of quantum gravity itself.

Because of these profound implications, cosmic acceleration has inspired a wide range of am-
bitious experimental efforts, which aim to measure the expansion history and growth of structure
in the cosmos with percent-level precision or better. In this article, we review the observational
methods that underlie these efforts, with particular attention to techniques that are likely to see
major advances over the next decade. We will emphasize the value of a balanced program that
pursues several of these methods in combination, both to cross-check systematic uncertainties and
to take advantage of complementary information.

The remainder of this introduction briefly recaps the history of cosmic acceleration and current
theories for its origin, then sets this article in the context of future experimental efforts and other
reviews of the field. Section 2 describes the basic observables that can be used to probe cosmic
acceleration, relates them to the underlying equations that govern the expansion history and the
growth of structure, and introduces some of the parameters commonly used to define “generic”
cosmic acceleration models. It concludes with an overview of the leading methods for measuring
these observables. In §§3–6 we go through the four most well developed methods in detail: Type Ia
supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and clusters of galaxies.
Section 7 summarizes several other potential probes, whose prospects are currently more difficult
to assess but in some cases appear quite promising. Informed by the discussions in these sections,
§8 presents our principal new results: forecasts of the constraints on cosmic acceleration models
that could be achieved by combining results from these methods, based on ambitious but feasible
experiments like the ones endorsed by the Astro2010 Decadal Survey report, New Worlds, New

Horizons in Astronomy and Astrophysics. We summarize the implications of our analyses in §9 .

1.1. History

Just two years after the completion of General Relativity, Einstein (1917) introduced the first
modern cosmological model. With little observational guidance, Einstein assumed (correctly) that
the universe is homogeneous on large scales, and he proposed a matter-filled space with finite,
positively curved, 3-sphere geometry. He also assumed (incorrectly) that the universe is static.
Finding these two assumptions to be incompatible, Einstein modified the GR field equation to
include the infamous “cosmological term,” now usually known as the “cosmological constant” and
denoted Λ. In effect, he added a new component whose repulsive gravity could balance the attractive
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gravity of the matter (though he did not describe his modification in these terms). In the 1920s,
Friedmann (1922, 1924) and Lemâıtre (1927) introduced GR-based cosmological models with an
expanding or contracting universe, some of them including a cosmological constant, others not.
In 1929, Hubble discovered direct evidence for the expansion of the universe (Hubble, 1929), thus
removing the original motivation for the Λ term.1 In 1965, the discovery and interpretation of the
cosmic microwave background (CMB; Penzias and Wilson 1965; Dicke et al. 1965) provided the
pivotal evidence for a hot big bang origin of the cosmos.

From the 1930s through the 1980s, a cosmological constant seemed unnecessary to explaining
cosmological observations. The “cosmological constant problem” as it was defined in the 1980s
was a theoretical one: why was the gravitational impact of the quantum vacuum vanishingly small
compared to the “naturally” expected value (see §1.2)? In the late 1980s and early 1990s, however,
a variety of indirect evidence began to accumulate in favor of a cosmological constant. Studies of
large scale galaxy clustering, interpreted in the framework of cold dark matter (CDM) models with
inflationary initial conditions, implied a low matter density parameter Ωm = ρm/ρcrit ≈ 0.15 − 0.4
(e.g., Maddox et al. 1990; Efstathiou et al. 1990), in agreement with direct dynamical estimates
that assumed galaxies to be fair tracers of the mass distribution. Reconciling this result with
the standard inflationary cosmology prediction of a spatially flat universe (Guth, 1981) required
a new energy component with density parameter 1 − Ωm. Open-universe inflation models were
also considered, but explaining the observed homogeneity of the CMB (Smoot et al., 1992) in such
models required speculative appeals to quantum gravity effects (e.g., Bucher et al. 1995) rather
than the semi-classical explanation of traditional inflation.

By the mid-1990s, many cosmological simulation studies included both open-CDM models and
Λ-CDM models, along with Ωm = 1 models incorporating tilted inflationary spectra, non-standard
radiation components, or massive neutrino components (e.g., Ostriker and Cen 1996; Cole et al.
1997; Gross et al. 1998; Jenkins et al. 1998). Once normalized to the observed level of CMB
anisotropies, the large-scale structure predictions of open and flat-Λ models differed at the tens-of-
percent level, with flat models generally yielding a more natural fit to the observations (e.g., Cole
et al. 1997). Conflict between high values of the Hubble constant and the ages of globular clusters
also favored a cosmological constant (e.g., Pierce et al. 1994; Freedman et al. 1994; Chaboyer et al.
1996), though the frequency of gravitational lenses pointed in the opposite direction (Kochanek,
1996). Thus, the combination of CMB data, large-scale structure data, age of the universe, and
inflationary theory led many cosmologists to consider models with a cosmological constant, and
some to declare it as the preferred solution (e.g., Efstathiou et al. 1990; Krauss and Turner 1995;
Ostriker and Steinhardt 1995).

Enter the supernovae. In the mid-1990s, two teams set out to measure the cosmic deceleration
rate, and thereby determine the matter density parameter Ωm, by discovering and monitoring high-
redshift, Type Ia supernovae. The recognition that the peak luminosity of supernovae was tightly
correlated with the shape of the light curve (Phillips, 1993; Riess et al., 1996) played a critical
role in this strategy, reducing the intrinsic distance error per supernova to ∼ 10%. While the first
analysis of a small sample indicated deceleration (Perlmutter et al., 1997), by 1998 the two teams
had converged on a remarkable result: when compared to local Type Ia supernovae (Hamuy et al.,
1996), the supernovae at z ≈ 0.5 were fainter than expected in a matter-dominated universe with
Ωm ≈ 0.2 by about 0.2 mag, or 20% (Riess et al., 1998; Perlmutter et al., 1999). Even an empty,
freely expanding universe was inconsistent with the observations. Both teams interpreted their

1Several recent papers have addressed the contributions of Lemâıtre, Friedmann, and Slipher to this discovery; the
story is interestingly tangled (see, e.g., Block 2011; van den Bergh 2011; Livio 2011; Belenkiy 2012; Peacock 2013).
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measurements as evidence for an accelerating universe with a cosmological constant, consistent
with a flat universe (Ωtot = 1) having ΩΛ ≈ 0.7.

Why was the supernova evidence for cosmic acceleration accepted so quickly by the community
at large? First, the internal checks carried out by the two teams, and the agreement of their con-
clusions despite independent observations and many differences of methodology, seemed to rule out
many forms of observational systematics, even relatively subtle effects of photometric calibration
or selection bias. Second, the ground had been well prepared by the CMB and large scale struc-
ture data, which already provided substantial indirect evidence for a cosmological constant. This
confluence of arguments favored the cosmological interpretation of the results over astrophysical
explanations such as evolution of the supernova population or grey dust extinction that increased
towards higher redshifts. Third, the supernova results were followed within a year by the results
of balloon-borne CMB experiments that mapped the first acoustic peak and measured its angular
location, providing strong evidence for spatial flatness (de Bernardis et al. 2000; Hanany et al. 2000;
see Netterfield et al. 1997 for earlier ground-based measurements hinting at the same result). On its
own, the acoustic peak only implied Ωtot ≈ 1, not a non-zero ΩΛ, but it dovetailed perfectly with the
estimates of Ωm and ΩΛ from large scale structure and supernovae. Furthermore, the acoustic peak
measurement implied that the alternative to Λ was not an open universe but a strongly decelerating,
Ωm = 1 universe that disagreed with the supernova data by 0.5 magnitudes, a level much harder
to explain with observational or astrophysical effects. Finally, the combination of spatial flatness
and improving measurements of the Hubble constant (e.g., H0 = 71 ± 6 km s−1 Mpc−1; Mould
et al. 2000) provided an entirely independent argument for an energetically dominant accelerating
component: a matter-dominated universe with Ωtot = 1 would have age t0 = (2/3)H−1

0 ≈ 9.5
Gyr, too young to accommodate the 12-14 Gyr ages estimated for globular clusters (e.g., Chaboyer
1998).

A decade later, the web of observational evidence for cosmic acceleration is intricate and robust.
A wide range of observations — including larger and better calibrated supernova samples over a
broader redshift span, high-precision CMB data down to small angular scales, the baryon acoustic
scale in galaxy clustering, weak lensing measurements of dark matter clustering, the abundance
of massive clusters in X-ray and optical surveys, the level of structure in the Lyα forest, and pre-
cise measurements of H0 — are all consistent with an inflationary cold dark matter model with a
cosmological constant, commonly abbreviated as ΛCDM.2 Explaining all of these data simultane-
ously requires an accelerating universe. Completely eliminating any one class of constraints (e.g.,
supernovae, or CMB, or H0) would not change this conclusion, nor would doubling the estimated
systematic errors on all of them. The question is no longer whether the universe is accelerating,
but why.

1.2. Theories of Cosmic Acceleration

A cosmological constant is the mathematically simplest solution to the cosmic acceleration
puzzle. While Einstein introduced his cosmological term as a modification to the curvature side of
the field equation, it is now more common to interpret Λ as a new energy component, constant in
space and time. For an ideal fluid with energy density u and pressure p, the effective gravitational
source term in GR is (u + 3p)/c2, reducing to the usual mass density ρ = u/c2 if the fluid is
non-relativistic. For a component whose energy density remains constant as the universe expands,
the first law of thermodynamics implies that when a comoving volume element in the universe
expands by a (physical) amount dV , the corresponding change in energy is related to the pressure

2Many of the relevant observational references will appear in subsequent sections on specific topics.
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via −pdV = dU = udV . Thus, p = −u, making the gravitational source term (u+3p)/c2 = −2u/c2.
A form of energy that is constant in space and time must have a repulsive gravitational effect.

According to quantum field theory, “empty” space is filled with a sea of virtual particles. It
would be reasonable to interpret the cosmological constant as the gravitational signature of this
quantum vacuum energy, much as the Lamb shift is a signature of its electromagnetic effects.3

The problem is one of magnitude. Since virtual particles of any allowable mass can come into
existence for short periods of time, the “natural” value for the quantum vacuum density is one
Planck Mass per cubic Planck Length. This density is about 120 orders of magnitude larger than
the cosmological constant suggested by observations: it would drive accelerated expansion with a
timescale of tPlanck ≈ 10−43 sec instead of tHubble ≈ 1018 sec. Since the only “natural” number close
to 10−120 is zero, it was generally assumed (prior to 1990) that a correct calculation of the quantum
vacuum energy would eventually show it to be zero, or at least suppressed by an extremely large
exponential factor (see review by Weinberg 1989). But the discovery of cosmic acceleration raises
the possibility that the quantum vacuum really does act as a cosmological constant, and that its
energy scale is 10−3 eV rather than 1028 eV for reasons that we do not yet understand. To date,
there are no compelling theoretical arguments that explain either why the fundamental quantum
vacuum energy might have this magnitude or why it might be zero.

The other basic puzzle concerning a cosmological constant is: Why now? The ratio of a constant
vacuum energy density to the matter density scales as a3(t), so it has changed by a factor of ∼ 1027

since big bang nucleosynthesis and by a factor ∼ 1042 since the electroweak symmetry breaking
epoch, which seems (based on our current understanding of physics) like the last opportunity for
a major rebalancing of matter and energy components. It therefore seems remarkably coincidental
for the vacuum energy density and the matter energy density to have the same order of magnitude
today. In the late 1970s, Robert Dicke used a similar line of reasoning to argue for a spatially flat
universe (see Dicke and Peebles 1979), an argument that provided much of the initial motivation
for inflationary theory (Guth, 1981). However, while the universe appears to be impressively close
to spatial flatness, the existence of two energy components with different a(t) scalings means that
Dicke’s “coincidence problem” is still with us.

One possible solution to the coincidence problem is anthropic: if the vacuum energy assumes
widely different values in different regions of the universe, then conscious observers will find them-
selves in regions of the universe where the vacuum energy is low enough to allow structure formation
(Efstathiou, 1995; Martel et al., 1998). This type of explanation finds a natural home in “mul-
tiverse” models of eternal inflation, where different histories of spontaneous symmetry breaking
lead to different values of physical constants in each non-inflating “bubble” (Linde, 1987), and it
has gained new prominence in the context of string theory, which predicts a “landscape” of vacua
arising from different compactifications of spatial dimensions (Susskind, 2003). One can attempt
to derive an expectation value of the observed cosmological constant from such arguments (e.g.,
Martel et al. 1998), but the results are sensitive to the choice of parameters that are allowed to
vary (Tegmark and Rees, 1998) and to the choice of measure on parameter space, so it is hard to
take such “predictions” beyond a qualitative level. A variant on these ideas is that the effective
value (and perhaps even the sign) of the cosmological constant varies in time, and that structure
will form and observers arise during periods when its magnitude is anomalously low compared to
its natural (presumably Planck-level) energy scale (Brandenberger, 2002; Griest, 2002).

3This interpretation of the cosmological constant in the context of quantum field theory, originally due to Wolfgang
Pauli, was revived in the late 1960s by Zel’dovich (1968). For further discussion of the history see Peebles and Ratra
(2003). For a detailed discussion in the context of contemporary particle theory, see the review by Martin (2012).
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A straightforward alternative to a cosmological constant is a field with negative pressure (and
thus repulsive gravitational effect) whose energy density changes with time (Ratra and Peebles,
1988; Frieman et al., 1995; Ferreira and Joyce, 1997). In particular, a canonical scalar field φ with
potential V (φ) has energy density and pressure

uφ = 1
2

1
~c3 φ̇

2 + V (φ),

pφ = 1
2

1
~c3
φ̇2 − V (φ), (1)

so if the kinetic term is subdominant, then pφ ≈ −uφ. A slowly rolling scalar field of this sort is
analogous to the inflaton field hypothesized to drive inflation, but at an energy scale many, many
orders of magnitude lower. In general, a scalar field has an equation-of-state parameter

w ≡ p

u
(2)

that is greater than −1 and varies in time, while a true cosmological constant has w = −1 at all
times. Some forms of V (φ) allow attractor or “tracker” solutions in which the late-time evolution
of φ is insensitive to the initial conditions (Ratra and Peebles, 1988; Steinhardt et al., 1999), and
a subset of these allow uφ to track the matter energy density at early times, ameliorating the
coincidence problem (Skordis and Albrecht, 2002). Some choices give a nearly constant w that is
different from −1, while others have w ≈ −1 as an asymptotic state at either early or late times,
referred to respectively as “thawing” or “freezing” solutions (Caldwell and Linder, 2005).

Scalar field models in which the energy density is dominated by V (φ) are popularly known
as “quintessence” (Zlatev et al., 1999). A number of variations have been proposed in which the
energy density of the field is dominated by kinetic, spin, or oscillatory degrees of freedom (e.g.,
Armendariz-Picon et al. 2001; Boyle et al. 2002). Other models introduce non-canonical kinetic
terms or couple the field to dark matter. Models differ in the evolution of uφ(a) and w(a), and
some have other distinctive features such as large scale energy density fluctuations that can affect
CMB anisotropies. Of course, none of these models addresses the original “cosmological constant
problem” of why the true vacuum energy is unobservably small.

The alternative to introducing a new energy component is to modify General Relativity itself
on cosmological scales, for example by replacing the Ricci scalar R in the gravitational action
with some higher order function f(R) (e.g., Capozziello and Fang 2002; Carroll et al. 2004), or by
allowing gravity to “leak” into an extra dimension in a way that reduces its attractive effect at
large scales (Dvali et al., 2000). GR modifications can alter the relation between the expansion
history and the growth of matter clustering, and, as discussed in subsequent sections, searching
for mismatches between observational probes of expansion and observational probes of structure
growth is one generic approach to seeking signatures of modified gravity. To be consistent with
tight constraints from solar system tests, modifications of gravity must generally be “shielded”
on small scales, by mechanisms such as the “chameleon” effect, the “symmetron” mechanism, or
“Vainshtein screening” (see the review by Jain and Khoury 2010). These mechanisms can have the
effect of introducing intermediate scale forces. GR modifications can also alter the relation between
non-relativistic matter clustering and gravitational lensing, which in standard GR is controlled by
two different potentials that are equal to each other for fluids without anisotropic stress.

The distinction between a new energy component and a modification of gravity may be am-
biguous. The most obvious ambiguous case is the cosmological constant itself, which can be placed
on either the “curvature” side or the “stress-energy” side of the Einstein field equation. More
generally, many theories with f(R) modifications of the gravitational action can be written in a
mathematically equivalent form of GR plus a scalar field with specified properties (Chiba, 2003;
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Kunz and Sapone, 2007). Relative to expectations for a cosmological constant or a simple scalar
field model, models in which dark matter decays into dark energy can produce a mismatch be-
tween the histories of expansion and structure growth while maintaining GR (e.g., Jain and Zhang
2008; Wei and Zhang 2008). Thus, even perfect measurements of all relevant observables may not
uniquely locate the explanation of cosmic acceleration in the gravitational or stress-energy sector.

There is a minority opinion (see Buchert 2011 for a recent review article) that the phenomena
interpreted as evidence for dark energy could instead arise from the backreaction of small scale
inhomogeneities on the large scale cosmic expansion. This line of argument contends that the
expansion rate of a universe with small scale inhomogeneity can differ significantly from that of a
homogeneous universe with the same average density. In our view, the papers on this theme present
an incorrect interpretation of correct underlying equations, and we do not see these “inhomogeneous
averaging” effects as a viable alternative to dark energy. Baumann et al. (2012) present a detailed
counter-argument, treating inhomogeneous matter as a fluid with an effective viscosity and pressure
and demonstrating that the backreaction on the evolution of background expansion and large scale
perturbations is extremely small. (See Green and Wald 2011 for an alternative form of this counter-
argument and Peebles 2010 for a less formal but still persuasive version.) In a somewhat related vein,
the suggestion that acceleration could arise from superhorizon fluctuations generated by inflation
(Barausse et al., 2005; Kolb et al., 2005) is ruled out by a complete perturbation analysis (Hirata
and Seljak, 2005).

While the term “dark energy” seems to presuppose a stress-energy explanation, in practice it
has become a generic term for referring to the cosmic acceleration phenomenon. In particular,
the phrase “dark energy experiments” has come to mean observational studies aimed at measuring
acceleration and uncovering its cause, regardless of whether that cause is a new energy field or a
modification of gravity. We will generally adopt this common usage of “dark energy” in this review,
though where the distinction matters we will try to use “cosmic acceleration” as our generic term. It
is important to keep in mind that we presently have strong observational evidence for accelerated
cosmic expansion but no compelling evidence that the cause of this acceleration is really a new
energy component.

The magnitude and coincidence problems are challenges for any explanation of cosmic accel-
eration, whether a cosmological constant, a scalar field, or a modification of GR. The coincidence
problem seems like an important clue for identifying a correct solution, and some models at least
reduce its severity by coupling the matter and dark energy densities in some way. Multiverse
models with anthropic selection arguably offer a solution to the coincidence problem, because if the
probability distribution of vacuum energy densities rises swiftly towards high values, then structure
may generically form at a time when the matter and vacuum energy density values are similar, in
that small subset of universes where structure forms at all. But sometimes a coincidence is just
a coincidence. Essentially all current theories of cosmic acceleration have one or more adjustable
parameters whose value is tuned to give the observed level of acceleration, and none of them yield
this level as a “natural” expectation unless they have built it in ahead of time. These theories
are designed to explain acceleration itself rather than emerging from independent theoretical con-
siderations or experimental constraints. Conversely, a theory that provided a compelling account
of the observed magnitude of acceleration — like GR’s successful explanation of the precession of
Mercury — would quickly jump to the top of the list of cosmic acceleration models.

1.3. Looking Forward

The deep mystery and fundamental implications of cosmic acceleration have inspired numerous
ambitious observational efforts to measure its history and, it is hoped, reveal its origin. The report of
the Dark Energy Task Force (DETF; Albrecht et al. 2006) played a critical role in systematizing the
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field, by categorizing experimental approaches and providing a quantitative framework to compare
their capabilities. The DETF categorized then-ongoing experiments as “Stage II” (following the
“Stage I” discovery experiments) and the next generation as “Stage III.” It looked forward to a
generation of more capable (and more expensive) “Stage IV” efforts that might begin observations
around the second half of the coming decade. The DETF focused on the same four methods that
will be the primary focus of this review: Type Ia supernovae, baryon acoustic oscillations (BAO),
weak gravitational lensing, and clusters of galaxies.

Six years on, the main “Stage II” experiments have completed their observations though not
necessarily their final analyses. Prominent examples include the supernova and weak lensing pro-
grams of the CFHT Legacy Survey (CFHTLS; Conley et al. 2011; Semboloni et al. 2006a; Heymans
et al. 2012b), the ESSENCE supernova survey (Wood-Vasey et al., 2007), BAO measurements from
the Sloan Digital Sky Survey (SDSS; Eisenstein et al. 2005; Percival et al. 2010; Padmanabhan et al.
2012), and the SDSS-II supernova survey (Frieman et al., 2008). These have been complemented
by extensive multi-wavelength studies of local and high-redshift supernovae such as the Carnegie
Supernova Project (Hamuy et al., 2006; Freedman et al., 2009), by systematic searches for z > 1
supernovae with Hubble Space Telescope (Riess et al., 2007; Suzuki et al., 2012), by dark energy
constraints from the evolution of X-ray or optically selected clusters (Henry et al., 2009; Mantz
et al., 2010; Vikhlinin et al., 2009; Rozo et al., 2010), by improved measurements of the Hubble
constant (Riess et al., 2009, 2011; Freedman et al., 2012), and by CMB data from the WMAP

satellite (Bennett et al., 2003; Larson et al., 2011) and from ground-based experiments that probe
smaller angular scales.4 Most data remain consistent with a spatially flat universe and a cosmo-
logical constant with ΩΛ = 1 − Ωm ≈ 0.75, with an uncertainty in the equation-of-state parameter
w that is roughly ±0.1 at the 1 − 2σ level. Substantial further improvement will in many cases
require reduction in systematic errors as well as increased statistical power from larger data sets.

The clearest examples of “Stage III” experiments, now in the late construction or early op-
erations phase, are the Dark Energy Survey (DES), Pan-STARRS5, the Baryon Oscillation Spec-
troscopic Survey (BOSS) of SDSS-III, and the Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX).6 All four projects are being carried out by international, multi-institutional collabo-
rations. Pan-STARRS and DES will both carry out large area, multi-band imaging surveys that
go a factor of ten or more deeper (in flux) than the SDSS imaging survey (Abazajian et al., 2009),
using, respectively, a 1.4-Gigapixel camera on the 1.8-m PS1 telescope on Haleakala in Hawaii and a
0.5-Gigapixel camera on the 4-m Blanco telescope on Cerro Tololo in Chile. These imaging surveys
will be used to measure structure growth via weak lensing, to identify galaxy clusters and calibrate
their masses via weak lensing, and to measure BAO in galaxy angular clustering using photometric
redshifts. Each project also plans to carry out monitoring surveys over smaller areas to discover
and measure thousands of Type Ia supernovae. Fully exploiting BAO requires spectroscopic red-
shifts, and BOSS will carry out a nearly cosmic-variance limited survey (over 104 deg2) out to
z ≈ 0.7 using a 1000-fiber spectrograph to measure redshifts of 1.5 million luminous galaxies, and a

4We follow the convention in the astronomical literature of italicizing the names and acronyms of space missions
but not of ground-based facilities. For reference, note that the many acronyms that appear in the article are all
defined in Appendix A, the glossary of acronyms and facilities.

5Pan-STARRS, the Panoramic Survey Telescope and Rapid Response System, is the acronym of the facility rather
than the project, but cosmological surveys are among its major goals. Pan-STARRS eventually hopes to use four
coordinated telescopes, but the surveys currently underway (and now nearing completion) use the first of these
telescopes, referred to as PS1.

6The acronym and facilities glossary gives references to web sites and/or publications that describe these and
other experiments.
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pioneering quasar survey that will measure BAO at z ≈ 2.5 by using the Lyα forest along 150,000
quasar sightlines to trace the underlying matter distribution. HETDEX plans a BAO survey of 106

Lyα-emitting galaxies at z ≈ 3.
There are many other ambitious observational efforts that do not fit so neatly into the definition

of a “Stage III dark energy experiment” but will nonetheless play an important role in “Stage III”
constraints. A predecessor to BOSS, the WiggleZ project on the Anglo-Australian 3.9-m telescope,
recently completed a spectroscopic survey of 240,000 emission line galaxies out to z = 1.0 (Blake
et al., 2011a). The Hyper Suprime-Cam (HSC) facility on the Subaru telescope will have wide-area
imaging capabilities comparable to DES and Pan-STARRS, and it is likely to devote substantial
fractions of its time to weak lensing surveys. Other examples include intensive spectroscopic and
photometric monitoring of supernova samples aimed at calibration and understanding of system-
atics, new HST searches for z > 1 supernovae, further improvements in H0 determination, deeper
X-ray and weak lensing studies of samples of tens or hundreds of galaxy clusters, and new cluster
searches via the Sunyaev-Zel’dovich (1970) effect using the South Pole Telescope (SPT), the At-
acama Cosmology Telescope (ACT), or the Planck satellite. In addition, Stage III analyses will
draw on primary CMB constraints from Planck.

The Astro2010 report identifies cosmic acceleration as one of the most pressing questions in
contemporary astrophysics, and its highest priority recommendations for new ground-based and
space-based facilities both have cosmic acceleration as a primary science theme.7 On the ground,
the Large Synoptic Survey Telescope (LSST), a wide-field 8.4-m optical telescope equipped with
a 3.2-Gigapixel camera, would enable deep weak lensing and optical cluster surveys over much of
the sky, synoptic surveys that would detect and measure tens of thousands of supernovae, and
photometric-redshift BAO surveys extending to z ≈ 3.5. BigBOSS, highlighted as an initiative
that could be supported by the proposed “mid-scale innovation program,” would use a highly
multiplexed fiber spectrograph on the NOAO 4-m telescopes to carry out spectroscopic surveys
of ∼ 107 galaxies to z ≈ 1.6 and Lyα forest BAO measurements at z > 2.2. Another potential
ground-based method for large volume BAO surveys is radio “intensity mapping,” which seeks
to trace the large scale distribution of neutral hydrogen without resolving the scale of individual
galaxies. In the longer run, the Square Kilometer Array (SKA) could enable a BAO survey of
∼ 109 HI-selected galaxies and weak lensing measurements of ∼ 1010 star-forming galaxies using
radio continuum shapes.

Space observations offer two critical advantages for cosmic acceleration studies: stable high
resolution imaging over large areas, and vastly higher sensitivity at near-IR wavelengths. (For
cluster studies, space observations are also the only route to X-ray measurements.) These advan-
tages inspired the Supernova Acceleration Probe (SNAP), initially designed with a concentration
on supernova measurements at 0.1 < z < 1.7, and later expanded to include a wide area weak
lensing survey as a major component. Following the National Research Council’s Quarks to Cos-
mos report (Committee On The Physics Of The Universe, 2003), NASA and the U.S. Department
of Energy embarked on plans for a Joint Dark Energy Mission (JDEM), which has considered a
variety of mission architectures for space-based supernova, weak lensing, and BAO surveys. The
Astro2010 report endorsed as its highest priority space mission a Wide Field Infrared Survey Tele-

7We will use the term “Astro2010 report” to refer collectively to New Worlds, New Horizons and to the panel
reports that supported it. In particular, detailed discussion of these science themes and related facilities can be
found in the individual reports of the Cosmology and Fundamental Physics (CFP) Science Frontiers Panel and the
Electromagnetic Observations from Space (EOS), Optical and Infrared Astronomy from the Ground (OIR), and Radio,
Millimeter, and Sub-Millimeter Astronomy from the Ground (RMS) Program Prioritization Panels. Information on
all of these reports can be found at http://sites.nationalacademies.org/bpa/BPA 049810.
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scope (WFIRST), which would carry out imaging and dispersive prism spectroscopy in the near-IR
to support all of these methods, and, in addition, a planetary microlensing program, a Galactic
plane survey, and a guest observer program. The recently completed report of the WFIRST Sci-
ence Definition Team (Green et al., 2012) presents detailed designs and operational concepts, with
a primary design reference mission that includes three years of dark energy programs (out of a
five year mission) on an unobstructed 1.3-meter telescope with a 0.375 deg2 near-IR focal plane
(150 million 0.18′′ pixels). The recent transfer of two 2.4-meter diameter telescopes from the U.S.
National Reconnaissance Office (NRO) to NASA opens the door for a potential implementation
of WFIRST on a larger platform; this possibility is now a subject of active, detailed study (see
Dressler et al. 2012 for an initial assessment). WFIRST faces significant funding hurdles, despite
its top billing in Astro2010, but a launch in the early 2020s still appears likely. On the European
side, ESA recently selected the Euclid8 satellite as a medium-class mission for its Cosmic Vision
2015-2025 program, with launch planned for 2020. Euclid plans to carry out optical and near-
IR imaging and near-IR slitless spectroscopy over roughly 14,000 deg2, for weak lensing and BAO
measurements. In its current design (Laureijs et al., 2011), Euclid utilizes a 1.2-meter telescope, a
0.56 deg2 optical focal plane (604 million 0.10′′ pixels), and a near-IR focal plane with similar area
but larger pixels (67 million 0.30′′ pixels). Well ahead of either Euclid or WFIRST, the European
X-ray telescope eROSITA (on the Russian Spectrum Roentgen Gamma satellite) is expected to
produce an all-sky catalog of ∼ 105 X-ray selected clusters, with X-ray temperature measurements
and resolved profiles for the brighter clusters (Merloni et al., 2012).9

The completion of the Astro2010 Decadal Survey and the Euclid selection by ESA make this
an opportune time to review the techniques and prospects for probing cosmic acceleration with
ambitious observational programs. Our goal is, in some sense, an update of the DETF report (Al-
brecht et al., 2006), incorporating the many developments in the field over the last few years and
(the difference between a report and a review) emphasizing explanation rather than recommenda-
tion. We aim to complement other reviews of the field that differ in focus or in level of detail. To
mention just a selection of these, we note that Frieman et al. (2008) and Blanchard (2010) provide
excellent overviews of the field, covering theory, current observations, and future experiments, while
Astier and Pain (2012) cover the observational approaches concisely; Peebles and Ratra (2003) and
Copeland et al. (2006) are especially good on history of the subject and on theoretical aspects of
scalar field models; Jain and Khoury (2010) review the observational and (especially) theoretical
aspects of modified gravity models in much greater depth than we cover here; Carroll (2003) and
Linder (2003b, 2007) provide accessible and informative introductions at the less forbidding length
of conference proceedings; Linder (2010) provides a review aimed at a general scientific audience;
and the conference proceedings by Peebles (2010) nicely situates the cosmic acceleration problem
in the broader context of contemporary cosmology. The distinctive features of the present review
are our in-depth discussion of individual observational methods and our new quantitative forecasts
for how combinations of these methods can constrain parameters of cosmic acceleration theories.

To the extent that we have a consistent underlying theme, it is the importance of pursuing
a balanced observational program. We do not believe that all methods or all implementations of
methods are equal; some approaches have evident systematic limitations that will prevent them
reaching the sub-percent accuracy level that is needed to make major contributions to the field
over the next decade, while others would require prohibitively expensive investments to achieve the
needed statistical precision. However, for a given level of community investment, we think there is

8Not an acronym.
9More detailed description of Euclid and WFIRST can be found in §5.9, and of eROSITA in §6.5.
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more to be gained by doing a good job on the three or four most promising methods than by doing
a perfect job on one at the expense of the others. A balanced approach offers crucial cross-checks
against systematic errors, takes advantage of complementary information contained in different
observables or complementary strengths in different redshift ranges, and holds the best chance
of uncovering “surprises” that do not fit into the conventional categories of theoretical models.
This philosophy will emerge most clearly in §8, where we present our quantitative forecasts. For
understandable reasons, most articles and proposals (including some we have written ourselves)
start from current knowledge and show the impact of adding a particular new experiment. We will
instead start from a “fiducial program” that assumes ambitious but achievable advances in several
different methods at once, then consider the impact of strengthening, weakening, or omitting its
individual elements.

We expect that different readers will want to approach this lengthy article in different ways.
For a reader who is new to the field and wants to learn it well, it makes sense to start at the
beginning and read to the end. A reader interested in a specific method can skim §2 to get a sense
of our notation, then jump to the section that describes that method (Type Ia supernovae in §3,
BAO in §4, weak lensing in §5, and clusters in §6). We think that these sections will provide useful
insights even to experts in the field. Section 7 provides a brief overview of emerging methods that
could play an important role in future studies. Readers interested mainly in the ways that different
methods contribute to constraints on cosmic acceleration models and the quantitative forecasts for
Stage III and Stage IV programs can jump directly to §8. Finally, §9 provides a summary of our
findings and their implications for experimental programs, and some readers may choose to start
from the end (we recommend including §§8.6 and 8.7 as well as §9), then work backwards to the
supporting details.
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2. Observables, Parameterizations, and Methods

The two top-level questions about cosmic acceleration are:

1. Does acceleration arise from a breakdown of GR on cosmological scales or from a new energy
component that exerts repulsive gravity within GR?

2. If acceleration is caused by a new energy component, is its energy density constant in space
and time?

As already discussed in §1.2, the distinction between “modified gravity” and “new energy compo-
nent” solutions may not be unambiguous. However, the cosmological constant hypothesis makes
specific, testable predictions, and the combination of GR with relatively simple scalar field models
predicts testable consistency relations between expansion and structure growth.

The answer to these questions, or a major step towards an answer, could come from a surprising
direction: a theoretical breakthrough, a revealing discovery in accelerator experiments, a time-
variation of a fundamental “constant,” or an experimental failure of GR on terrestrial or solar
system scales (see §7.7 for brief discussion). However, “wait for a breakthrough” is an unsatisfying
recipe for scientific progress, and there is one clear path forward: measure the history of expansion
and the growth of structure with increasing precision over an increasing range of redshift and
lengthscale.

2.1. Basic Equations

In GR, the expansion of a homogeneous and isotropic universe is governed by the Friedmann
equation, which can be written in the form

H2(z)

H2
0

= Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + Ωφ
uφ(z)

uφ(z = 0)
, (3)

where (1 + z) ≡ a−1 is the cosmological redshift and a(t) is the expansion factor relating physical
separations to comoving separations. The Hubble parameter is H(z) ≡ ȧ/a, and Ωm, Ωr, and Ωφ

are the present day energy densities of matter, radiation, and a generic form of dark energy φ.10

These are expressed as ratios to the critical energy density required for flat space geometry

Ωx =
ux

ρcritc2
, ρcrit =

3H2
0

8πG
. (4)

At higher redshifts,

Ωm(z) ≡ ρm(z)

ρcrit(z)
= Ωm(1 + z)3

H2
0

H2(z)
, (5)

where the second equality follows from the scaling ρm(z) = ρm,0 × (1 + z)3 and from the definition
of ρcrit(z). In the formulation (3), the impact of curvature on expansion is expressed like that of a
“dynamical” component with scaled energy density

Ωk ≡ 1 − Ωm − Ωr − Ωφ, (6)

with Ωk = 0 for a spatially flat universe. In a standard cold dark matter scenario, the matter density
is the sum of the densities of CDM, baryons, and non-relativistic neutrinos, Ωm = Ωc + Ωb + Ων .

10We will refer to values of these parameters at z 6= 0 as Ωm(z), Ωφ(z), etc. For other quantities (e.g., H0), we use
subscripts 0 to denote values at z = 0. When we assume a cosmological constant, we will replace Ωφ by ΩΛ.
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In detail, one must beware that the neutrino energy density does not scale as (1 + z)3 at higher
redshifts, when they are mildly relativistic, and that the clustering of neutrinos on small scales is
suppressed by their residual thermal velocities.

There are some routes to direct measurement of H(z), most notably via BAO (see §4). For
the most part, however, observations constrain H(z) indirectly by measuring the distance-redshift
relation or the history of structure growth.

Hogg (1999) provides a compact and pedagogical summary of cosmological distance measures.
The comoving line-of-sight distance to an object at redshift z is

DC(z) =
c

H0

∫ z

0
dz′

H0

H(z′)
. (7)

Defining a dimensional (length−2) curvature parameter

K = −Ωk(c/H0)
−2 (8)

allows us to write the comoving angular diameter distance,11 relating an object’s comoving size l
to its angular size θ = l/DA, as

DA(z) = K−1/2 sin
(
K1/2DC

)
, (9)

which applies for either sign of Ωk.
12 Noting that observations imply |Ωk| ≪ 1, we can Taylor

expand equation (9) to write

DA(z) ≈ DC

[
1 +

1

6
Ωk

(
DC

c/H0

)2
]
, (10)

which also yields the correct result DA = DC for Ωk = 0. Note that positive space curvature
(Ωtot > 1, K > 0) corresponds to negative Ωk, hence a smaller DA and larger angular size than
in a flat universe. If uφ(z) > uφ,0 then the Hubble parameter at z > 0 is higher compared to a
cosmological constant model with the same matter density and curvature (eq. 3), and distances to
redshifts z > 0 are lower (eq. 9).

The luminosity distance relating an object’s bolometric flux fbol to its bolometric luminosity
Lbol is

DL =
√
Lbol/4πfbol = DA × (1 + z) . (11)

The relation between luminosity and angular diameter distance is independent of cosmology, so the
two measures contain the same information about H(z) and Ωk. For this reason, we will sometimes
use D(z) to stand in generically for either of these transverse distance measures. Some methods
(e.g., counts of galaxy clusters) effectively probe the comoving volume element that relates solid
angle and redshift intervals to comoving volume VC . We will denote this quantity

dVC(z) ≡ cH−1(z)D2
A(z)dΩ dz. (12)

On large scales, the gravitational evolution of fluctuations in pressureless dark matter follows
linear perturbation theory, according to which

δ(x, t) ≡ ρm(x, t) − ρ̄m(t)

ρ̄m(t)
= δ(x, ti) ×

G(t)

G(ti)
, (13)

11Note that Hogg (1999) refers to this quantity as the comoving transverse distance and uses DA to denote the
quantity relating physical size to angular size.

12Recall that sin(ix) = i sinh(x).
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where ti is an arbitrarily chosen initial time, the linear growth function G(t) obeys the differential
equation

G̈GR + 2H(z)ĠGR − 3

2
ΩmH

2
0 (1 + z)3GGR = 0 , (14)

and the GR subscript denotes the fact that this equation applies in standard GR.13 The solution to
this equation can only be written in integral form for specific forms of H(z), and thus for specific
dark energy models specifying uφ(z). However, to a very good approximation the logarithmic
growth rate of linear perturbations in GR is

fGR(z) ≡ d lnGGR

d ln a
≈ [Ωm(z)]γ , (15)

where γ ≈ 0.55 − 0.6 depends only weakly on cosmological parameters (Peebles, 1980; Lightman
and Schechter, 1990). Integrating this equation yields

GGR(z)

GGR(z = 0)
≈ exp

[
−
∫ z

0

dz′

1 + z′
[Ωm(z′)]γ

]
, (16)

where Ωm(z) is given by equation (5). Linder (2005) shows that equation (16) is accurate to better
than 0.5% for a wide variety of dark energy models if one adopts

γ = 0.55 + 0.05[1 + w(z = 1)] (17)

(see also Wang and Steinhardt 1998; Weinberg 2005; Amendola et al. 2005). While the full solution
of equation (14) should be used for high accuracy calculations, equation (16) is useful for intuition
and for approximate calculations. Note in particular that if uφ(z) > uφ,0 then, relative to a
cosmological constant model, Ωm(z) ∝ H−2(z) is lower (eq. 5), so GGR(z)/GGR(z = 0) is higher —
i.e., there has been less growth of structure between redshift z and the present day because matter
has been a smaller fraction of the total density over that time. It is often useful to refer the growth
factor not to its z = 0 value but to the value at some high redshift when, in typical models, dark
energy is dynamically negligible and Ωm(z) ≈ 1. We will frequently use z = 9 as a reference epoch,
in which case equation (16) becomes

GGR(z)

GGR(z = 9)
≈ exp

[∫ 9

z

dz′

1 + z′
[Ωm(z′)]γ

]
. (18)

In the limit Ωm(z) → 1, GGR(z) ∝ (1+z)−1, i.e., the amplitude of linear fluctuations is proportional
to a(t).

2.2. Model Parameterizations

The properties of dark energy influence the observables — H(z), D(z), and G(z) — through
the history of uφ(z)/uφ,0 in the Friedmann equation (3). This history is usually framed in terms of
the value and evolution of the equation-of-state parameter w(z) = pφ(z)/uφ(z). Provided that the
field φ is not transferring energy directly to or from other components (e.g., by decaying into dark
matter), applying the first law of thermodynamics dU = −p dV to a comoving volume implies

d(uφa
3) = −pφd(a

3) (19)

=⇒ a3duφ + 3uφa
2da = −3w(z)uφa

2da (20)

=⇒ d ln uφ = −3[1 + w(z)]d ln a = 3[1 + w(z)]d ln(1 + z) , (21)

13This equation applies on scales much smaller than the horizon. On scales close to the horizon one must pay careful
attention to gauge definitions. Yoo (2009) and Yoo et al. (2009) provide a unified and comprehensive discussion of
the multiple GR effects that influence observable large scale structure on scales approaching the horizon.
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where the last equality uses the definition a = (1 + z)−1. Integrating both sides implies

uφ(z)

uφ(z = 0)
= exp

[
3

∫ z

0
[1 + w(z′)]

dz′

1 + z′

]
. (22)

For a constant w independent of z we find

uφ(z)

uφ(z = 0)
= (1 + z)3(1+w), (23)

which yields the familiar results u ∝ (1 + z)3 for pressureless matter and u ∝ (1 + z)4 for radiation
(w = +1

3), and which shows once again that a cosmological constant uφ(z) = constant corresponds
to w = −1.

The first obvious way to parameterize w(z) is with a Taylor expansion w(z) = w0 + w′z + ...,
but this expansion becomes ill-behaved at high z. A more useful two-parameter model (Chevallier
and Polarski, 2001; Linder, 2003a) is

w(a) = w0 + wa(1 − a), (24)

in which the value of w evolves linearly with scale factor from w0 +wa at small a (high z) to w0 at
z = 0. Observations usually provide the best constraint on w at some intermediate redshift, not at
z = 0, so statistical errors on w0 and wa are highly correlated. This problem can be circumvented
by recasting equation (24) into the equivalent form

w(a) = wp + wa(ap − a) (25)

and choosing the “pivot” expansion factor ap so that the observational errors on wp and wa are
uncorrelated (or at least weakly so). The value of the pivot redshift depends on what data sets are
being considered, but in practice it is usually close to zp ≡ a−1

p − 1 ≈ 0.4 − 0.5 (see Table 8). The
best-fit wp is, approximately, the parameter of the constant-w model that would best reproduce the
data. A cosmological constant would be statistically ruled out either if wp were inconsistent with
−1 or if wa were inconsistent with zero. In practice, error bars on wa are generally much larger
than error bars on wp, by a factor of 5−10. More generally, it is much more difficult to detect time
dependence of w than to show w 6= −1, typically requiring sub-percent measurements of observables
even if w changes by order unity in an interval ∆z < 1 at low redshift (Kujat et al., 2002). The
DETF proposed a figure of merit (FoM) for dark energy programs based on the expected error
ellipse in the w0 −wa plane (similar to the approach described by Huterer and Turner [2001]). We
will frequently refer to this DETF figure of merit, adopting the definition

FoM = [σ(wp)σ(wa)]
−1 , (26)

and we will refer to dark energy models defined by equations (24) or (25) as “w0 −wa models.”
An alternative parameterization approach is to approximate w(z) as a stepwise-constant func-

tion defined by its values in a number of discrete bins, perhaps with priors or constraints on the
allowed values (e.g., −1 ≤ w(z) ≤ 1). For a given set of observations, this function can then be
decomposed into orthogonal principal components (PCs), with the first PC being the one that is
best constrained by the data, the second PC the next best constrained, and so forth (Huterer and
Starkman, 2003). Variants of this approach have been widely adopted in recent investigations (e.g.,
Albrecht and Bernstein 2007; Sarkar et al. 2008b; Mortonson et al. 2009b), including the report of
the JDEM Figure-of-Merit Science Working Group (Albrecht et al., 2009). The PCA approach has
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the advantage of allowing quite general w(z) histories to be represented, though in practice only a
few PCs can be constrained well; Linder and Huterer (2005) and de Putter and Linder (2008) have
argued that the w0−wa parameterization has equal power for practical purposes. We will use both
characterizations for our forecasts in §8. For scalar field models, one can attempt to reconstruct
the potential V (φ) instead of w(z) (Starobinsky, 1998; Huterer and Turner, 1999; Nakamura and
Chiba, 1999), an approach that we discuss briefly at the end of §8.3.4. Gott and Slepian (2011)
emphasize that slowly rolling scalar field models generically predict 1 +w ≈ (1 +w0)H

2
0/H

2(z) for
|1 + w| ≪ 1, making the space of w(z) models, to leading order, one-dimensional, rather than the
two-dimensional parameterization of w0 −wa. As a complement to parameterized models, one can
attempt to construct non-parametric “null tests” for a cosmological constant or scalar field models
(Sahni et al., 2008).

If w 6= −1, then the dark energy density should display spatial inhomogeneities, but for sim-
ple scalar field models these inhomogeneities are strongly suppressed on scales below the horizon.
More complicated models that have a sound speed (c2s = δp/δρ) much smaller than c allow fluctu-
ations to grow on sub-horizon scales (e.g., Hu 1998; Erickson et al. 2002; Weller and Lewis 2003;
DeDeo et al. 2003; Bean and Doré 2004). de Putter et al. (2010) provide a clear discussion of the
background physics and observable consequences of dark energy inhomogeneities. In general these
inhomogeneities are very difficult to detect, because their growth is significant only when w is far
from −1 and cs ≪ c, and because the fluctuations in dark energy density are much smaller than
those in dark matter. We will mostly ignore dark energy inhomogeneities in this article, though we
return to the subject briefly in §7.8.

Our equations so far have assumed that GR is correct. The alternative to dark energy is to
modify GR in a way that produces accelerated expansion. One of the best-studied examples is
DGP gravity (Dvali et al., 2000), which posits a five-dimensional gravitational field equation that
leads to a Friedmann equation

H2(z) =
8πG

3
ρ(z) ± cH

rc
(27)

for a spatially flat, homogeneous universe confined to a (3 + 1)-dimensional brane. Above the
“crossover scale” rc, which relates the five-dimensional and four-dimensional gravitational con-
stants, the gravitational force law scales as r−3 instead of the usual r−2. Choosing the positive
sign for the second term in equation (27) and setting rc ∼ c/H0 leads to an initially decelerating
universe that transitions to accelerating, and ultimately exponential, expansion. Other modifica-
tions to the gravitational action that replace the curvature scalar R by some function f(R) will
modify the Friedmann equation in different ways, some of which can produce late-time acceleration
(e.g., Capozziello and Fang 2002; Carroll et al. 2004). Alternatively, one can simply postulate a
modified Friedmann equation without specifying a complete gravitational theory, e.g., by replacing
ρ on the right hand side of H2 ∝ ρ with a parameterized function H2 ∝ g(ρ) (Freese and Lewis,
2002; Freese, 2005). Of course, there is no guarantee that such a function can in fact be derived
from a self-consistent gravitational theory.

Using equations (3) and (22), one can express a modified Friedmann equation in terms of an
effective time-dependent dark energy equation of state. In this review, we will use w(z) to parame-
terize the expansion histories of both dark energy and modified gravity theories. Given w(z), H(z)
and D(z) generally follow from the same set of equations for both types of theories, so observations
that only probe the geometry of the universe are incapable of distinguishing between the two possi-
ble explanations of cosmic acceleration. In addition to changing the Friedmann equation, however,
a modified gravity model may alter the equation (14) that relates the growth of structure to the
expansion history H(z). Therefore, one general approach to testing modified gravity explanations is
to search for inconsistency between observables that probe H(z) or D(z) and observables that also
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probe the growth function G(z). Some methods effectively measure G(z)/G(z = 0), others measure
G(z) relative to an amplitude anchored in the CMB, and others measure the logarithmic growth
index γ of equation (15). For “generic” parameters that describe departures from GR-predicted
growth, we will use a parameter G9 that characterizes an overall multiplicative offset of the growth
factor and a parameter ∆γ that characterizes a change in the fluctuation growth rate. We define
these parameters in §2.4 below, following our review of CMB anisotropy and large scale structure.
These parameters serve as useful diagnostics for deviations from GR, but they do not provide a
complete description of the effects of modified gravity theories. In particular, it is also possible (see
§7.7) that modified gravity will cause G(z) to be scale-dependent, or that it will alter the relation
between gravitational lensing and non-relativistic mass tracers, or that it will reveal its presence
through a high-precision test on solar system or terrestrial scales.

The above considerations lead to the following general strategy for probing the physics of cos-
mic acceleration: use observations to constrain the functions H(z), D(z), and G(z), and use these
constraints in turn to constrain the history of w(z) for dark energy models and to test for inconsis-
tencies that could point to a modified gravity explanation. For pure H(z) and D(z) measurements,
the “nuisance parameters” in such a strategy are the values of Ωm and Ωk, in addition to parame-
ters related directly to the observational method itself (e.g., the absolute luminosity of supernovae).
Assuming a standard radiation content, the value of Ωφ = 1−Ωm−Ωr−Ωk is fixed once Ωm and Ωk

are known. The effects of Ωm and Ωk are separable both from their different redshift dependence in
the Friedmann equation (3) and from the influence of Ωk on transverse distances (eq. 9) via space
curvature.

2.3. CMB Anisotropies and Large Scale Structure

CMB anisotropies have little direct constraining power on dark energy, but they play a crit-
ical role in cosmic acceleration studies because they often provide the strongest constraints on
nuisance parameters such as Ωm, Ωk, and the high-redshift normalization of matter fluctuations.
In particular, the amplitudes of the acoustic peaks in the CMB angular power spectrum depend
sensitively (and differently) on the matter and baryon densities, and the locations of the peaks
depend sensitively on spatial curvature. Using CMB constraints necessarily brings in additional
nuisance parameters such as the spectral index ns and curvature dns/d ln k of the scalar fluctuation
spectrum, the amplitude and slope of the tensor (gravitational wave) fluctuation spectrum, the
post-recombination electron-scattering optical depth τ , and the Hubble constant

h ≡ H0/(100 km s−1 Mpc−1). (28)

However, some of these parameters are themselves relevant to cosmic acceleration studies, and
current CMB measurements yield tight constraints even after marginalizing over many parameters
(e.g., Komatsu et al. 2011). The strength of these constraints depends significantly on the adopted
parameter space — for example, current CMB data provide tight constraints on h if one assumes a
flat universe with a cosmological constant, but these constraints are much weaker if Ωk and w are
free parameters.

CMB data are usually incorporated into dark energy constraints, or forecasts, by adding priors
on parameters that are then marginalized over in the analysis. We will adopt this strategy in §8,
using the level of precision forecast for the Planck satellite. However, it is worth noting some rules of
thumb. For practical purposes, Planck data will give near-perfect determinations of Ωmh

2 and Ωbh
2

from the heights of the acoustic peaks, where the h2 dependence arises because it is the physical
density that affects the acoustic features, not the density relative to the critical density. “Near-
perfect” means that marginalizing over the expected uncertainties in Ωmh

2 and Ωbh
2 adds little to
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the error bars on dark energy parameters even from ambitious “Stage IV” experiments, relative to
assuming that they are known perfectly.14 Planck data will also give near-perfect determinations
of the sound horizon at recombination rs(z∗), which determines the physical scale of the acoustic
peaks in the CMB and the scale of BAO in large scale structure (see §4.1). Since the angular scale of
the acoustic peaks is precisely measured, Planck data should also yield a near-perfect determination
of the angular diameter distance to the redshift of recombination, D∗ ≡ DA(z∗), where z∗ ≈ 1091.
Finally, the amplitude of CMB anisotropies gives a near-perfect determination (after marginalizing
over the optical depth τ , which is constrained by polarization data) of the amplitude of matter
fluctuations at z∗, and thus throughout the era in which dark energy (or deviation from GR) is
negligible. As emphasized by Hu (2005; an excellent source for more detailed discussion of CMB
anisotropies in the context of dark energy constraints), these determinations all depend on the
assumptions of a standard thermal and recombination history, but the CMB data themselves allow
tests of these assumptions at the required level of accuracy. CMB data also allow tests of cosmic
acceleration models via the integrated Sachs-Wolfe (ISW) effect, which we discuss briefly in §7.8.

If primordial matter fluctuations are Gaussian, as predicted by simple inflation models and
supported by most observational investigations to date, then their statistical properties are fully
specified by the power spectrum P (k) or its Fourier transform, the two-point correlation function
ξ(r). Defining the Fourier transform of the density contrast15

δ̃(k) =

∫
d3re−ik·rδ(r), δ(r) = (2π)−3

∫
d3keik·rδ̃(k), (29)

the power spectrum is defined by

〈δ̃(k)δ̃(k′)〉 = (2π)3P (k)δ3D(k − k′), (30)

where δ3D is a 3-d Dirac-delta function and isotropy guarantees that P (k) is a function of k = |k|
alone. The power spectrum has units of volume, and it is often more intuitive to discuss the
dimensionless quantity

∆2(k) ≡ (2π)−3 × 4πk3P (k) =
dσ2

d ln k
, (31)

which is the contribution to the variance σ2 ≡ 〈δ2〉 of the density contrast per logarithmic interval
of k. The variance of the density field smoothed with a window WR(r) of scale R is

σ2(R) =

∫ ∞

0

dk

k
∆2(k)W̃ 2

R(k), (32)

where the Fourier transform of a top-hat window, WR(r) = (4πR3/3)−1Θ(1 − r/R), is

W̃R(k) =
3

k3R3
[sin(kR) − kR cos(kR)] , (33)

and the Fourier transform of a Gaussian window, WR(r) = (2π)−3/2R−3e−r2/2R2
, is

W̃R(k) = e−k2R2/2. (34)

14However, the effects of Planck-level CMB uncertainties are not completely negligible. For the fiducial Stage IV
program discussed in §8, fixing Ωmh2 and Ωbh

2 instead of marginalizing increases the DETF FoM from 664 to 876.
15A variety of Fourier conventions float around the cosmology literature. Here we adopt the same Fourier conven-

tions and definitions as Dodelson (2003).
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The correlation function is

ξ(r) ≡ 〈δ(x)δ(x + r)〉 =

∫ ∞

0

dk

k
∆2(k)

sin(kr)

kr
. (35)

In linear perturbation theory, the power spectrum amplitude is proportional to G2(z), and we
will take Plin(k) to refer to the z = 0 normalization when the redshift is not otherwise specified:

Plin(k, z) =
G2(z)

G2(z = 0)
Plin(k). (36)

We discuss the normalization of G(z) and Plin(k) more precisely in §2.4 below. The evolution of
P (k) remains close to linear theory for scales k ≪ knl, where

∫ knl

0

dk

k
∆2(k) = 1. (37)

For realistic power spectra, non-linear evolution on small scales does not feed back to alter the
linear evolution on large scales (Peebles, 1980; Shandarin and Melott, 1990; Little et al., 1991).
However, the shape of the power spectrum does change on scales approaching knl, in ways that can
be calculated using N-body simulations (Heitmann et al., 2010) or several variants of cosmological
perturbation theory (Carlson et al. 2009 and references therein). Non-linear evolution is a significant
effect for weak lensing predictions and for the evolution of BAO, as we discuss in the corresponding
sections below.

While there are many ways of characterizing the matter distribution in the non-linear regime,
the two measures that matter the most for our purposes are the mass function and clustering
bias of dark matter halos. There are several different algorithms for identifying halos in N-body
simulations, all of them designed to pick out collapsed, gravitationally bound dark matter structures
in approximate virial equilibrium. It is convenient to express the halo mass function in the form

dn

d lnM
= f(σ)ρ̄m

∣∣∣∣
d lnσ

dM

∣∣∣∣ , (38)

where σ2 is the variance of the linear density field smoothed with a top-hat filter of mass scale
M = 4

3πR
3ρ̄m (eqs. 32 and 33). To a first approximation, the function f(σ) is universal, and the

effects of power spectrum shape, redshift (and thus power spectrum amplitude), and background
cosmological model (e.g., Ωm and ΩΛ) enter only through determining |d ln σ/dM | and ρ̄m. The
state-of-the-art numerical investigation is that of Tinker et al. (2008), who fit a large number of
N-body simulation results with the functional form

f(σ) = A

[(σ
b

)−a
+ 1

]
e−c/σ2

, (39)

finding best-fit values A = 0.186, a = 1.47, b = 2.57, c = 1.19 for z = 0 halos, defined to be
spherical regions centered on density peaks enclosing a mean interior overdensity of 200 times the
cosmic mean density ρ̄m. (Different halo mass definitions lead to different coefficients.) A similar
functional form was justified on analytic grounds by Sheth and Tormen (1999), following a chain
of argument that ultimately traces back to Press and Schechter (1974) and Bond et al. (1991).
Discussions of the halo population frequently refer to the characteristic mass scale M∗, defined by

σ(M∗) = δc = 1.686, (40)
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which sets the location of the exponential cutoff in the Press-Schechter mass function. Here δc is
the linear theory overdensity at which a spherically symmetric perturbation would collapse.16

In detail, Tinker et al. (2008) find that f(σ) depends on redshift at the 10-20% level, probably
because of the dependence of halo mass profiles on Ωm(z). At overdensities of ∼ 200, the baryon
fraction in group and cluster mass halos (M > 1013M⊙) is expected to be close to the cosmic mean
ratio Ωb/Ωm, but gas pressure, dissipation, and feedback from star formation and AGN can alter
this fraction and change baryon density profiles relative to dark matter profiles. We discuss these
issues further in §6.

Massive halos are more strongly clustered than the underlying matter distribution because they
form near high peaks of the initial density field, which arise more frequently in regions where the
background density is high (Kaiser, 1984; Bardeen et al., 1986). On large scales, the correlation
function of halos of mass M is a scale-independent multiple of the matter correlation function
ξhh(r) = b2h(M)ξmm(r). The halo-mass cross-correlation in this regime is ξhm(r) = bh(M)ξmm(r),
and similar scalings (b2h and bh) hold for the halo power spectrum and halo-mass cross spectrum at
low k. Analytic arguments suggest a bias factor (Cole and Kaiser, 1989; Mo and White, 1996)

bh(M) = 1 +
[δc/σ(M)]2 − 1

δc
. (41)

There have been numerous refinements to this formula based on analytic models and numerical
calibrations. The state-of-the-art numerical study is that of Tinker et al. (2010).

Galaxies reside in dark matter halos, and they, too, are biased tracers of the underlying matter
distribution. Here one must allow for the fact that different kinds of galaxies reside in different
mass halos and that massive halos host multiple galaxies. More massive or more luminous galaxies
are more strongly clustered because they reside in more massive halos that have higher bh(M). At
low redshift, the large scale bias factor is bg ≤ 1 for galaxies below the characteristic cutoff L∗ of
the Schechter (1976) luminosity function, but it rises sharply at higher luminosities (Norberg et al.,
2001; Zehavi et al., 2005, 2011).

For a galaxy sample defined by a threshold Lmin in optical or near-IR luminosity (or stellar
mass), theoretical models and empirical studies (too numerous to list comprehensively, but our
summary here is especially influenced by Kravtsov et al. 2004; Conroy et al. 2006; Zehavi et al.
2011) suggest the following approximate model. The minimum host halo mass is the one for which
the comoving space density n(Mmin) of halos above Mmin matches the space density n(Lmin) of
galaxies above the luminosity threshold. Each halo above Mmin hosts one central galaxy, and in
addition each such halo hosts a mean number of satellite galaxies 〈Nsat〉 = (M −Mmin)/15Mmin,
with the actual number of satellites drawn from a Poisson distribution with this mean.17 The large
scale galaxy bias factor bg is the average bias factor bh(M) of halos above Mmin, with the average
weighted by the product of the halo space density and the average number of galaxies per halo. In
addition to increasing bg by giving more weight to high mass halos, satellite galaxies contribute to
clustering on small scales, where pairs or groups of galaxies reside in a single halo (Seljak, 2000;
Scoccimarro et al., 2001; Berlind and Weinberg, 2002). In detail, at high luminosities one must
allow for scatter between galaxy luminosity and halo mass, which reduces the bias below that of

16See Gunn and Gott (1972), but note that their argument must be corrected to growing mode initial conditions, as
is done in standard textbook treatments. The value δc = 1.686 is derived for Ωm = 1, but the cosmology dependence
is weak.

17To make the model more accurate, one should adjust Mmin iteratively so that the total space density of galaxies,
central+satellite, matches the observed n(Lmin), but this is usually a modest correction because the typical fraction
of galaxies that are satellites is 5 − 20%.
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the sharp threshold model described above. Furthermore, selecting galaxies by color or spectral
type alters the relative fractions of central and satellite galaxies; redder, more passive galaxies are
more strongly clustered because a larger fraction of them are satellites, and the reverse holds for
bluer galaxies with active star formation. Thus each class of galaxies has its own halo occupation
distribution (HOD), which describes the probability P (N |M) of finding N galaxies in a halo of
mass M and specifies any relative bias of galaxies and dark matter within halos.

On large scales, where b2g∆
2
lin(k, z) ≪ 1, the galaxy power spectrum should have the same

shape as the linear matter power spectrum, Pgg(k, z) = b2gPlin(k, z). However, scale-dependence of
bias at the 10-20% level can persist to quite low k, especially for luminous, highly biased galaxy
populations, and the effective “shot noise” contribution to Pgg(k) can differ from the naive 1/n̄g

term expected for Poisson statistics (Yoo et al., 2009). Combinations of CMB power spectrum
measurements with galaxy power spectrum measurements can yield tighter cosmological parameter
constraints than either one in isolation (e.g., Cole et al. 2005; Reid et al. 2010). In particular, this
combination provides greater leverage on the Hubble constant h, since CMB-constrained models
predict galaxy clustering in Mpc while galaxy redshift surveys measure distances in h−1 Mpc (or,
equivalently, in km s−1).

Another complicating factor in galaxy clustering measurements is redshift-space distortion
(Kaiser 1987; see Hamilton 1998 for a comprehensive review), which arises because galaxy red-
shifts measure a combination of distance and peculiar velocity rather than true distance. On small
scales, velocity dispersions in collapsed objects stretch structures along the line of sight. On large
scales, coherent inflow to overdense regions compresses them in the line-of-sight direction, and
coherent outflow from underdense regions stretches them along the line of sight. In linear pertur-
bation theory, the divergence of the peculiar velocity field is related to the density contrast field
by

~∇ · v(x, z) = −(1 + z)−1H(z)
d lnG

d ln a
δ(x, z) ≈ −(1 + z)−1H(z)[Ωm(z)]γδ(x, z) , (42)

with γ defined by equation (15). The galaxy redshift-space power spectrum in linear theory is
anisotropic, depending on the angle θ between the wavevector k and the observer’s line of sight as

Pg(k, µ) = b2g(1 + βµ2)2P (k) =
[
bg + µ2f(z)

]2
P (k) , (43)

where P (k) is the real-space matter power spectrum, µ ≡ cos θ, and f(z) ≈ [Ωm(z)]γ is the log-
arithmic growth rate (eq. 15). The strength of the anisotropy depends on the ratio β ≡ f(z)/bg;
because linear bias amplifies galaxy clustering isotropically, more strongly biased galaxies exhibit
weaker redshift-space distortion. A variety of non-linear effects, most notably the small scale dis-
persion and its correlation with large scale density, mean that equation (43) is rarely an adequate
approximation in practice, even on quite large scales (Cole et al., 1994; Scoccimarro, 2004). In
the galaxy correlation function, one can remove the effects of redshift-space distortion straightfor-
wardly by projection, counting galaxy pairs as a function of projected separation rather than 3-d
redshift-space separation. For the power spectrum, one can correct for redshift-space distortion,
but the analysis is more model-dependent (see, e.g., Tegmark et al. 2004). However, redshift-space
distortion can be an asset as well as a nuisance, since it provides a route to measuring d lnG/d ln a.
We will discuss this idea at some length in §7.2, as it is emerging as a powerful route to measuring
the expansion history and testing GR growth predictions.

2.4. Parameter Dependences and CMB Constraints

Figure 1 illustrates the four statistics discussed above: the CMB temperature angular power
spectrum, the matter variance ∆2

lin(k) computed from the linear theory power spectrum at z = 0,
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Figure 1 CMB angular power spectrum (upper left), variance of matter fluctuations (upper right),
halo mass function (lower left), and halo bias factor (lower right). Solid curves in the main panels
show predictions of the fiducial ΛCDM panel listed in Table 1. Curves in the lower panels show
the fractional changes in these statistics induced by changing 1 + w to ±0.1 or Ωk to ±0.01 (see
legend). For each parameter change, we keep Ωmh

2, Ωbh
2, and D∗ fixed by adjusting Ωm, Ωb, and

h (see Table 1). These compensating changes keep deviations in the CMB spectrum minimal, much
smaller than the cosmic variance errors indicated by the shaded region.
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Table 1. Fiducial Model and Simple Variants

w Ωk Ωc Ωb Ωφ h σ8

−1.0 0.00 0.222 0.045 0.733 0.710 0.806

−0.9 0.00 0.246 0.050 0.704 0.675 0.774
−1.1 0.00 0.201 0.041 0.758 0.746 0.837
−1.0 0.01 0.186 0.038 0.766 0.776 0.809
−1.0 −0.01 0.256 0.052 0.702 0.661 0.802

Note. — All models have ns = 0.963, τ = 0.088,
As(k = 0.002Mpc−1) = 2.43 × 10−9. In addition, all mod-
els have the same values Ωmh

2, Ωbh
2, and distance to the

last scattering surface D∗, so they produce nearly indistin-
guishable CMB power spectra.

the z = 0 halo mass function computed from equations (38) and (39), and the halo bias factor
computed from equation (6) of Tinker et al. (2010) for overdensity 200 halos (relative to the mean
matter density). Curves in the main panels show a fiducial model with the likelihood-weighted
mean parameters for the seven-year WMAP CMB measurements (hereafter WMAP7; Larson et al.
2011) assuming a flat universe with a cosmological constant: Ωc = 0.222, Ωb = 0.045, ΩΛ = 0.733,
h = 0.71, ns = 0.963, τ = 0.088, and primordial power spectrum amplitude As(k = 0.002Mpc−1) =
2.43 × 10−9. (These parameters also assume no tensor fluctuations and dns/d ln k = 0.) The
CMB power spectrum shows the familiar pattern of acoustic peaks, with the angular scale of
the first peak corresponding approximately to the sound horizon at recombination divided by the
angular diameter distance to the last scattering surface. The matter variance ∆2

lin(k) shows a slow
change of slope starting at k ≈ 0.02hMpc−1, corresponding to the horizon scale at matter-radiation
equality, and low amplitude wiggles at smaller scales produced by BAO. The halo mass function
has an approximate power-law form at low masses changing slowly to an exponential cutoff for
M ≫M∗ = 3×1012h−1M⊙. The bh(M) relation is roughly flat for M . 5M∗ before rising steeply
at higher masses. The h-dependences used for k, dn/d lnM , and M reflect the dependences that
typically arise when distances are estimated from redshifts and thus scale as h−1.

In the lower panels, we show the fractional change in these statistics that arises when changing
1+w from 0 to ±0.1 and when changing Ωk from 0 to ±0.01. With any parameter variation, there
is the crucial question of what one holds fixed. For this figure, we have held fixed the parameter
combinations that have the strongest impact on the CMB power spectrum: Ωmh

2 and Ωbh
2, which

determine the heights of the acoustic peaks and the physical scale of the sound horizon, and
D∗ = DA(z∗), which maps the physical scale of the peaks into the angular scale. We satisfy these
constraints by allowing h and Ωm to vary, maintaining Ωk = 0 for the w-variations and w = −1 for
the Ωk-variations, with ns, As, and τ fixed to the fiducial model values. The parameter values for
these variant models appear in Table 1.

From the CMB panel, we can see that the changes in the angular power spectrum induced by
these parameter variations are small compared to the cosmic variance error at every l, since we

26



have fixed the parameter combinations that mostly determine the CMB spectrum.18 The changes
are coherent, of course, but even considering model fits to the entire CMB spectrum the w changes
would be undetectable at the level of errors forecast for Planck, while the Ωk = ±0.01 models would
be distinguishable from the fiducial model at about 1.5σ. The impact of these parameter changes
must instead be sought in other statistics at much lower redshifts. Changes to the matter variance
are ∼ 5% at small scales, growing to ∼ 20% at large scales, with oscillations that reflect the shift
in the BAO scale. Fractional changes to the halo space density at fixed mass can be much larger,
especially at high masses where the halo mass function is steep. We caution, however, that the
fractional change in mass at fixed abundance is significantly smaller, a point that we emphasize in
§6. The impact of a change in w reverses sign at M ≈ 6 × 1014h−1M⊙ ≈ 200M∗, where the mass
function begins to drop sharply. Changes in bias factor at fixed mass are ∼ 5% at high masses and
smaller at low masses.

Figure 2 shows the redshift evolution and parameter sensitivity of the Hubble parameter (eq. 3)
and the comoving angular diameter distance (eq. 9), for the same fiducial model and parameter vari-
ations used in Figure 1. The upper panels show H(z) and DA(z) in absolute units, while the lower
panels plot them in h−1 Gpc units. BAO studies measure in absolute units, but supernova studies
effectively measure hDA(z) because they are calibrated in the local Hubble flow. Equivalently, su-
pernova distances are determined in h−1 Mpc rather than Mpc.19 Weak lensing predictions depend
on distance ratios rather than absolute distances, so in practice they also constrain hDA(z) rather
than absolute DA(z).

In absolute units, model predictions diverge most strongly at z = 0, and the impact of Ωk =
±0.01 is larger than the impact of 1+w = ±0.1. The impact of the w change on H(z) reverses sign
at z ≈ 0.6, a consequence of our CMB normalization. Changing w to −0.9 would on its own reduce
the distance to z∗, and H0 must therefore be lowered to keep D∗ fixed. However, with Ωmh

2 fixed,
lower H0 implies a higher Ωm, which raises the ratio H(z)/H0, and at high redshift this effect wins
out over the lower H0. At z > 2, DA(z) remains sensitive to Ωk but is insensitive to w, while the
sensitivity of H(z) to w is roughly flat for 1 < z < 3. In h−1 Mpc units, models converge at z = 0
by definition, and the impact of 1 + w = ±0.1 is generally larger than the impact of Ωk = ±0.01.
The sensitivity of hDA(z) to parameter changes increases monotonically with increasing redshift,
growing rapidly until z = 0.5 and flattening beyond z = 1.

For structure growth, the issues of normalization are more subtle. The normalization of the
matter power spectrum is known better from CMB anisotropy at z∗ than it is from local mea-
surements at z = 0, and this will be still more true in the Planck era. It therefore makes sense to
anchor the normalization in the CMB, even though the value at z = 0 then depends on cosmological
parameters. Figure 3 (left panel) plots (1 + z)GGR(z), where GGR(z) obeys equation (14) and is
normalized to unity at z = 9. In most models, dark energy is dynamically negligible at z > 9,
making the growth from the CMB era up to that epoch independent of dark energy. In an Ωm = 1
universe, GGR(z) ∝ (1+z)−1, so the plotted ratio falls below unity when Ωm(z) starts to fall below
one. For Ωk = 0.01, Ωm(z) is below that in our fiducial model (see eqs. 3 and 5) both because
of the Ωk term in the Friedmann equation and because we lower Ωm(z = 0) from 0.27 to 0.22 to
keep D∗ fixed, thus depressing GGR(z) increasingly towards lower z. For w = −0.9, however, the
depression of Ωm(z)/Ωm(z = 0) from the Friedmann equation is countered by the higher value of

18The CMB cosmic variance error is ∆ ln CTT
l = [(2l + 1)/2]−1/2 , determined simply by the number of modes on

the sky at each angular scale l.
19To be more precise, studies of supernovae at redshifts z1 and z2 yield the distance ratio D(z2)/D(z1). When the

z1 population is local, in the sense that inferred distances have negligible cosmology dependence except for the H−1
0

scaling, then one gets the distance D(z2) in h−1 Mpc.
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Figure 2 Evolution of the Hubble parameter (left) and the comoving angular diameter distance
(right) for the fiducial ΛCDM model and for the variant models shown in Figure 1. Upper panels
are in absolute units, relevant for BAO, while lower panels show distances in h−1 Gpc, relevant for
supernovae or weak lensing.
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Figure 3 Evolution of the linear growth factor G(z) and growth rate f(z) for the models shown in
Figure 2, assuming GR. The scaling in the left panel removes the (1+ z) evolution that would arise
in an Ωm = 1 universe and normalizes GGR(z) to one at z = 9.

Ωm(z = 0) = 0.30 adopted to fix D∗, so the depression of GGR(z) is smaller, and it actually recovers
towards the fiducial value as z approaches zero. The effects on the growth rate f(z) (right panel)
are similar but stronger, with our adopted parameter changes producing larger deviations from the
fiducial model and the influence of w actually reversing sign at z < 0.5.

In practice, observations do not probe the growth factor itself but the amplitude of matter
clustering, and in this case we must also account for the changing relation between the CMB power
spectrum and the matter clustering normalization. The left panel of Figure 4 plots σ8(z)× (1 + z),
where σ8(z) is the rms linear theory density contrast in a sphere of comoving radius 8h−1 Mpc
(eqs. 32 and 33). The right panel instead plots σ11,abs(z)× (1 + z), where σ11,abs refers to a sphere
of radius 11 Mpc (equivalent to σ8 for h = 0.727). At high redshift these curves go flat as Ωm(z)
approaches one and the growth rate approaches GGR(z) ∝ (1+ z)−1. In the CMB-matched models
considered here, the impact of w or Ωk changes is complex, since changing these parameters alters
the best-fit values of Ωm and h as well as changing the growth factor directly through equation (16).
The values of σ8(z) change by 4-5% at all z for 1 + w = ±0.1, but these changes mostly track the
changes in h. In absolute units, the changes to σ11,abs(z) are . 1%, tracking (by definition) the
changes in GGR(z) shown in Figure 3. For Ωk = ±0.01, σ8(z) changes by 4-5% at high z but
converges nearly to the fiducial value at z = 0, while σ11,abs(z) shows only 1% differences at high
z but diverges at low z.

All of these models have the WMAP7 (Larson et al., 2011) normalization of the power spectrum
of inflationary fluctuations, As = 2.43× 10−9 at comoving scale k = 0.002Mpc−1 at z = z∗ = 1091.
The primary uncertainty in this normalization is the degeneracy with the electron optical depth τ ,
since late-time scattering suppresses the amplitude of the primary CMB anisotropies by a factor
e−τ on the scales that determine the normalization. The WMAP7 constraints are τ = 0.088±0.015
(1σ), so the associated uncertainty in the matter fluctuation amplitude is 1.5%. (Recall that the
power spectrum amplitude is ∝ σ2

8 , so its fractional error is a factor of two larger.) For Planck,
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Figure 4 Evolution of the matter fluctuation amplitude for the models shown in Figure 3, char-
acterized by the rms linear fluctuation in comoving spheres of radius 8h−1 Mpc (left) or 11 Mpc
(right). All models are normalized to the WMAP7 CMB fluctuation amplitude.

Holder et al. (2003) estimate uncertainty στ = 0.01 allowing for complex reionization history, and
we use this value in our own forecasts. While there have been some changes in the situation since
then (the polarized foregrounds at large scales are worse than anticipated, and τ is lower than the
central value from the first-year WMAP results), this expectation seems broadly consistent with
more recent studies (e.g., Mortonson and Hu, 2008; Colombo and Pierpaoli, 2009).20 This will likely
be the limiting factor for comparison of high-redshift (CMB) measurements with low-redshift (e.g.,
WL) measurements of the growth of structure (as opposed to measurements of evolution within
the observed low-z range), unless other probes of reionization such as 21 cm provide constraints on
the reionization history (see §5.9 for further discussion).

Following Albrecht et al. (2009), we parameterize departures from the GR growth rate by a
change ∆γ of the growth index (eq. 15) and by an overall amplitude shift G9 that is the ratio of
the matter fluctuation amplitude at z = 9 to the value that would be predicted by GR given the
same cosmological parameters and w(z) history.21 Some caution is required in defining ∆γ, since
equations (15)-(17) are not exact, and their inaccuracies should not be defined as failures of GR!
For precise calculations, therefore, we adopt the Albrecht et al. (2009) expressions for growth factor
evolution:

f(z) = fGR(z) (1 + ∆γ ln Ωm(z)) (44)

G(z) = G9 ×GGR(z) × exp

[
∆γ

∫ 9

z

dz′

1 + z′
fGR(z′) ln Ωm(z′)

]
, (45)

20For example, Colombo and Pierpaoli (2009) find στ ∼ 0.006, albeit under somewhat optimistic assumptions
regarding foregrounds and sky cuts.

21Albrecht et al. (2009) denote this quantity G0 instead of G9, but we have reserved subscript-0 to refer to z = 0
quantities.
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where GGR(z) and fGR(z) follow the (exact) solution to equation (14).
For practical purposes, one can use our definition of growth parameters to calculate the nor-

malized linear theory matter power spectrum at redshift z, given an assumed set of cosmological
parameter values and a w(z) history, as follows. First, use CAMB (Lewis et al., 2000) or some sim-
ilar program to compute the normalized linear matter power spectrum at z = 9. Then multiply the
power spectrum by G2(z)/G2

GR(z = 9), with G(z) given by equation (45) and GGR(z)/GGR(z = 9)
given by the exact solution to equation (14), or by the approximate integral solution (18), comput-
ing H(z) and Ωm(z) from equations (3) and (5) given the cosmological parameters and w(z). For
reference, we note that CAMB normalization with WMAP7 data yields, for a flat ΛCDM model,

σ11,abs(z = 9) × (1 + 9) = 1.134

[
As

2.43 × 10−9

]1/2

e2(ns−1)

(
Ωbh

2

0.023

)−0.34(
Ωmh

2

0.13

)0.57

, (46)

σ8(z = 9) = σ11,abs(z = 9) × 0.9859

(
h

0.71

)0.67+(ns−1)/2

, (47)

where the primordial amplitude As is defined at comoving wavenumber k = 0.002Mpc−1. This
formula, similar to that in Hu and Jain (2004), is found by varying the parameters in CAMB
calculations around the WMAP7 mean values one at a time to evaluate logarithmic derivatives;
spot checks indicate that it is accurate to 0.2% over the 2σ range of the WMAP7 errors, and for
the range of w and Ωk variations in Table 1. For models other than flat ΛCDM, one can use this
formula to get σ8(z = 9) in GR, assuming that the effect of dark energy at z > 9 is negligible, then
multiply by G(z)/GGR(z = 9) to get σ8(z).

For an analytic power spectrum, one can use the approximate formula in equation (25) of
Eisenstein and Hu (1999), which includes suppression of small scale power by baryonic effects but
does not incorporate BAO. This paper defines the power spectrum normalization in terms of a
parameter δH , related to our growth factor and normalization As by

δH =
2

5
A1/2

s

(
G(z = 0)

Ωm

)(
H0

knorm

)(ns−1)/2

. (48)

Using the appropriate values for our fiducial WMAP7 flat ΛCDM model [G(z = 0) = 0.76, Ωm =
0.267, As = 2.43 × 10−9 at knorm = 0.002Mpc−1, h = 0.71, ns = 0.963] with this definition of δH ,
the Eisenstein and Hu (1999) formula agrees with the result from CAMB to 2% or better except
at the BAO scales, where deviations are up to 10%. One can also use this normalization for the
more complex (but still analytic) formulae of Eisenstein and Hu (1998), which do include BAO.
We caution that other papers and books (e.g., Dodelson 2003) have different definitions of δH .

There are, of course, degeneracies between the modified gravity parameters G9 and ∆γ and the
w(z) history, since both affect structure growth. However, if w(z) is pinned down well by D(z)
and H(z) measurements, then measurements of matter clustering can be used to constrain G9 and
∆γ. The clustering amplitude at a single redshift yields a degenerate combination of these two
parameters, but measurements at multiple redshifts or direct measurements of the growth rate via
redshift-space distortions can separate them in principle. Of course, there is no guarantee that a
modified gravity prediction can be adequately described by G9 and a constant ∆γ, and one might
more generally consider (in eq. 45), for example, a functional history γ(z) analogous to w(z), or
a direct multiplicative change to the growth rate d lnG/d ln a rather than a change of the growth
index γ. However, any constraints inconsistent with G9 = 1, ∆γ = 0 after marginalizing over w(z)
and cosmological parameters would be suggestive evidence for a breakdown of GR. Even if the
measurements themselves are convincing, one must be cautious in the interpretation, since apparent
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discrepancies could arise from w(z) histories outside the families considered in marginalization or
from other violations of the underlying assumptions. To give two examples, “early dark energy” that
is dynamically significant at high redshift could cause an apparent G9 < 1, and decay of dark matter
into dark energy could cause an apparent ∆γ < 0 because the value of Ωm(z)/Ωm(z = 0) would
be higher than in the standard picture. In §7.7 we discuss other potential signatures of modified
gravity, such as scale-dependent growth, discrepancy between masses inferred from lensing and
from non-relativistic tracers, and different accelerations in low and high density environments, and
we mention other parameterizations that have been used to describe modified gravity models.

While they are not a substitute for full calculations, we find the use of CMB-normalized models
like those in this section to be a valuable source of intuition for understanding the impact of distance
or structure growth measurements in a (realistic) situation where CMB anisotropies impose tight
parameter constraints. To make construction of such model sets easy, we note that for small changes
|1+w| . 0.1 and |Ωk| . 0.01, the changes to h required to keep D∗ fixed are well approximated by

∆ lnh ≈ −0.5(1 + w) + 8Ωk + 0.9|Ωk|. (49)

The changes to Ωm and Ωb are then trivially found by fixing Ωmh
2 and Ωbh

2 to their fiducial
model values, and the dark energy density follows from Ωφ = 1 − Ωm − Ωk − Ωr. The value of
σ11,abs(z = 9) is unchanged because Ωmh

2 and Ωbh
2 are fixed, while the value of σ8(z = 9) follows

from equation (46) with the revised Hubble parameter. To compute power spectrum normalizations
at other redshifts one uses equation (18) with the new Ωm(z) implied by equations (3) and (5).
The changes to the normalization at z = 0 are approximately

∆ lnσ8(z = 0) ≈ −0.4(1 + w) + 0.4Ωk − 0.06|Ωk |. (50)

The coefficients in equations (49) and (50) are chosen to reproduce the values in Table 1; at smaller
|1 + w| or |Ωk| the best coefficients might be slightly different, but the changes themselves would
be smaller.

2.5. Overview of Methods

We conclude our “background” material with a short overview of the methods we will describe
in detail over the next four sections.

Observations show that Type Ia supernovae have a peak luminosity that is tightly correlated
with the shape of their light curves — supernovae that rise and fall more slowly have higher peak
luminosity. The intrinsic dispersion around this relation is only about 0.12 mag, allowing each well
observed supernova to provide an estimated distance with a 1σ uncertainty of about 6%. Surveys
that detect tens or hundreds of Type Ia supernovae and measure their light curves and redshifts can
therefore measure the distance-redshift relation D(z) with high precision. Because the supernova
luminosity is calibrated mainly by local observations of systems whose distances are inferred from
their redshifts, supernova surveys effectively measure D(z) in units of h−1 Mpc, not in absolute
units independent of H0.

Baryon acoustic oscillations provide an entirely independent way of measuring cosmic distance.
Sound waves propagating before recombination imprint a characteristic scale on matter clustering,
which appears as a local enhancement in the correlation funtion at r ≈ 150 Mpc. Imaging surveys
can detect this feature in the angular clustering of galaxies in bins of photometric redshift, yielding
the angular diameter distance D(zphot). A spectroscopic survey over the same volume resolves the
BAO feature in the line-of-sight direction and thereby yields a more precise DA(z) measurement.
Furthermore, measuring the BAO scale in velocity separation allows a direct determination of H(z).
Other tracers of the matter distribution can also be used to measure BAO. Because the BAO scale
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is known in absolute units (based on straightforward physical calculation and parameter values well
measured from the CMB), the BAO method measures D(z) in absolute units — Mpc not h−1 Mpc
— so BAO and supernova measurements to the same redshift carry different information.

The shapes of distant galaxies are distorted by the weak gravitational lensing from matter
fluctuations along the line of sight. The typical distortion is only ∼ 0.5%, much smaller than the
∼ 30% dispersion of intrinsic galaxy ellipticities, but by measuring the correlation of ellipticities as a
function of angular separation, averaged over many galaxy pairs, one can infer the power spectrum
of the matter fluctuations producing the lensing. Alternatively, one can measure the average
elongation of background, lensed galaxies as a function of projected separation from foreground
lensing galaxies to infer the galaxy-mass correlation function of the foreground sample, which can
be combined with measurements of galaxy clustering to infer the matter clustering. By measuring
the projected matter power spectrum for background galaxy samples at different z, weak lensing
can constrain the growth function G(z). However, the strength of lensing also depends on distances
to the sources and lenses, so in practice the weak lensing method constrains combinations of G(z)
and D(z).

Clusters of galaxies trace the high end of the halo mass function, typically M ≥ 1014M⊙.
Observationally, one measures the number of clusters as a function of a mass proxy, which directly
constrains dn/(d lnM dVc), where dn/d lnM is the halo mass function (eq. 38) and dVc is the
comoving volume element at the redshift of interest (eq. 12). The mass function at high M is
sensitive to the amplitude of matter fluctuations, and therefore to G(z), though this information is
mixed with that in the cosmology dependence of the volume element dVc ∝ D2

AH
−1. Clusters can

be identified in optical/near-IR surveys that find peaks in the galaxy distribution and measure their
richness, in wide-area X-ray surveys that find extended sources and measure their X-ray luminosity
and temperature, or in Sunyaev-Zel’dovich (SZ) surveys that find localized CMB decrements and
measure their depth. The critical step in any cluster cosmology investigation is calibrating the
relation between halo mass and the survey’s cluster observable — richness, luminosity, temperature,
SZ decrement — so that the mass function can be inferred from (or constrained by) the distribution
of observables. We will argue in §6 that the most reliable route to such calibration is via weak
lensing, making wide-area optical or near-IR imaging a necessary component of any high-precision
cosmic acceleration studies with clusters.

Several of the “alternative” methods described in §7 may ultimately play an important role
in pinning down the origin of cosmic acceleration, even given the high precision expected from
Stage IV supernova, BAO, weak lensing, and cluster surveys. In some cases, such as redshift-space
distortions, these alternatives are automatically enabled by the same surveys conducted for BAO
or weak lensing. In other cases, such as direct measurement of H0, the required observational
programs are different in character.
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3. Type Ia Supernovae

3.1. General Principles

Supernovae (which we will often abbreviate to SN or SNe) are the most straightforward tool
for studying cosmic acceleration, and they are the tool that directly discovered acceleration in the
first place (Riess et al. 1998; Perlmutter et al. 1999; both using local calibration samples from
the Calàn/Tololo survey, Hamuy et al. 1996). Type Ia supernovae, defined observationally by
the absence of hydrogen and presence of SiII in their early-time spectra (Filippenko, 1997), are
thought to arise from thermonuclear explosions of white dwarfs, though the evolutionary sequence
or sequences that lead to these explosions remains poorly understood. The two broad classes of
progenitor models are “single degenerate,” in which a white dwarf accreting from a binary compan-
ion is pushed over the Chandrasekhar mass limit, and “double degenerate,” in which gravitational
radiation causes an orbiting pair of white dwarfs to merge and exceed the Chandrasekhar mass.
The observed supernova population could have contributions from both channels (see Livio 1999
for a review of Type Ia SN mechanisms).

To a rough approximation, Type Ia SNe are standard candles, with rms dispersion of approxi-
mately 0.4 magnitudes in V-band at peak luminosity (Hamuy et al. 1996; Riess et al. 1996). This
0.4-mag scatter can be sharply reduced using an empirical correlation between peak luminosity and
light curve shape (LCS) — supernovae with higher peak luminosities decline more slowly after the
peak. This correlation, which we will refer to generically as the luminosity-LCS relation, was first
quantified by Phillips (1993) based on a handful of objects including the archetypes of low and
high luminosity Ia supernovae, SN 1991bg and SN 1991T, respectively. Also important to the re-
finement of distance determinations was the development of corrections for the correlation between
SN color and extinction (Riess et al., 1996; Tripp, 1998; Phillips et al., 1999) and K-corrections for
redshifting effects (Kim et al., 1996; Nugent et al., 2002). These were all quickly incorporated into
analysis methods such as the Multicolor Light Curve Shape (MLCS; Riess et al. 1996) technique
used by the High-z Supernova Search (Schmidt et al., 1998) and the stretch-factor formalism used
by the Supernova Cosmology Project (Perlmutter et al., 1997).

With these corrections, the dispersion in well measured optical band peak magnitudes is only
∼ 0.12 magnitudes (Hicken et al. 2009b; Folatelli et al. 2010), allowing each well measured supernova
to provide a luminosity-distance estimate with ∼ 6% uncertainty. The diversity of SN Ia light curves
is not fully understood, and peculiar SNe Ia appear to produce ∼ 5% non-Gaussian tails in the
SN Ia distribution (Li et al. 2011). For the bulk of the population, the prevailing picture is that
the progenitor explosions produce varying amounts of Ni56, whose radioactivity powers the optical
luminosity, and that the correlation of peak luminosity with light curve shape arises from radiative
transfer effects (Hoeflich et al. 1996; Kasen and Woosley 2007). Recent studies suggest that SN Ia
are truly standard candles in the near-IR, with peak luminosities at rest-frame H-band (1.6µm)
that have only ∼ 0.1 magnitude rms dispersion independent of light curve shape, and with little
sensitivity to uncertain reddening laws (Mandel et al. 2009, 2011; Barone-Nugent et al. 2012).
This small dispersion in near-IR peak luminosities relative to optical is consistent with theoretical
expectations from radiative transfer models (Kasen, 2006).

To measure cosmic expansion with Type Ia SNe, one compares the corrected peak apparent
magnitudes of distant supernovae to those of local calibrators at 0.03 < z < 0.1, a “sweet spot”
in which distances inferred from redshifts are insensitive to peculiar velocities and to the assumed
densities of dark matter and dark energy. Since the distances to the local calibrators are usually
determined from Hubble expansion, this method gives the luminosity distance DL in units of h−1

Mpc. More generally, the SN method yields relative distances in different redshift bins, even if
one of those bins is not strictly local. The DL(z) relation is sensitive to dark energy through
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equations (7) and (3), and to space curvature through equations (10) and (11). A measurement
of N supernovae in a redshift bin with rms observational errors σobs in peak magnitudes yields an
estimate of DL(z) with fractional statistical error

σlnD =

(
σ2

int + σ2
obs

)1/2

(
2 × 1.086 ×

√
N
) , (51)

where σint is the rms intrinsic scatter, the factor 1.086 converts from magnitudes to natural loga-
rithms, and the factor of two converts from flux uncertainty to distance uncertainty. As discussed
in §3.4 below, there are many possible sources of systematic uncertainty, including flux calibra-
tion, corrections for dust extinction, and possible redshift evolution of the supernova population.
Of these, dust extinction looks like it may ultimately be the most difficult to control at the sub-
percent level, since even a 0.01-mag E(B − V ) color excess corresponds to a 3% suppression of
V -band flux. This consideration provides strong motivation for focusing Stage IV supernova sur-
veys on rest-frame near-IR photometry, where dust extinction is a factor of 3 to 8 times smaller
compared to the optical and where the small scatter in peak luminosities may help minimize any
evolutionary effects.

3.2. The Current State of Play

Building on the initial discovery of cosmic acceleration, supernova surveys have been a major
area of activity in observational cosmology over the last decade. The largest high-redshift (z ≈
0.4 − 1.0) data sets are those from the ESSENCE survey (Wood-Vasey et al. 2007; Narayan et al.,
in prep.; ∼200 spectroscopically confirmed Type Ia SNe) and the CFHT Supernova Legacy Survey
(SNLS; Astier et al. 2006; Conley et al. 2011; Sullivan et al. 2011; ∼500 spectroscopically confirmed
Type Ia SNe in the three-year data set SNLS3). At very high redshifts, HST surveys (Riess
et al., 2004, 2007; Suzuki et al., 2012) have yielded ∼ 25 Type Ia SNe at z > 1.0, which confirm
the expectation that the universe was decelerating at high redshift and limit possible systematic
effects from evolution of the supernova population or intergalactic dust extinction. At intermediate
redshifts (0.1 < z < 0.4), the SDSS-II supernova survey (Frieman et al., 2008; Sako et al., 2008)
has discovered and monitored 500 spectroscopically confirmed Type Ia SNe; only the first-year data
set (103 SNe) has so far been subjected to a full cosmological analysis (Kessler et al., 2009), but
Campbell et al. (2012) present cosmological results from a sample of 752 photometrically classified
SDSS-II SNe with spectroscopic host galaxy redshifts, and a joint analysis of the SNLS and SDSS-II
samples is in process (J. Frieman, private communication). Finally, the last five years have also seen
major efforts to expand the sample of local calibrators and improve their measurements, including
rest-frame IR and rest-frame UV photometry (Wood-Vasey et al., 2008; Stritzinger et al., 2011;
Contreras et al., 2010; Hicken et al., 2009a).

The greatest cosmological utility from SNe Ia generally comes from the joint use of numerous
samples that span a wide range in redshift. To limit systematic errors introduced by combining
disparate SN surveys, it is often valuable to recompile a sample from these surveys as homogeneously
as possible. This involves applying consistent criteria for inclusion in the sample, light curve
fitting with a single algorithm, propagation of errors via covariance matrices, consistent use of
K-corrections, and so forth. While any such “survey of surveys” is not unique and may not be
optimal for a specific application, these compilations are popular because of their ease of use.
Recent examples include the “Gold” sample (Riess et al., 2004, 2007), the “Union” and “Union2”
samples (Kowalski et al., 2008; Amanullah et al., 2010), the “Constitution” sample (Hicken et al.,
2009a), and the compilation of local, SDSS-II, SNLS3, and HST supernovae analyzed by Conley
et al. (2011).
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Figure 5 Luminosity distance vs. redshift for our fiducial cosmological model (solid curves), su-
perposed on supernova measurements from the Union2 compilation (Amanullah et al., 2010). The
lower panel shows residuals from the fiducial model prediction for the SN data, with open circles
marking medians of the data in ∆z = 0.2 bins and broken curves showing the CMB-normalized
variant models described in Table 1. Note that these distances are in h−1 Gpc units.

Figure 6 Constraints from WMAP7 CMB data, Union2 SN data, and the combination of the two,
in (a) the (Ωm,ΩΛ) plane assuming w = −1, (b) the (Ωm, w) plane assuming Ωk = 0, and (c) the
(w0.5, wa) plane assuming Ωk = 0, where w0.5 is the value of w at z = 0.5. Contours show 68%
confidence intervals. In contrast to panels (a) and (b), the combined contour in (c) is tighter than
one would guess from the overlap of the individual contours because the combined data set breaks
degeneracies among other parameters that are marginalized over when inferring w0.5 and wa.
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Figure 5 plots luminosity distance measurements from the Union2 compilation over the model
predictions shown previously in Figure 2 (multiplied by 1+z to convert comoving angular diameter
distance to luminosity distance). The data are in good agreement with the fiducial cosmological
model, and the parameter changes in the bottom panel (Ωk = ±0.01, 1+w = ±0.1) are at the border
of detectability. (Recall that other parameters are adjusted to reproduce the CMB anisotropy of
the fiducial model; see Table 1.)

Figure 6 illustrates model constraints from the Union2 supernova data and WMAP7 CMB
data, which we have computed using CosmoMC (Lewis and Bridle, 2002). We use the Union2
covariance matrix that includes correlated systematic error contributions. Panel (a) shows the
(Ωm,ΩΛ) plane assuming w = −1. CMB and SN constraints are highly complementary in this
plane because the former are most sensitive to the total energy density (Ωm +ΩΛ) and the latter to
the difference between the densities of “attractive” matter and “repulsive” dark energy. Together
the two data sets yield tight constraints in this space, Ωm = 0.282 ± 0.037, ΩΛ = 0.723 ± 0.030,
consistent with a flat universe. Panel (b) shows the (Ωm, w) plane, where we now assume spatial
flatness and a constant value of w. Here again the SN and CMB data are highly complementary,
yielding a tight combined constraint Ωm = 0.270 ± 0.023, w = −1.007 ± 0.081, consistent with
a cosmological constant. Panel (c) shows the (w0.5, wa) plane, where we have adopted the 2-
parameter dark energy model of equation (24); w0.5 is the value of w at z = 0.5, which is much
better determined than the value of w0 and only weakly correlated with wa. Here we have assumed
spatial flatness and marginalized over uncertainty in Ωm. CMB and SN data provide only weak
constraints individually in this model space, but the combination still provides a good constraint
on w0.5, with the error on w0.5 = −1.008 ± 0.132 only degraded by ∼ 50% compared to panel (b).
Constraints on wa, on the other hand, are very weak. The w and w0.5 constraints in panels (b) and
(c) would degrade substantially if we allowed non-zero Ωk; with this level of flexibility, one must
bring in additional data to get useful constraints. However, an H0 or BAO constraint at the level
of current measurements is sufficient to remove most of the sensitivity to Ωk (Mortonson et al.,
2010).

Plots and constraints similar to Figures 5 and 6 appear in many of the papers cited above. The
most up-to-date analysis is that of Conley et al. (2011), who find w = −0.91+0.16

−0.20(stat)
+0.07
−0.14(sys)

for SNe alone, assuming a flat universe with constant w and marginalizing over Ωm. Combining
this measurement with other data sets, Sullivan et al. (2011) find w = −1.016+0.077

−0.079 in combination
with 7-year WMAP CMB constraints (similar to the value and error bar quoted above), and w =
−1.061+0.069

−0.068 after adding BAO and H0 measurements.
There are several indications that current SN cosmology studies are limited by systematic uncer-

tainties associated with the linked issues of dust extinction, SN colors, and photometric calibration.
In any cosmological analysis, one uses the color of a supernova relative to a template expectation
(derived from a training set) to infer, and correct for, a correlation between color and apparent
magnitude arising from dust and/or intrinsic color variations. In the analysis of Wood-Vasey et al.
(2007), different priors about host galaxy extinction change the inferred value of w by amounts
comparable to the statistical error. When the ratio of extinction to reddening is treated as a free
parameter in the cosmological fits, the derived values are typically quite far from those measured
for Galactic interstellar dust, e.g., RV ≡ AV /E(B − V ) = 1.5 − 2.5 (Hicken et al. 2009b; Kessler
et al. 2009; Sullivan et al. 2011) instead of the mean RV = 3.1 found in the diffuse interstellar
medium of the Milky Way (Cardelli et al., 1989). This difference could be a reflection of different
kinds of dust along the line of sight to the supernova (e.g., circumstellar dust), but it could also
arise from intrinsic color differences among SNe Ia with similar light curve shapes, which would
reduce the inferred RV if they are assumed to arise from reddening. Supporting the latter idea, the
distribution of SN colors shows little dependence on host galaxy properties (Kessler et al., 2009;

37



Sullivan et al., 2010), while such dependence might be expected if the color distribution is strongly
affected by dust. Chotard et al. (2011), using spectroscopic indicators of luminosity in nearby SNe,
infer an extinction law with RV = 2.8 ± 0.3, consistent with the Galactic value.

One of the main surprises in the first-year analysis of the SDSS-II Supernova Survey (Kessler
et al., 2009) was the realization that the two main algorithms developed by other groups for global
fitting of SN light curves and cosmological parameters — MLCS2k2 (Jha et al. 2007) and SALT2
(Guy et al. 2007) — initially gave statistically inconsistent cosmological results (w = −0.76 ± 0.07
vs. w = −0.96 ± 0.06, quoting only the statistical errors) when applied to the same data sets, a
discrepancy that persisted even if the SDSS-II data themselves were omitted from the fits. Kessler
et al. (2009) traced this discrepancy to two factors, one related to calibration data and the other
to the treatment of SN colors. For the calibration data, ultraviolet flux measurements in the
local sample from the U -band appear inconsistent with those from the g-band at only moderate
redshift and suggest a problem with the (observed frame) U -band calibration.22 This problem
translates into a difference between fitters because one is trained with U -band data and the other
is not. A more subtle difference arises from the determination of the correction to SN brightness
from color measurements, specifically whether the correlation can be assumed to be independent
of redshift and survey and whether changes in color are due solely to extinction. While these
systematic uncertainties will certainly be reduced by larger multi-wavelength data sets and improved
analysis methods, the experience from these recent studies argues strongly for using rest-frame IR
photometry in precision cosmological studies to circumvent uncertainties related to extinction.

3.3. Observational Considerations

There are several steps to a supernova cosmology campaign: discovery, monitoring, spectro-
scopic confirmation, and calibration against low redshift samples. In large area surveys, discovery
and monitoring are usually done together, through repeated imaging of a large field of view in
multiple bands. A variety of image-differencing techniques can be used to identify SNe (distin-
guished from other variable objects by their light curves) and measure their magnitudes vs. time.
As a rule of thumb, a minimum rest-frame cadence of one observation per ∼ 5 days23 is needed to
get adequate measurements of light curve shapes and normalizations, such that statistical errors
are dominated by the intrinsic dispersion of SN luminosities and not by observational errors. The
required cadence may be somewhat lower in the rest-frame IR, where the dependence on light
curve shape is weaker, but one must still have enough data points to determine peak luminosity
accurately. At least two bands are needed to measure SN colors and thereby infer dust extinction,
though more are better, and multiple colors may prove critical to distinguishing different forms of
extinction (interstellar, circumstellar, and intergalactic) from each other and from intrinsic color
differences.

Figure 7, based on Table 7 of Tonry et al. (2003), plots the peak apparent magnitude of a typical
Type Ia supernova vs. redshift in observed frame I and J band. As a rough rule of thumb, a survey
with periodic and uniform exposures targeting supernovae at a given redshift should measure to a
signal-to-noise ratio of ∼ 15 at peak, so that it still usefully measures the SN before or after peak
when it is 1.5 magnitudes fainter. This depth ensures that incompleteness for supernovae below
the median luminosity does not bias the results and that photometric errors do not dominate over
intrinsic scatter in cosmological analysis. Ground-based surveys designed to observe SNe Ia to
z < 0.8 will typically find ∼ 10 SNe Ia per square degree per month.

22Conley et al. (2011) provide further evidence for an error in the local U -band calibration, and they omit these
data from their cosmological analysis.

23Observed-frame time intervals are larger by 1 + z.
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Figure 7 Peak apparent magnitude of a typical Type Ia supernova as a function of redshift in
observed-frame I-band (solid) or J-band (dotted), from Table 7 of Tonry et al. (2003). The z > 1.1
portion of the I-band curve and z < 0.4 portion of the J-band curve rely on extrapolation of the
template systems’ spectral energy distributions beyond the observed range. Magnitudes are on the
Vega system.

After discovering SNe, one must determine their type and redshift. The most reliable approach
is to obtain their spectra to cross-correlate their spectral features with known templates. Spectral
resolution R ∼ 250 and S/N∼ 5 per resolution element are adequate for these purposes, but even
at this level spectroscopic follow-up is typically the most resource intensive step of a supernova
campaign. For the same telescope aperture, an epoch of spectroscopy requires an order of magni-
tude more time than an epoch of photometry, and one generally loses the parallelism afforded by
photometric monitoring with a large camera (which has several SNe per field of view at a given
time). Spectroscopic follow-up of the SNLS3 sample, for example, used more than 1600 hours of
8 − 10m telescope time (M. Sullivan, private communication).

In principle, photometric redshifts can be used in place of spectroscopic redshifts, and if they
are accurate to a fractional distance error ∆D/D < 10% they lead to only moderate degradation in
statistical accuracy. However, given the degeneracies among redshift, SN color, and dust extinction,
and the increased ambition of SN surveys to control systematics, we are skeptical that cosmological
SN surveys can achieve the desired accuracy using only broad-band photometric monitoring and
spectroscopic follow-up of a small fraction of the sample. An intermediate approach that may work
would be to measure the cross-correlation of a supernova SED with the SN Ia spectral features
using custom-designed optical filters that are matched to SN spectroscopic features at different
redshifts (Scolnic et al. 2009). It also may be possible to make use of subsamples of SNe found
in passive (non-star-forming) galaxies, which should host only Type Ia SNe and which allow more
accurate photometric redshifts from host galaxies. For type identification, one can also check for a
second peak in the rest frame infrared light curve, a morphological feature that is unique to SNe
Ia.

Another intermediate approach is to obtain eventual spectroscopic observations of all host
galaxies in the cosmological analysis sample but not attempt real-time spectroscopy of all candidate
Type Ia supernovae. This scheme still yields precise redshifts, and it provides host galaxy data
that can be used to measure and remove correlations between supernova and host galaxy properties
(see §3.4). While it still requires one faint-object spectrum per supernova, the scheduling demands
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are much more flexible. One can also apply data quality and other selection cuts before the
spectroscopic observations to reduce the total number of spectra required, though one must be
careful not to let biases creep in at this stage. With good photometric monitoring and with
subsequent spectroscopic redshifts of apparent hosts, Kessler et al. (2010) find that they can identify
Type Ia SNe with 70% to 90% confidence from the LCS and color alone, and Bernstein et al. (2012)
forecast Type Ia purity as high as 98% for DES-like photometric observations. A moderate amount
of real-time supernova spectroscopy may then suffice to assess efficiency and biases. The recent
SDSS-II analysis by Campbell et al. (2012) puts this approach into practice, illustrating its promise
and its challenges.

Given the photometric and spectroscopic measurements for a selected set of supernovae, one
must fit the data set to infer cosmological parameters. Many of the algorithms in current use are
descendants of the Multicolor Light Curve Shape (MLCS; Riess et al. 1996) or Spectral Adaptive
Light Curve Template (SALT; Guy et al. 2005) methods. In current implementations, MLCS fitters
are “trained” on local supernovae to determine the relationships between multi-band light curve
shapes and peak absolute magnitudes, and these relationships are applied to distant supernovae
to measure DL(z). SALT-style fitters (which include the SiFTO [Conley et al. 2008] algorithm
applied to SNLS3) instead apply a global, simultaneous fit of parameters describing cosmology
and the relationship between supernova light curves and absolute magnitude. Of greater practical
import, however, is the different treatment of supernova colors in the two methods. MLCS fitters
attribute color differences at fixed peak luminosity to dust reddening, and they adopt an explicit
prior for the distribution of reddening values. SALT fitters allow scatter in intrinsic colors at fixed
peak luminosity and do not attempt to separate intrinsic variations from dust reddening. In reality,
there certainly are intrinsic color variations at some level, but there is also useful information in
the fact that dust reddening exists and has specific properties, in particular that it cannot be
negative. An optimal approach should therefore allow for both effects. Bayesian fitting methods
(e.g., Mandel et al. 2009, 2011; March et al. 2011) can in principle incorporate a wide variety of
parameterized relationships with explicit priors, including dependences on redshift or host galaxy
parameters, which are then marginalized over in cosmological fits. At the level of precision of
current SN samples, the differences in fitting methods do matter (e.g., Kessler et al. 2009), so this
remains an area of active research. Fortunately, the growing samples of well observed local and
distant SNe provide increasingly powerful data to guide this development.

The detailed spectra of SNe could potentially improve their luminosity and/or color calibration
relative to photometric light curves alone. For example Foley et al. (2011) find a correlation
between intrinsic color and the ejecta velocity inferred from the line width (see also Blondin et al.
2012; Foley 2012). However, Silverman et al. (2012), considering a variety of spectral indicators,
find only marginal evidence for a diagnostic that improves Hubble residuals, and Walker et al.
(2011) find similarly ambiguous results. Given the substantial observing time required to measure
good spectroscopic diagnostics for high redshift SNe, modest reductions in scatter are unlikely
to win over simply observing more supernovae. However, spectral diagnostics merit continued
investigation to see whether matching spectral properties between high and low redshift SNe can
reduce susceptibility to evolutionary systematics.

3.4. Systematic Uncertainties and Strategies for Amelioration

The largest current supernova surveys have ∼ 500 Type Ia supernovae. Future surveys hope to
discover and monitor thousands of supernovae, sufficient to yield statistical errors of 0.01 mag or
smaller in narrow redshift bins with ∆z ∼ 0.1− 0.2. Realizing the statistical power of such surveys
will require eliminating or limiting several distinct sources of systematic error. These include flux
calibration errors across a wide range of flux and redshift, the systematics associated with SN
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colors and dust extinction, the possible evolution of the supernova population with redshift, and
gravitational lensing. We discuss each of these issues in turn.24

The leverage of SN studies comes from comparing SNe over a wide span of redshift and thus an
enormous range of flux; for example, the typical peak I-band magnitude at z = 0.8 is 23 mag while
the median peak B-band magnitude of the local calibrator sample used in many analyses is 17 mag,
implying a ratio of 250 in flux. Maintaining sub-percent accuracy in relative flux calibration over
such a range would be challenging under any circumstances, and for SN surveys it is complicated by
the fact that (a) local and distant SNe are usually observed with different telescopes equipped with
different filters, (b) a given observed-frame filter intercepts a different portion of the SN rest-frame
spectral energy distribution (SED) at each redshift, and (c) supernova SEDs are very different from
those of the standard stars used for flux calibration in most of astronomy. Conley et al. (2011)
identify calibration as the dominant systematic in SNLS3, the only systematic in their analysis
that makes a major contribution to their total error budget. Flux calibration uncertainties can
be reduced by carefully designing photometric SN surveys with specialized hardware (e.g., tunable
lasers, NIST photodiodes and calibration sources; Stubbs and Tonry 2006) to measure the system
throughput in situ and by choosing filter systems that provide a good match in rest-frame SED
sampling between low- and high-redshift samples. The ACCESS rocket program should improve
flux calibration with sub-orbital flights that compare NIST photodiodes to calibration stars (Kaiser
et al. 2010). “Self-calibration” that marginalizes over flux-calibration uncertainty can further reduce
this systematic error (Kim and Miquel, 2006), but at the price of increasing statistical error.

As already noted in §3.2, uncertainties in dust extinction, linked to uncertainties in intrinsic
SN colors and in photometric calibration, are already important systematics in SN studies of
cosmic acceleration. These uncertainties can likely be reduced with detailed, well calibrated, multi-
wavelength observations of large numbers of low redshift SNe, which can characterize the separate
dependence of SN colors on luminosity, light curve shape, and time since explosion, and provide
constraints on dust extinction laws that are isolated from cosmological inferences. The final analyses
of data from the SDSS-II supernova survey (Frieman et al., 2008) and the low-redshift portion of
the Carnegie Supernova Project (Hamuy et al., 2006) should allow advances on this front. Analysis
techniques that eliminate the most highly reddened SNe can also reduce extinction systematics
if they can be applied in a way that does not introduce selection biases; as an extreme example,
one can employ only SNe in early-type galactic hosts, which have low amounts of interstellar
dust. Perhaps the most important strategy for reducing extinction systematics is to work as far as
possible to red/near-IR rest-frame wavelengths, where extinction is low compared to blue/visual
wavelengths. Most ground-based SN cosmology studies to date work at rest-frame B (0.4−0.5µm)
or V (0.5 − 0.6µm) wavelengths, which transform to observed-frame I-band (0.7 − 0.9µm) at
z ≈ 0.5 − 0.8. The high-redshift portion of the Carnegie Supernova Project (Freedman et al.,
2009) produced a SN Hubble diagram to z ≈ 0.7 in rest-frame I-band, where systematic errors
due to uncertainty in the reddening laws are roughly half that at V -band. Mandel et al. (2009)
find that the intrinsic dispersion of peak luminosities is only ∼ 0.11 mag at rest-frame H-band
(1.5 − 1.7µm), where systematics due to extinction are only ∼ 1/6 that at V -band. However,
obtaining rest-frame near-IR photometry for high-redshift supernovae requires space observations
due to the high backgrounds seen from the ground (§3.5).

Locally observed SNe span a wide range in the age, metallicity, and current star formation rate
(SFR) of their host stellar populations. This breadth of host conditions provides a laboratory for

24For detailed discussions of systematics in the context of specific contemporary data sets, see, e.g., Wood-Vasey
et al. (2007), Kessler et al. (2010) and Conley et al. (2011).
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the investigation of the evolution of SNe Ia as distance indicators. Recently such an effect was found
and calibrated in the form of a modest, 0.03 mag dex−1 relationship between host galaxy stellar
mass (a likely tracer of metallicity) and calibrated SN Ia magnitude (Kelly et al. 2010; Lampeitl
et al. 2010; Sullivan et al. 2010; see Hicken et al. [2009b] for an analysis with host morphology and
Hayden et al. [2012] for an analysis that incorporates star formation rate in an attempt to isolate
metallicity). At the level of precision enabled by current surveys, it is necessary to correct for this
effect (Conley et al., 2011), but the uncertainty in the correction is not a limiting systematic.

Constraining evolutionary effects to a tenth of σint (∼ 0.01 mag) or better is a challenge. For
example, if there are two populations of Type Ia progenitors (e.g., single and double degenerates)
that have slightly shifted luminosity-LCS relations, then evolution in the population ratio could
produce evolution in the mean relation at a fraction of σint (see, e.g., Sarkar et al. 2008). A
strategy for limiting evolution systematics is to break the SN sample into subsets defined by spectral
features, light curve shapes, or host properties and check for consistency of cosmological results,
since evolution is unlikely to affect all populations in the same way. A complementary path (Riess
and Livio, 2006) is to observe supernovae at z > 2, where predicted fluxes relative to low-redshift
samples are generally insensitive to dark energy parameters; discrepancies would be an indication of
evolutionary effects or of unconventional dark energy models that could be tested by other probes.
Finally, we note that any evolutionary corrections may be weaker in the near-IR, both because of
the narrower range of luminosities and because of the weaker sensitivity to metal lines (which may
itself contribute to the narrower luminosity range) and reddening laws.

Gravitational lensing by intervening large scale structure introduces scatter in observed SN
fluxes, at a level of ∼ 0.05 magnitudes for sources at z = 1 (e.g., Frieman 1996; Wang 1999). Flux
conservation guarantees that the mean flux of the SN population does not change. However, some
care is required to ensure that selection effects or weighting schemes do not bias results at the
0.01-mag level, especially as the magnification distribution is highly non-Gaussian (see, e.g., Sarkar
et al. 2008a). Since lensing effects are small and calculable, they are unlikely to become a limiting
systematic even for the most ambitious future surveys. Analyses that average fluxes of SNe in
redshift bins or model the full flux distribution can minimize lensing systematics and may reduce
some other systematic effects as well (Wang, 2000; Amendola et al., 2010; Wang et al., 2012).

If rest-frame near-IR photometry can be obtained for large supernova samples, we anticipate
that flux calibration uncertainties will ultimately set the floor on systematics. A detailed recent
investigation of the HST WFC3-IR system implies a limiting calibration uncertainty of ∼ 0.02 mag
(Riess, 2012). A future mission designed with IR supernova photometry as a key goal could presum-
ably do better, so 0.005 − 0.02 mag seems a plausible bracket for calibration-limited systematics.

3.5. Space vs. Ground

Space observations offer several key advantages for precision supernova cosmology, a point
emphasized early on by the SNAP (SuperNova Acceleration Probe) collaboration (e.g., Aldering
et al. 2002). The first is the sharp and stable point-spread function (PSF) achievable from space,
which greatly increases sensitivity to faint, variable point sources and the precision and accuracy of
point-source photometry, especially in the presence of a host galaxy background. Adaptive optics
can produce a sharp PSF from the ground, but it is not likely to deliver photometry with 1%
precision and an image stable enough to allow host subtraction at random positions on the sky
away from bright guide stars. The second advantage is the greater accuracy and precision of flux
calibration achievable from space, with no time-variable atmospheric conditions and (for a well
chosen orbit) minimal variations in the telescope environment. The third is the vastly lower sky
background in the near-IR. Typical sky backgrounds for ground-based observations are 16, 14, and
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13 mag arcsec−2 at J , H, and K (Vega), while in space they are 6 to 8 mags fainter, limited by
the zodiacal light.

It is the last of these advantages that we regard as critical — no improvements in ground-
based technology or observing strategy will ever remove the IR sky background. We have already
emphasized the key role of rest-frame near-IR photometry in reducing systematics associated with
dust extinction, and possibly with evolution. Obtaining rest-frame J-band (1.2µm) photometry
of SNe at z = 0.8 requires imaging at λ = 2µm. A 1.3-m space telescope — the (unobstructed)
aperture proposed for WFIRST — can make a S/N=15 measurement at the peak magnitude of a
median z = 0.8 supernova at this wavelength in about 20 minutes. A ground-based 4-m telescope
with 0.8” seeing and a typical IR sky background would require multiple nights, and even then the
accuracy of photometry would be compromised by variable sky background.

A space-based near-IR telescope also offers the option of discovering and monitoring SNe at
substantially higher redshifts, while working at shorter rest-frame wavelengths. However, for the
reasons discussed quantitatively in §4 and §8, we think that the most important role for a mission
like WFIRST in SN studies is to provide the highest achievable accuracy and precision at z ≤ 0.8, as
part of a combined dark energy program that also includes ambitious BAO and weak lensing surveys.
At low redshifts, SNe can achieve a measurement precision unmatched by other methods, but at
higher redshifts they cannot match the dark energy sensitivity of large BAO surveys unless they
can push statistical and systematic errors well below 0.01 mag (see Table 6 in §8.2). The value of a
high-z SN program depends critically on whether the systematics at high-z are uncorrelated with
those at low-z, in which case the distant SNe provide new information even after the low-z program
has saturated its systematics limit, or whether the limiting systematics are correlated across the
full redshift range. We discuss this point more quantitatively in §8.3.1 below. For a given observing
allocation, the maximally efficient use of WFIRST SN time may be in a combined ground-space
program, with ground-based photometry (in rest-frame optical) providing high-cadence light-curve
sampling and color measurements and lower cadence space observations providing the critical, well
calibrated, dust-insensitive photometry used for the SN distance determinations.

3.6. Prospects

The next year or two should see the publication of final results from the SDSS-II supernova
survey, the five-year SNLS sample, and ESSENCE. The measurements from these large surveys
should substantially reduce the statistical errors in the SN Hubble diagram. Perhaps more impor-
tantly, they should yield significant reductions of systematic errors because of their high sampling
cadence, wide wavelength range, and greater attention to photometric calibration. Large campaigns
to discover and monitor local supernovae (e.g., PTF, LOSS, CSP, SN Factory) should also yield
better understanding of potential systematics, as well as better local calibration. A new HST sur-
vey by the Higher-z Team using WFC3 will find more high redshift (z > 1.5) SNe, which provide
additional leverage on the Hubble diagram and constraints on evolution.

The largest new projects on the near horizon are the SN surveys of PS1 (now underway) and
DES (beginning observations in late 2012). Bernstein et al. (2012) discuss the DES strategy in some
detail and forecast discovery of up to 4000 Type Ia SNe out to redshift z = 1.2. For spectroscopic
follow-up, DES aims to observe ∼ 10− 20% of their high-z supernovae but obtain nearly complete
spectroscopic host galaxy redshifts for their cosmological sample. A similarly detailed description of
the PS1 strategy is not yet available, but in principle PS1 should also be able to discover thousands
of Type Ia SNe. In purely statistical terms, a sample of 2000 SNe out to z = 0.8 can achieve errors
of 0.007 mag in redshift bins of ∆z = 0.2, so both PS1 and DES will almost certainly be limited
by systematic rather than statistical errors.
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Looking further ahead, LSST is expected to yield samples of tens or even hundreds of thousands
of SNe (LSST Science Collaboration, 2009). These photometric samples will certainly swamp spec-
troscopic follow-up capabilities, and the LSST surveys will again be systematics limited, though the
enormous sample size (allowing cross-checks and focus on the most favorable subsamples) and the
high-cadence monitoring with high photometric precision across the optical spectrum should reduce
systematics below those of PS1 and DES. Finally, if WFIRST is completed and launched as per
the Astro2010 recommendations, the access to the rest-frame near-IR should yield an unmatchable
advantage for SN cosmology and the best achievable results in SN dark energy studies.
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4. Baryon Acoustic Oscillations

4.1. General Principles

The baryon acoustic oscillation method relies on the imprint left by sound waves in the early
universe to provide a feature of known size in the late-time clustering of matter and galaxies. By
measuring this acoustic scale at a variety of redshifts, one can infer DA(z) and H(z). The acoustic
length scale can be computed as the comoving distance that the sound waves could travel from the
Big Bang until recombination at z = z∗ (see descriptions by Hu and Sugiyama, 1996; Eisenstein
and Hu, 1998). This is a simple integral

rs =

∫ t∗

0

cs(t)

a(t)
dt =

∫ ∞

z∗

cs(z)

H(z)
dz. (52)

The behavior of H(z) at z > z∗ depends on the ratio of the matter density to radiation density; in
simple cosmologies, the radiation sector (photons and neutrinos) is fixed and the ratio is propor-
tional to Ωmh

2. The sound speed depends on the ratio of radiation pressure to the energy density
of the baryon-photon fluid, determined by the baryon-to-photon ratio, which is proportional to
Ωbh

2. Both the matter-to-radiation ratio and the baryon-to-photon ratio are well measured by the
relative heights of the acoustic peaks in the CMB anisotropy power spectrum. Analyses of WMAP

data in the usual ΛCDM cosmological models gives a 1.1% inference of the acoustic scale rs (Jarosik
et al., 2011); Planck is expected to shrink this error bar to 0.25%. Note that the acoustic scale is
determined in absolute units, Mpc not h−1 Mpc.

The acoustic scale is large, about 150 Mpc comoving, because primordial sound waves travel at
relativistic speed, maxing out at c/

√
3 at early times when the baryon density is negligible compared

to radiation density. The large size of the acoustic scale protects this clustering feature from non-
linear structure formation in the low-redshift universe. As discussed below, both cosmological
perturbation theory and numerical simulations argue that the scale of the acoustic feature is stable
to better than 1% accuracy, making it an excellent standard ruler. The BAO method measures the
cosmic distance scale using this ruler. Separations along the line of sight correspond to differences
in redshift that depend on the Hubble parameter H(z)rs. Separations transverse to the line of sight
correspond to differences in angle that depend on the angular diameter distance DA(z)/rs.

The challenge of the BAO method is primarily statistical: because this is a weak signal at a large
scale, one needs to map enormous volumes of the universe to detect the BAO and obtain a precise
distance measurement. Galaxy redshift surveys allow us to make these large three-dimensional
maps of the universe, although we will discuss other methods as well.

At low redshift (z . 0.5), the BAO method strongly complements SN measurements because
BAO provides an absolute distance scale and a strong connection to the CMB acoustic peaks from
z = 1000, while SN allow more precise measurements of relative distances and thus offer a more
fine-grained view of the distance-redshift relation. At higher redshift (z & 0.5), the large cosmic
volume and the direct access to H(z) make the BAO method an exceptionally powerful probe of
dark energy and cosmic geometry.

4.2. The Current State of Play

The acoustic oscillation phenomenon was identified as a potential effect in the CMB sky in the
late 1960s. This was soon extended to the late-time matter power spectrum by (Sakharov, 1966;
Peebles and Yu, 1970; Sunyaev and Zeldovich, 1970); of course, they were considering pure baryon
cosmologies, where the effect is very strong. The introduction of adiabatic cold dark matter in
the mid-1980’s made the predicted late-time acoustic peak very weak (particularly in the Ωm = 1
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Figure 8 (Left) The current BAO distance-redshift relation. Individual measurements are of the
quantity DV (z)/rs. We have multiplied by the rs of the fiducial ΛCDM model to yield a distance;
the sound horizon is predicted to 1.1% from WMAP7. In increasing redshift, data points are
from the 6dFGS (Beutler et al., 2011), SDSS-II (Padmanabhan et al., 2012; Xu et al., 2012b),
BOSS (Anderson et al., 2012), and WiggleZ (Blake et al., 2011d). The WiggleZ paper also quotes
correlated results from multiple redshift bins, but we have chosen to plot only a single combined
data point for each survey so that the measurement errors are uncorrelated. As described in the
text, for a fixed choice of w(z) and Ωk, CMB data allows a prediction for DV (z)/rs. The flat
ΛCDM prediction from the best-fit WMAP7 model is the black line, and the grey region shows the
1σ WMAP7 range. This is not a fit to the data, but rather the vanilla ΛCDM prediction from the
CMB data. (Right) The same plot after dividing by the ΛCDM prediction from WMAP7. We have
added an open point that shows the measurement from Percival et al. (2010) using a combination
of SDSS-II DR7 LRG and Main sample galaxies and 2dFGRS galaxies; the Padmanabhan et al.
(2012) measurement from the DR7 LRG data alone has a smaller error bar because of the increased
precision afforded by reconstruction. Also shown are the four alternative models from Table 1; here
we have suppressed the 1σ range that would surround each line owing to uncertainties in the
matter and baryon density. Also shown is the direct H0 value from Riess et al. (2011); here we
have assumed perfect knowledge of the sound horizon, which suppresses a 1.1% uncertainty term
between this value and the BAO points. These figures are adapted from the corresponding figures
in Anderson et al. (2012). We have omitted the very recent BAO detections from the BOSS Lyα
forest at z ≈ 2.3 (Busca et al., 2012; Slosar et al., 2013), which are also consistent with ΛCDM
predictions.

scenario), and the acoustic oscilllations were primarily studied in the CMB context (Bond and
Efstathiou, 1984, 1987; Jungman et al., 1996; Hu and Sugiyama, 1996; Hu and White, 1996; Hu
et al., 1997). A resurgence of interest in the dynamics of the early universe post-COBE led to the
identification of the acoustic scale as a standard ruler, first in the CMB and then in the matter power
spectrum (Kamionkowski et al., 1994; Jungman et al., 1996; Hu and Sugiyama, 1996; Eisenstein
and Hu, 1998; Meiksin et al., 1999). Fisher matrix forecasts for the combination of CMB and large-
scale structure identified the acoustic oscillations as a critical feature in breaking the distance scale
degeneracy between Ωm and H0 in CMB model fits (Tegmark, 1997; Goldberg and Strauss, 1998;
Efstathiou and Bond, 1999; Eisenstein et al., 1998). In particular, the SDSS Luminous Red Galaxy
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Figure 9 Constraints from combinations of current BAO data (the four points in the left hand panel
of Fig. 8), WMAP7 CMB data, and Union2 SN data in (a) the (Ωm,ΩΛ) plane assuming w = −1,
(b) the (Ωm, w) plane assuming Ωk = 0, and (c) the (w0.5, wa) plane assuming Ωk = 0, where w0.5 is
the value of w at z = 0.5. Contours show 68% confidence intervals. We omit the CMB+BAO+SN
combination from panel (a) because it is nearly identical to the CMB+BAO combination.

(LRG) sample (Eisenstein et al., 2001)25 was proposed to maximize leverage on the large-scale
power spectrum, with BAO as one application.

After the discovery of cosmic acceleration with Type Ia SNe, the focus on the distance scale as a
function of redshift became intense. In 2003, several papers appeared discussing the acoustic scale
as a standard ruler for the measurement of dark energy in higher redshift galaxy surveys (Eisenstein,
2002; Blake and Glazebrook, 2003; Hu and Haiman, 2003; Linder, 2003; Seo and Eisenstein, 2003).
Compelling detections in 2005 intensified these plans (Cole et al., 2005; Eisenstein et al., 2005),
with several observational surveys proposed and numerous theoretical investigations. The rapid
development of the theory led to the DETF featuring BAO as one of the four leading methods for
the study of dark energy (Albrecht et al., 2006).

Early results from the 2dF Galaxy Redshift Survey (2dFGRS) (Percival et al., 2001; Efstathiou
et al., 2002; Percival et al., 2002) and the Abell/ACO cluster sample (Miller et al., 1999) gave hints
of the acoustic feature in the power spectrum. However, the first convincing detections of BAO came
in 2005 from the SDSS Data Release 3 (DR3) and final 2dFGRS samples (Eisenstein et al., 2005;
Cole et al., 2005). Eisenstein et al. (2005) measured the large-scale correlation function of SDSS
LRGs in the redshift range 0.16 < z < 0.47 over 3,816 square degrees, finding the acoustic peak
with 3.4 σ significance. As they only measured the monopole of the correlation function, Eisenstein
et al. (2005) quoted the distance measurement as a blend of the line-of-sight and transverse distance
scale

DV (z) = [DA(z)]2/3

[
cz

H(z)

]1/3

. (53)

Comparing the size of the acoustic scale in SDSS to that in the CMB sky from WMAP, they inferred
the value of DV (0.35) divided by the distance to z = 1089 with a 1σ uncertainty of 3.7%. (Recall
that we use DA to denote the comoving angular diameter distance.) Cole et al. (2005) measured the
power spectrum of 2dFGRS galaxies in the redshift range 0 < z < 0.3 over 1,800 square degrees.
The cosmological fitting analysis detected a baryon fraction of Ωb/Ωm = 0.185±0.046, the non-zero

25 Alex Szalay and Jim Annis deserve particular credit for leading this development in the early years.
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result indicating a detection of the BAO. The distance precision of the result was quoted as a 4.1%
measurement of H0.

Since these first detections, the clustering of successively larger SDSS spectroscopic samples has
been analyzed by several groups using different methods. Tegmark et al. (2006) analyzed the DR4
LRG and main galaxy samples with a quadratic estimator for the power spectrum and redshift-
space distortion. Hütsi (2006) analyzed the monopole of the power spectrum of the LRG data set
with the Feldman et al. (1994) (FKP) method. Percival et al. (2007) applied the FKP method to
the combined DR5 LRG and main galaxy samples, along with the 2dFGRS sample, to measure
the acoustic scale at two different redshifts (z = 0.20 and 0.35). Percival et al. (2010) extended
this analysis to the final SDSS-II sample (DR7), obtaining an aggregate distance precision of 2.7%
to z = 0.275. Kazin et al. (2010b) analyzed the DR7 LRG sample with the correlation function
(as did Mart́ınez et al. 2009), achieving consistent results. A recent reanalysis of the DR7 sample
by Padmanabhan et al. (2012) and Xu et al. (2012b) improved the distance precision to 1.9% by
applying the reconstruction technique described in §4.3.3 below.

New BAO detections have recently been made in three other samples. Beutler et al. (2011)
report a 2.4σ detection from the 6-degree Field Galaxy Survey (6dFGS), which covered 17,000 deg2

of sky, obtaining a 4.5% distance measurement to z = 0.1. Stepping beyond z = 0.5, the WiggleZ
survey (Blake et al., 2011b,d) has used the AAOmega instrument at the Anglo-Australian Telescope
to target emission-line galaxies at 0.4 < z < 1.0. The analysis of the final data set of ∼ 800 deg2

yields BAO detections in three overlapping redshift slices centered on z = 0.44, 0.60, and 0.73,
with an aggregate precision of 3.8%. Anderson et al. (2012) report the first BAO measurements
from the SDSS-III BOSS survey (discussed further below), obtaining a 1.7% distance precision to
a sample with effective redshift z = 0.57.

Combining SDSS-II, WiggleZ, and 6dFGS, Blake et al. (2011d) achieve a 5σ detection of the
acoustic peak; Anderson et al. (2012) combine the reconstructed SDSS-II measurement and BOSS
measurement to get a 6.7σ detection. Both studies find good agreement between the BAO and
SN distance-redshift relations. These BAO measurements are displayed in Figure 8, which shows
DV as a function of redshift. We can compare this DV (z) to the relation predicted by WMAP7
under particular assumptions about dark energy and spatial curvature. A given value of Ωmh

2

and Ωbh
2 yields a sound horizon rs. For any fixed choice of Ωk and w(z), the angular acoustic

scale in the CMB then breaks the Ωm–H0 degeneracy, which then specifies DV (z). The left panel
shows the WMAP7 prediction for flat ΛCDM, with the grey band marginalizing over 1σ errors in
Ωmh

2 and Ωbh
2, while the right panel divides by this prediction. The BAO measurements are all

in good agreement with the +1σ edge of the WMAP7 band; in other words, they are consistent
with WMAP7 and ΛCDM but favor a value of Ωmh

2 ≈ 0.139 vs. 0.134. Intriguingly, the BAO
data pull in the opposite direction from the H0 = 73.8 ± 2.4 km s−1 Mpc−1 measurement of Riess
et al. (2011). The discrepancy is only marginally significant at present — less than 2σ assuming
ΛCDM — but it illustrates how BAO and direct H0 measurements can combine to reveal additional
physics beyond that in ΛCDM.

Curves in the right panel show how the comparison to the data would vary with non-zero
spatial curvature or w 6= −1, using the CMB-normalized models introduced in §2.4. One can see
that small changes, particularly in spatial curvature, make detectable differences in the prediction,
so that comparison of the data to the prediction allows one to measure w(z) and Ωk. Comparing
variations in spatial curvature to variations of constant w, one can see that variations in spatial
curvature produce large offsets but relatively small slopes. SN determinations of relative distances
can only measure slopes on this graph, whereas absolute distance measurements such as BAO can
measure the offset. This illustrates why, in fits to the w–Ωk model, the CMB+SN combination
tends to measure w better while the CMB+BAO combination tends to measure Ωk better.
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Combining the WiggleZ, SDSS+2dFGRS (Percival et al., 2010), and 6dFGS BAO measurements
with WMAP7 and the Union-2 SN compilation, Blake et al. (2011d) infer Ωm = 0.289 ± 0.015,
H0 = 68.7 ± 1.9 km s−1 Mpc−1, ΩK = −0.004 ± 0.006, and w = −1.03± 0.08 (where w is assumed
to be constant with redshift). Anderson et al. (2012) obtain similar constraints when substituting
the BOSS and reconstructed SDSS-II BAO measurements and the SNLS3 SN compilation: Ωm =
0.276 ± 0.013, H0 = 69.6 ± 1.7 km s−1 Mpc−1, ΩK = −0.008 ± 0.005, and w = −1.09 ± 0.08. One
can think of these inferences approximately as CMB acoustic peak heights measuring Ωmh

2, the
BAO standard ruler then splitting Ωm and H0, the CMB angular acoustic scale measuring ΩK ,
and the SNe measuring w. Figure 9 displays our own constraints derived from these data with
CosmoMC (Lewis and Bridle, 2002), with the same parameter space used for the SN and CMB
constraints in Figure 6. While Figure 6 includes contours for SN alone, it makes little sense to
consider BAO constraints independent of CMB data because the latter are needed to calibrate the
BAO ruler. We therefore show contours for CMB, CMB+BAO, and CMB+BAO+SN. Consistent
with our earlier discussion, CMB+BAO provides much tighter constraints on Ωk and Ωm in the
w = −1 model than CMB+SN (compare the left panels of Figs. 6 and 9), but CMB+SN provides
better constraints on w (middle panels). For a w0 −wa model with Ωk = 0 (right panel), the three
data sets together yield a good measurement of w(z = 0.5) but still only loose constraints on wa.

Indications of the acoustic feature have also been found in a sample of higher redshift LRG
with photometric redshifts from the SDSS (Padmanabhan et al., 2007; Blake et al., 2007; Crocce
et al., 2011; Sawangwit et al., 2011). These analyses produced a 6.5% measurement of the angular
diameter distance to z = 0.5. An analysis of the maxBCG cluster catalog by Hütsi (2010) also
yields a 2-2.5 σ detection.

Other analyses have focused on the anisotropic BAO signal, with the intent of separating DA(z)
and H(z). Okumura et al. (2008) performed a correlation function analysis of the LRG sample
from SDSS DR3, achieving a weak indication of the radial BAO. Gaztañaga et al. (2009) analyzed
the correlations of the SDSS LRG sample, considering only pairs very close to the line of sight.
They claimed a detection of the BAO, thereby measuring H(z); however, the proposed acoustic
peak is much higher amplitude than the predicted one, and Kazin et al. (2010a) argue that it is
likely to be noise (see Cabré and Gaztañaga 2011 for a response to this criticism). Chuang and
Wang (2012) analyzed the full SDSS DR7 LRG sample with an anisotropic correlation function,
finding separate constraints on DA and H at z = 0.35.

The next generation of the SDSS large-scale structure survey is BOSS, the Baryon Oscillation
Spectroscopic Survey of SDSS-III. BOSS is observing 1.5 million luminous galaxies (mostly LRGs)
out to z = 0.7 over 10,000 square degrees (Eisenstein et al., 2011; Dawson et al., 2013), with a
selection that triples the number density of LRGs at z < 0.4 relative to SDSS-II and extends
to a new redshift range with a dense sample at 0.5 < z < 0.7. The increased sampling should
facilitate accurate density-field reconstruction (§4.3.3) to boost the BAO performance. BOSS is
also surveying the 2 < z < 3 universe using a grid of quasar sightlines to provide a 3-dimensional
view of the Lyα forest, with the goal of detecting BAO in the large-scale clustering of neutral
hydrogen at z ∼ 2.5. This method was proposed by White (2003) and McDonald and Eisenstein
(2007). The clustering of Lyα forest flux along single lines of sight is well established as a probe
of large-scale structure (see §7.6 for a discussion of the underlying theory), and by using cross-
correlations among multiple lines of sight one can probe 3-dimensional structure. Observationally
this method is attractive because quasars are very luminous and because each quasar provides ∼ 50
measurements of the large-scale density field along its line of sight. Since the BAO peak has an
intrinsic rms width of ∼ 8h−1 Mpc, one need only survey the Lyα forest at modest resolution (a
few hundred) to retain full BAO information. Furthermore, one does not need high signal-to-noise
ratio spectra, as one gets little gain from photon errors smaller than the intrinsic variation in the
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small-scale forest. BOSS aims to measure 160,000 spectra of z > 2 quasars over 10,000 deg2. Using
the first third of this data set, Busca et al. (2012) and Slosar et al. (2013) report the first BAO
detections in the Lyα forest, and the first detections at any z > 1, with precision (2-3% on an
isotropic dilation factor) that is roughly in line with theoretical expectations.

In summary, the BAO feature has been found in eight different samples — 2dFGRS, SDSS
LRG, SDSS Main, 6dFGS, WiggleZ, SDSS photometric, BOSS galaxies, and the BOSS Lyα forest
— with analyses from several independent research teams and with a variety of methods. The best
precision is now slightly below 2%, with excellent agreement with the ΛCDM model.

4.3. Theory of BAO

While the theory of supernova explosions is complicated, the use of Type Ia SNe as distance
indicators rests on empirically determined correlations that are largely independent of that theory.
With BAO, on the other hand, we are using a standard ruler whose length, imprint on the clustering
of observable tracers, and even very existence are derived from theory. We therefore review both
the long-established linear theory of BAO and more recent work on non-linear evolution and galaxy
bias, and we discuss the implications of this work for analysis of BAO data sets.

4.3.1. Linear Theory

Prior to redshifts around 1000, the universe is hot and dense enough that the primordial gas
is ionized. The free electrons in this plasma provide enough cross-section to the cosmic microwave
background photons via Thomson scattering to produce a mean free time well less than the Hubble
time. The result is a close coupling between the electrons, nuclei (baryons), and photons for
sufficiently long wavelength perturbations in the early universe. The radiation pressure of the
photons is large compared to the gravitational forces in the perturbations, with the result that
perturbations in the baryon-photon fluid oscillate as sound waves (Peebles and Yu, 1970; Sunyaev
and Zeldovich, 1970). Diffusion of photons relative to baryons damps these oscillations on comoving
scales smaller than ∼ 8h−1 Mpc, the phenomenon known as Silk damping (Silk, 1968).

After recombination, the mean free time of the photons in the neutral cosmic gas is long com-
pared to the Hubble time. The photons decouple from the perturbations in the baryons and soon
become smoothly distributed. The perturbations in the baryons are now subject to gravitational
instability, just like the dark matter perturbations.

As with normal sound waves, one can usefully view the BAO phenomenon from different linear
basis sets. We first consider the response to a density perturbation at a particular initial location,
as illustrated in Figure 10; see Eisenstein et al. (2007b) and Eisenstein and Bennett (2008) for
further description of this view. Primordial perturbations of the adiabatic form predicted by stan-
dard inflation models consist of equal fractional density contrasts in all species. The dark matter
perturbation grows in place, slowly at first in the radiation dominated epoch, then faster as the
universe becomes matter dominated. The baryon-photon perturbation, on the other hand, travels
away from its origin as a sound wave. At recombination, the baryon part of the wave is left in a
spherical shell centered on the original perturbation. Both the dark matter at the center and the
baryons on the shell seed gravitational instability, which grows to form the halos in which galaxies
form. We therefore expect the distribution of separations of pairs of galaxies (i.e., the two-point
correlation function generated by such perturbations) to show a small enhancement at the radius
of the shell, with galaxy concentrations in the central dark matter clumps and in the shells induced
by the baryons.

One can equally well view the BAO effect as a standing wave in Fourier space; see Hu and
Sugiyama (1996) and Eisenstein and Hu (1998) for this explanation. In Fourier space, the single
acoustic scale gives rise to a harmonic sequence of oscillations in the power spectrum. This is easy
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Figure 10 The generation of the acoustic peak illustrated via the linear-theory response to an
initially point-like overdensity at the origin; this figure is reproduced from Eisenstein et al. (2007b).
Each panel shows the radial perturbed mass profile in each of the four species: dark matter (black),
baryons (blue), photons (red), and neutrinos (green). The redshift and time after the Big Bang are
given in each panel. All perturbations are fractional for that species. We have multiplied the radial
density profile of the perturbation by the square of the radius in order to yield the mass profile. In
detail, we begin with a compact but smooth profile at the origin, which is why the mass profiles go
to zero there. As we are using linear theory, the normalization of the amplitude of the perturbation
(and thus the absolute scale of the y-axis) is arbitrary. a) Near the initial time, the photons and
baryons are tightly coupled in a spherical traveling wave. b) The outward-going wave of baryons
and relativistic species increases the perturbation of the cold dark matter, similar to raising a wake.
c) At recombination, the photons decouple from the baryons. d) With recombination complete,
the CDM perturbation is near the origin, while the baryonic perturbation is in a shell of 150 Mpc.
e) With pressure forces now small, baryons and dark matter are attracted to these overdensities
by gravitational instability. f) Because most of the growth is drawn from the homogeneous bulk,
the baryon fraction converges toward the cosmic mean at late times. Galaxy formation is favored
near the origin and at a radius of 150 Mpc. These figures were made by suitable transforms of
the transfer functions created by CMBfast (Seljak and Zaldarriaga, 1996; Zaldarriaga and Seljak,
2000).
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to understand physically. The power spectrum encodes the response of the universe to a plane wave
perturbation. Each crest in the initial wave produces a planar sound wave that travels a distance
equal to the acoustic scale. If the wave deposits the baryon perturbation on another crest of the
dark matter perturbation, then one gets constructive interference; if the sound wave ends in a dark
matter trough, one gets destructive interference. The result is a harmonic relation between the
wavelength of the perturbation and the acoustic scale.

Mathematically, this correspondence can be seen by considering that the correlation function
and power spectrum are Fourier transform pairs. The Fourier transform of a delta function is a
sinusoid, and the smearing of a delta function simply provides a damping envelope to that sinusoid.
In the case of the BAO, this smearing is largely due to Silk damping in the early universe and
to non-linear structure formation at late times. Both cause the higher harmonics in the power
spectrum to be reduced in amplitude or washed out.

While it is secondary to our pedagogical thread, we end with some additional discussion of Figure
10 and the evolution of the initial point-like density perturbation. First, because the perturbation
is in the growing mode, only the density perturbation is localized. The velocity perturbation
away from the initial density perturbation has zero divergence but is non-zero; hence it scales as
r−2 at large radius. As the baryon-photon and neutrino pulses expand, the gravity interior to
the shell is weaker than it would have been. This causes the velocity perturbation interior to
grow less quickly, creating a non-zero divergence away from the origin, which is why the CDM
perturbation grows at non-zero radius. The size of this effect depends on the radiation to matter
density; this transformation of the CDM perturbation is the famous k−2 tail of the CDM transfer
function (Peebles, 1982). The non-zero velocity perturbation is also the reason why the neutrino
perturbation does not remain as a sharp peak. Finally, we note that this description of the behavior
is the Green’s function of the system. CMB Boltzmann codes typically compute the evolution of
individual Fourier standing waves; these are simply combined here to generate the response to a
point perturbation rather than a single standing wave.

4.3.2. Non-linear Evolution and Galaxy Clustering Bias

The clustering of matter and galaxies undergoes substantial changes at low redshift beyond the
growth described by linear perturbation theory. Small-scale structure grows non-linearly, peculiar
velocities behave differently from their linear prediction, and galaxies trace the dark matter in a
complicated manner. We should worry that these effects might modify the location of the BAO
feature relative to the prediction of linear theory, thus distorting our standard ruler (Meiksin et al.,
1999; Seo and Eisenstein, 2005; Angulo et al., 2005; Springel et al., 2005; Jeong and Komatsu, 2006;
Huff et al., 2007; Angulo et al., 2008; Wagner et al., 2008).

Fortunately, the large scale of the acoustic peak insulates it from most of non-linear structure
formation (Eisenstein et al., 2007b). A typical pair of dark matter particles changes its comoving
separation by 10h−1 Mpc (rms value) between high redshift and z = 0. These motions broaden the
acoustic peak, but the rms displacement is only mildly larger than the 8h−1 Mpc scale set by Silk
damping. The apparent displacement along the line of sight is larger in redshift space, because the
peculiar velocity is well correlated with the displacement. Figure 11 shows the correlation function
and power spectrum from N-body simulations; one can see that the acoustic peak in the correlation
function becomes broader at low redshift. The corresponding effect in the power spectrum is the
decreased amplitude of the wiggles at higher wavenumber. Roughly speaking, one can think of the
width of the evolved ξ(r) peak as the quadrature sum of the initial width and the rms pairwise
displacement ΣNL (see Orban and Weinberg 2011, who examine idealized BAO models numerically
and analytically). Equivalently, the oscillations in P (k) are damped by a factor exp(−k2Σ2

NL). As
discussed in §4.3.4, the broadening of the BAO feature does not significantly bias the acoustic scale
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Figure 11 The effects of non-linear clustering on the BAO. (Left) Redshift-space matter correlation
function at four different redshifts from the simulations of Seo and Eisenstein (2005). (Right) Real-
space matter power spectra at four different redshifts from the simulations of Seo et al. (2008),
divided by a smooth power spectrum so as to reveal the acoustic oscillations. The input linear
theory is shown by the dashed line. The effects of non-linear structure formation broaden the
acoustic peak in the correlation function. In the power spectrum, this corresponds to a damping
of the higher harmonics. Importantly, the boost of broad-band power at late times visible in the
power spectrum plot corresponds largely to correlations at scales much smaller than the acoustic
peak.

measurement provided one is using a suitable template-fitting method. However, it does degrade
the precision of the measurement for a given survey volume, as it is harder to centroid a broader
feature.

To change the acoustic scale itself, one needs instead to move pairs systematically closer or
systematically further away. This is a much weaker effect than the rms motion of particles, as it
depends on the density variations in 150 Mpc spheres, which are percent level. Moreover, pairs of
overdensities fall toward each other and pairs of underdensities fall away from each other, and both
situations count equally toward a two-point statistic, causing a partial cancellation.

Padmanabhan and White (2009) compute the change in the acoustic peak location at second-
order in gravitational perturbation theory. Crocce and Scoccimarro (2008) have done similar cal-
culations in renormalized perturbation theory. Both calculations reveal a second-order term of the
form dξ/dr, which corresponds to moving the acoustic peak. Padmanabhan and White (2009)
compute the size of this effect to be around 0.25% at z = 0.

N-body simulations reveal a similar story. Seo et al. (2010b) measure the shift in the acoustic
scale in a large volume of simulations and detect a shift from α = 1 of 0.3% ± 0.015% at z = 0.0,
with a scaling in redshift proportional to the square of the linear growth function as expected for a
second order effect (left panel of figure 12). Padmanabhan and White (2009) validate their analytic
calculation with a similar set of simulations.

Redshift-space distortions have further effects on the BAO signal beyond the extra broadening
from the large-scale peculiar velocity. Small-scale velocities, e.g., the Finger of God effect, blurs
the measurement of clustering along the line of sight, thereby broadening the acoustic peak. More-
over, the peculiar velocities create anisotropy in the broadband clustering, which must be carefully
accounted for when extracting the acoustic scale (§4.3.4).

Linear bias, with galaxy density contrast δg = bδm, changes the amplitude of ξ(r) or P (k) but
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Figure 12 The shifts of the acoustic scale in cosmological N-body simulations. (Left) Shifts of the
acoustic scale in the redshift-space matter power spectrum versus redshift from Seo et al. (2010b).
The open symbols show the acoustic scale shifts prior to reconstruction; the dashed lines show
a scaling of the square of the linear growth function. The solid symbols show the shifts after
reconstruction is applied. The error bars are derived from the variance among simulations. (Right)
Shifts of the acoustic scale in the redshift-space power spectrum of mock galaxy distributions at
z = 1 from Mehta et al. (2011). The acoustic scale shift from the matter distribution in the
same boxes has been subtracted so as to decrease sample variance. Galaxies are placed via HOD
prescriptions; increasing mass thresholds leads to lower number densities and higher clustering bias.
The open symbols show the shifts prior to reconstruction; the solid symbols, after reconstruction.
The errors in the right panel are larger due to the smaller simulated volume and the lower number
density of tracers. In all cases of both panels, reconstruction decreases the errors on the acoustic
scale and reduces the shift to be consistent with zero. The left panel is based on 63 simulations,
each using 5763 particles in a 2h−1 Gpc cube. The right panel is based on 40 simulations, each
with 10243 particles in a 1h−1 Gpc cube.

not the shape. However, any realistic bias relation must be at least somewhat non-linear, which
alters the relative weighting of overdense and underdense regions and should shift the acoustic scale
at second order. Early work attempted to measure this shift in simulations (Seo and Eisenstein,
2003; Angulo et al., 2008), but the volume of the simulations was insufficient to get a conclusive
detection of the effect. More recently, Padmanabhan and White (2009) explored galaxy bias as
the ratio of the second-order to first-order bias term, finding shifts of a few tenths of a percent for
reasonable bias cases. Mehta et al. (2011) treated the problem numerically with halo occupation
distributions, finding shifts of 0.1% to 0.8% at z = 1 depending on the strength of the bias (right
panel of figure 12). For halo-based models or other prescriptions that tie galaxy bias to the local
density field, it therefore appears that bias-induced shifts are small, and corrections of modest
fractional accuracy (e.g., to 20% of the shift itself) will suffice to make them negligible. The
relevant bias parameters should be tightly constrained by smaller scale clustering measurements
and higher order statistics, enabling cross-checks of the model used for correction.

Non-local bias models that tie galaxy formation efficiency directly to the environment on much
larger scales (e.g., Babul and White 1991; Bower et al. 1993) could perhaps induce larger shifts of
the acoustic scale. However, such models require fairly extreme physical effects, and they can be
readily diagnosed via their impact on clustering at scales below the BAO scale (Narayanan et al.,
2000). A survey capable of measuring the acoustic scale to the sub-percent statistical level will
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Figure 13 A pedagogical illustration of how reconstruction can improve the measurement of the
acoustic scale; this figure is from Padmanabhan et al. (2012). Each panel shows a thin slice of a
cosmological density field. (Top Left) At early times, the density is nearly constant. We mark a
set of points at the origin in blue and a ring of points at 150 Mpc in heavy black. We measure the
distances between the black points and the centroid of the blue point; the rms of these distances
is represented by the Gaussian in the inset. (Top Right) At later times, structure has formed (in
this calculation, simply by the Zel’dovich approximation), and the points have moved. The red
circle shows the initial radius of the ring, centered on the current centroid of the blue points. The
fact that the black points no longer fall on the red ring indicates that the acoustic peak has been
broadened. The inset shows that the new rms of the radial distance (solid line) is larger than the
original (dashed line). (Bottom Left) Arrows show the Zel’dovich displacements responsible for the
structure that has formed. The idea of reconstruction is to estimate these displacements and move
the particles back. (Bottom Right) We illustrate this by smoothing the density field by a 10h−1

Mpc filter and moving the particles back. Because the displacement field is imperfectly estimated,
small-scale structure remains. But the black points now fall closer to the red ring, so that the
rms of the radial distance is close to the initial (inset). The actual reconstruction algorithm of
Padmanabhan et al. (2012) is more complex, but this example shows the basic opportunity.

provide in its millions of galaxies extensive opportunities to constrain even very general bias models
accurately enough to predict the acoustic scale shift to within 10-20% of its value, sufficient to bring
the systematic error below the statistical error.

4.3.3. Reconstruction

By broadening and shifting the BAO feature in ξ(r), non-linear gravitational evolution de-
grades BAO precision and introduces a possible systematic. Is it possible to remove these effects
by “running gravity backwards” to reconstruct the linear density field? The Zel’dovich (1970) ap-
proximation — in which particles follow straight line trajectories in comoving coordinates at the
rate predicted by linear perturbation theory — captures important aspects of non-linear evolution
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Figure 14 The ability of reconstruction to correct redshift-space distortion of the BAO feature;
figure panels taken from Padmanabhan et al. (2012). The left panel shows contours of the galaxy
correlation function from N-body mock catalogs, multiplied by r2 to enhance the large scale features,
as a function of transverse (r⊥) and line-of-sight (r‖) separation. Apart from statistical fluctuations,
this correlation function is isotropic. The middle panel shows contours of the galaxy correlation
function in redshift-space. Peculiar velocities induce anisotropy, breaking the BAO ring into two
arcs. The right panel shows the redshift-space correlation function of the galaxy distribution after
reconstruction, including peculiar velocity correction at the level of the Zel’dovich approximation,
which largely restores the isotropy of the BAO ring.

on large scales (e.g., Weinberg and Gunn 1990; Melott et al. 1994). Eisenstein et al. (2007a) show
that a simple reconstruction scheme based on applying the (reversed) Zel’dovich approximation
to the smoothed non-linear density field is remarkably successful at recovering BAO information,
effectively shifting the low redshift curves in Figure 11 back towards the high redshift curves. Fig-
ure 13, from Padmanabhan et al. (2012), illustrates how reconstruction works in the idealized case
of an initial perturbation that exactly mimics the “acoustic ring” pattern.

Seo and Eisenstein (2007) and Seo et al. (2010b) investigate the effects of reconstruction in more
detail, showing that it noticeably improves the scatter and decreases the shift of the recovered acous-
tic scale from the matter density field of N-body simulations. The latest simulations demonstrate
that the non-linear shift of the scale has been removed to 0.02% or better (see Figure 12, left).
Moreover, comparing the initial conditions to final conditions on a mode-by-mode basis shows that
the linear density field has been recovered to roughly double the pre-reconstruction wavenumber.
Padmanabhan et al. (2009) analyze the method analytically, revealing the improvement while also
noting that the recovered density field is not exactly the linear one.

Mehta et al. (2011) extend this analysis to HOD-based mock galaxy catalogs in simulations.
They consider a range of HOD prescriptions and find that the reconstruction of the linear density
field is not degraded by this form of galaxy bias and that the shift of the acoustic scale after recon-
struction still vanishes, this time to 0.1% precision (Figure 12, right). This success is not surprising:
the halo field traces the matter field fairly accurately on the scales required for reconstruction, so
one is correctly estimating and removing the large scale displacements. Non-linear galaxy bias still
alters the weighting of convergent and divergent flows, but if the flows are being mostly removed,
then it doesn’t matter how they are weighted.

Reconstruction is thus a powerful tool: one is achieving better statistical precision for a given
survey, typically by a factor of 1.5 to 2, equivalent to a factor of 2−4 increase in survey size. Mean-
while, one is mitigating the primary systematic error from non-linear clustering and galaxy bias.
As an added benefit, one can use the estimate of the large scale displacements to remove large-scale
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redshift-space distortions,26 as illustrated in Figure 14, which decreases that degradation of the
BAO accuracy and also pushes most of the BAO signal into the monopole and quadrupole com-
ponents of ξ(s) or P (k). Without reconstruction, the redshift-space distortions contain significant
terms in the hexadecapole and beyond, and the quadrupolar squashing of the Alcock-Paczynski
effect couples to the quadrupole redshift-space distortion to produce BAO signal in the hexade-
capole. To the extent that one is recovering the linear density field, one can also hope that the
large-scale density field is more Gaussian, which is a major simplification for computing likelihood
functions. However, this last property has not been extensively tested.

The first applications of BAO reconstruction to observational data appear in Padmanabhan
et al. (2012) and Anderson et al. (2012). For the SDSS-II (DR7) LRG sample, reconstruction
shrinks the BAO distance error from 3.5% to 1.9%, equivalent to a factor of three increase in
survey volume. It also improves the agreement between the observed and predicted shapes of
the correlation function in the BAO regime, thereby increasing the statistical significance of the
BAO detection from 3.3σ to 4.2σ. For the BOSS (DR9) sample, reconstruction produces little
improvement in the BAO measurement, although this is consistent with the variation among DR9
mock catalogs (see discussion by Anderson et al. 2012).

There is an extensive literature on reconstruction methods for large-scale structure (e.g., Peebles
1989; Weinberg 1992; Nusser and Dekel 1992; Croft and Gaztanaga 1997; Narayanan and Weinberg
1998; Mohayaee et al. 2006). Even simple methods appear adequate for BAO recovery, but better
reconstruction is valuable for other applications of large-scale structure (Reid et al., 2010). Since
BAO surveys are typically sparse, an important area for continuing research is the performance
of methods in the presence of both galaxy bias and significant shot noise. The effectiveness of
reconstruction as a function of sampling density might have important implications for survey
design, favoring different choices compared to the statistical considerations discussed in §4.4 below.

4.3.4. Fitting to Data

It is worth stressing that “the acoustic scale” is only an approximate description of a more
complicated physical situation. For high precision work, we cannot separate the concept of the
acoustic scale from the context of a Boltzmann code prediction for the matter power spectrum and
CMB anisotropy power spectrum. The sound horizon defined by equation (52) does not correspond
to the exact maximum of the acoustic peak in the correlation function, nor do the harmonics in
the matter power spectrum have an identical scale to those in the CMB anisotropy spectrum. The
differences arise from effects such as the fact that photons decouple from the baryons earlier than
the baryons decouple from the photons, that the post-recombination matter growing mode is largely
set by the velocity perturbation at recombination rather than the density perturbation, and that
Silk damping alters the effective redshift of recombination as a function of wavenumber. These
effects are accurately calculated in the Boltzmann codes, resulting in precise predictions for the
matter and CMB power spectra.

When one wants to extract the acoustic scale (i.e., to measure distance using the BAO standard
ruler) from a measurement of the two-point clustering, the appropriate thing to do is to use the
predicted clustering for the cosmology one is testing as a template. The optimal plan is then to fit
that template to the data over a range of scales using the correct covariance matrix or likelihood.
Some early works instead used non-parametric models for the acoustic peak, such as a Gaussian in
configuration space or a damped sinusoid in Fourier space (Blake and Glazebrook, 2003), or simply

26The line-of-sight peculiar velocity is, in the Zel’dovich approximation, equal to f(z)H(z) times the line-of-sight
component of the 3-d displacement.
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identified the maximum of the correlation function (Guzik et al., 2007; Smith et al., 2008). We
believe that, because the acoustic scale is predicted only in the context of an early universe model
with parameters taken from fits to CMB data, there is no extra value in avoiding the linear-theory
model predictions.

Having said that, one does want to modify the template to allow for effects of non-linear
structure formation and perhaps to marginalize over broad-band terms that might enter from
scale-dependent clustering bias or velocity bias or from errors in the calibration of one’s survey.
This procedure has been carried out by several different authors. For example, Seo and Eisenstein
(2007) and and Seo et al. (2010b) fit the measured power spectrum to the form

Pmeasure(k) = B(k)Pm(k/α) +A(k) , (54)

where A(k) and B(k) are smooth functions with parameters to be fit. Pm(k) is the linear theory
model with the acoustic oscillations additionally damped by large-scale structure,

Pm(k) = exp(−k2ΣNL)(Plin(k) − Pnw(k)) + Pnw(k), (55)

where ΣNL is a constant fit from simulations. Pnw is the no-wiggle power spectrum from Eisenstein
and Hu (1998), hand-crafted to edit out the acoustic oscillations. Plin is the exact linear theory
power spectrum; note that Pm(k) goes to this exact linear theory result in the limit of negligible
damping (ΣNL → 0), so the approximate form of Pnw(k) is acceptable. The broadband terms
A(k) and B(k) will correct for non-linear power, the shot noise, scale-dependent bias, and any
imperfections in the survey. The primary goal for the fit is to measure α, a factor that dilates the
scale of the predicted clustering (and of the BAO feature in particular) relative to the observed
clustering. A value α = 1 indicates agreement with the acoustic scale of the original model. A
value α 6= 1 indicates that the acoustic scale of the linear-theory model is incorrect or that the
distance scale assumed in measuring the galaxy clustering was wrong. Simple alterations of this
prescription can be made for fitting the correlation function or mixed-space ω or wavelet statistics
(Xu et al., 2010; Arnalte-Mur et al., 2012). This appproach thus allows one to fit for the scale of
a standard ruler without having to recompute a full predicted power spectrum at every point in
parameter space.

This fitting procedure is only compelling to the extent that the recovered value of α is stable
(to within the statistical errors) as one varies the prescription for the marginalization of parameters
in A(k) and B(k). Too little freedom and one may be biased by broadband tilts and modulations
that one hasn’t modelled properly; too much freedom and one will fit out the acoustic signature
and reduce the constraining power of the data. Fortunately, the separation between the acoustic
scale and the typical non-linear scale and Silk damping scale is large, i.e., the acoustic peak in
the correlation function is narrow. This gives considerable freedom to fit away broadband nuisance
terms while not impacting the acoustic peak. Seo et al. (2010b) show stable results for α for various
choices, e.g., polynomials of different order. Similarly, α is robust to changes in the choice of ΣNL,
so one is not sensitive to how one estimates that parameter in simulations or mock catalogs.

An equivalent method has been used by Percival et al. (2007, 2010), and in related works. Here,
one fits a spline to the measured power spectrum and divides by that spline. One does similarly
for the template Pm(k) and fits that to the residual spectrum of the data. This is equivalent to
taking B(k) to be a spline and setting A(k) = 0. Clearly the performance depends on the number
of spline points, but there is a broad stable region.

The definition of the acoustic scale as the distance a primordial sound wave could travel before
recombination (eq. 52) is borne out in such fits. If one fits with the power spectrum from a cosmology
that is moderately wrong, then one infers a different α, but this change in α is proportional to the
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ratio of the acoustic scales, as defined by the sound horizon integral for each cosmology. The
stability of this scaling appears to be much better than the statistical errors implied by the surveys
that are defining the range of interesting cosmological parameter space (Seo et al., 2010b). In other
words, one can use the acoustic scale integral to adjust distance scale measurements of DA/rs and
Hrs between different cosmologies within the domain of interest.

Extending these approaches to the anisotropic case so as to extract DA and H separately is
more complicated and has not been fully developed. The primary obstacle is to account for the
anisotropic distortions from peculiar velocities. Examples of fit methodologies include Okumura
et al. (2008), Padmanabhan and White (2009), Shoji et al. (2009), Chuang and Wang (2012),
Kazin et al. (2012), and Xu et al. (2012a). The ability of reconstruction to mitigate peculiar
velocity distortion (Fig. 14) may be a significant asset for disentangling DA and H.

With better modeling of non-linear structure and galaxy clustering bias, one could of course
extract additional cosmological information from the two-point clustering of galaxies. In particular,
one can measure the distance scale from the curvature (i.e., non-power-law form) of the spherically-
averaged power spectrum or correlation function. This physical scale arises from the size of the
horizon at matter-radiation equality, parameterized as Ωmh

2 in typical cosmologies. However, this
curvature is a much broader feature and thus provides less leverage on distance. Most important,
the width of the feature is comparable to the scale itself, implying that one must control all extra
broad-band sources of power and scale-dependent galaxy biases in order to extract accurate distance
information. This is much more challenging than the BAO application, but it is an important
frontier of the field of large-scale structure. In particular, the application of this approach to the
quadrupole distortion known as the Alcock-Paczynski effect will be discussed in §7.3.

4.4. Observational Considerations

4.4.1. Statistical Errors

The primary challenge of the BAO method is that very large samples of galaxies (or other
tracers) are required to detect the acoustic oscillations and hence measure a distance. Like detecting
an emission line in a galaxy spectrum in order to measure a redshift, one must have high enough
signal-to-noise to detect the BAO peak or one gets no useful distance information at all. The
minimum useful survey volumes are of order 1h−3 Gpc3, which yield a distance precision of about
5%.

The two components of the statistical error are sample variance and shot noise (Kaiser, 1986a).
A given survey volume contains only a certain number of Fourier modes; in the periodic box ap-
proximation dNmodes/dk = 4πk2V/[(2π)32], where the final factor of 2 in the denominator accounts
for the fact that the density field is real. In a Gaussian random field, the real and imaginary parts
of each mode are independent with an intrinsic variance of P (k)/2. In addition, each mode is
imperfectly measured due to shot noise; when treated in the Gaussian approximation (ignoring the
4-point contributions from the Poisson distribution), this raises the variance on the square of the
complex norm to [P (k) + 1/n]2, where n is the number density of tracers. The result is that the
fractional error bar on the measurement of each mode is σP /P = (nP + 1)/nP . When combining
information from modes, we should sum the inverse variances, which are

P 2

σ2
P

=

(
nP

nP + 1

)2

. (56)

We see that for n ≫ 1/P (k) we get unit information from each mode but that the information
drops rapidly for n < 1/P (k). We note that the relevant P is the redshift-space power spectrum;
this can be substantially larger than the real-space power spectrum for nearly radial large-scale
modes, thereby decreasing the shot noise impact on BAO estimation of the Hubble parameter.
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The mode-counting argument above neglects boundary effects, effectively assuming that the
survey volume is reasonably contiguous with a high filling factor on scales of 150 Mpc. In real
space, we can express this as the requirement that the number of pairs of survey galaxies at 150
Mpc separation not be significantly diminished compared to the case of a filled periodic box. In
Fourier space, we must ensure that the survey window function not create aliasing between modes
in the crests and troughs of the acoustic oscillations.

Converting a power spectrum forecast into constraints on the distance scale requires marginal-
izing over other cosmological parameters. This has been done with Fisher matrix analyses (Seo
and Eisenstein, 2003; Seo and Eisenstein, 2007) or with Monte Carlo approaches (Blake and Glaze-
brook, 2003; Glazebrook and Blake, 2005; Blake et al., 2006). Several analyses have focused on the
anisotropy of the power spectrum in order to measure H(z) and DA(z) separately.

Seo and Eisenstein (2007) constructed a fast approximation to the full Fisher matrix calculation
using an idealized treatment of the acoustic oscillation, including non-linear structure formation
and redshift-space distortions. This method allows forecasts for H and DA precision as a function
of survey redshift, number density, and volume (see their eq. 26). Tests with simulations (Seo et al.,
2010b; Mehta et al., 2011) have shown this forecast to be accurate to within 10-20%, with a small
trend toward over-optimism at nP < 1. Whether this trend is intrinsic to shot noise or to the fact
that the low number density models used more massive mass thresholds for halo bias is not clear
at present.

Table 2 presents a summary of cosmic variance limited BAO performance. This is a tabulation
of the Seo and Eisenstein (2007) forecasts for a full-sky survey, using even binning in ln(1+ z). We
assume a shot noise level of nP = 2 at k = 0.2h Mpc−1 (see § 4.4.3), and that reconstruction has
decreased the non-linear displacements by a factor of two in length scale, i.e., reducing the quantity
ΣNL in equation (55) by a factor of two below its full non-linear value at each redshift. Figure 15,
discussed further in the next section, presents graphical summaries of the main features of Table 2.
One can see that the precision available in DA(z) and H(z) is excellent: of order 0.2% per redshift
bin at high redshift. At low redshift, the precision is worse because there is far less cosmic volume.

Of course, these statistical errors scale as f
−1/2
sky , where fsky is the fraction of sky surveyed.

4.4.2. From BAO to Dark Energy

We will explore how these performance estimates map to dark energy parameter forecasts in
§8, but here we describe some simplified treatments in order to build intuition. Beginning at low
redshift, if we consider that CMB anisotropies give precise values for Ωmh

2 and the acoustic scale
rs, then a BAO detection near z = 0 is measuring a standard ruler and hence H0 (Eisenstein and
Hu, 1998). Combining that with Ωmh

2 yields Ωm. No BAO measurement can be strictly at z = 0,
but the inference of Ωm and H0 depends only on the distance scale between z = 0 and the survey
redshift. Even at z = 0.35, this brings in only a mild dependence on w and Ωk (Eisenstein et al.,
2005). Hence, low-redshift BAO measurements offer a strong measurement of Ωm. Determining
Ωm breaks a key degeneracy for the SN measurements between Ωm and w.

Moving to higher redshift (z & 1), we next consider the evolution of the density of dark energy
using only theH(z) information from BAO (right panel of Figure 15). If we know the matter density
and spatial curvature perfectly, then the Friedmann equation directly relates the measurement
of H(z) to the density of dark energy at that redshift. Considering the null hypothesis of the
cosmological constant, we would achieve a detection of the dark energy density with a significance
of ΩΛH/2σ(H), where σ(H) is the error on H(z). We next want to consider the variation in the
dark energy density. Taking an example in which one assumes the z = 0 value is known perfectly,
we can translate the error at a given redshift to the error on the exponent of a power-law variation,
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Table 2. BAO Forecasts for a Full-Sky BAO Survey

zmin zmax Volume % Err DA(z) % Err H(z) ΩΛ(z) S/N σw

0.00 0.15 0.33 2.8 4.9 0.708 7.3 0.64
0.15 0.32 2.62 0.95 1.7 0.616 18.2 0.088
0.32 0.51 7.89 0.53 0.96 0.515 27.0 0.036
0.51 0.73 16.5 0.35 0.63 0.413 32.9 0.021
0.73 0.99 28.4 0.26 0.46 0.318 34.9 0.015
0.99 1.28 42.9 0.21 0.36 0.236 33.3 0.013
1.28 1.62 59.0 0.17 0.28 0.170 30.2 0.012
1.62 2.00 75.8 0.14 0.24 0.119 25.2 0.013
2.00 2.44 92.3 0.13 0.21 0.082 20.0 0.014
2.44 2.95 108 0.12 0.18 0.056 15.5 0.016
2.95 3.53 121 0.11 0.17 0.038 11.4 0.020
3.53 4.20 133 0.10 0.15 0.025 8.3 0.025
4.20 4.96 142 0.10 0.15 0.017 5.8 0.033

Note. — These forecasts assume a full-sky survey, use nP = 2 at
k = 0.2h Mpc−1, and assume reconstruction improvements in the non-linear

damping by a factor of 2. Statistical errors scale as f
−1/2
sky . The first and

second columns give the inner and outer edges of redshift bins; the bins have
equal width in ln(1+ z). The third column gives the comoving volume of the
bin in h−3 Gpc3, assuming Ωm = 0.25. The fourth and fifth columns give
1σ fractional errors (in percent) in DA(z) and H(z), the angular diameter
distance to and Hubble parameter at the bin center; note that the errors
on these two quantities are 40% correlated. We assume the sound horizon
is known. The sixth column gives ΩΛ(z), i.e., the ratio of the dark energy
density to the critical density at that redshift in a Λ-model. Column 7 gives
ΩΛ(z)H/2σH , which is the significance at which one would detect the cos-
mological constant at redshift z using only the H(z) BAO constraint and
assuming perfect knowledge of the matter density and curvature (a good ap-
proximation, but not exact). Column 8 shows the error on a constant value
of w that would be obtained by comparing the BAO H(z) measurement for
this one redshift to the value of ρDE at z = 0, assuming the latter is known
perfectly.
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Figure 15 Illustrative BAO forecasts for a full-sky survey, from Table 2. All errors scale as f
−1/2
sky ;

note that y-axes are inverted so that smaller errors appear higher on the plot. (Left) The fractional
error on DA(z) and H(z) in logarithmic redshift bins, as open and solid points, respectively. Note
that performance of order 0.2% per bin is possible at high redshift. Here we assume the sound
horizon is known. (Right) Illustration of the dark energy leverage available simply from the H(z)
information in the previous panel. Assuming perfect knowledge of the matter density (i.e., ΩmH

2
0 )

and curvature, measurement of H(z) determines the dark energy density. The solid black points
show the resulting fractional errors on the dark energy density as a function of redshift, assuming
that the value is close to the cosmological constant. Errors of order 5%, i.e., a 20-σ detection of
dark energy, are possible at 0.5 < z < 2, even if the dark energy density is simply constant. The
evolution of dark energy can be expressed by comparing the density at high redshift to that at
z = 0, assuming the latter is known. The open red points give the error on a power-law evolution
in 1 + z, expressed as the error on a constant w. One sees that there is a broad maximum in
performance extending out to z ≈ 3. Of course, we must measure the dark energy density at z = 0;
the blue arrow shows the fractional error on that density that would result from a 1% measurement
of H0 (which one might get from direct measures or from a combination of BAO and supernovae),
assuming perfect knowledge of the matter density. That the blue arrow is comparable to or above
the solid points indicates that we can reasonably expect to be limited by our higher redshift data.
The open points are optimistic in that we have assumed perfect knowledge of various inputs; the
intended lesson is that the large volume and larger redshift lever arm at higher redshift can offset
the fact that the dark energy makes up a smaller fraction of the cosmic total.

which can in turn be rewritten as an error on a constant w (eq. 23). Of course, a full analysis must
include the uncertainties on the matter density, spatial curvature, and z = 0 value of ΩΛ.

Despite the simplifications, Table 2 and Figure 15 offer some important results for building
intuition. We find that the sensitivity of BAO H(z) to dark energy has a broad maximum over
the range 0.6 < z < 3.5. This plateau arises because the declining dynamical importance of dark
energy is compensated by the increasing statistical precision afforded by larger comoving volume.
For w = −1, dark energy is only 10% of the total density at z = 2, but a cosmic-variance-limited
BAO measurement can detect that density at 20-σ significance. The large lever arm to z = 0
translates this into a 1.3% constraint on a constant w model. Of course, if w > −1, then ρDE is
higher at high redshift than it is for a cosmological constant, increasing the statistical significance
with which BAO can detect it.

Meanwhile, the transverse acoustic scale at z ∼ 2 and above can be compared to the angular
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acoustic scale in the CMB to give a combination constraint on early dark energy and the curvature of
the universe (McDonald and Eisenstein, 2007). This has considerable value in breaking degeneracies
between curvature and dark energy parameters at lower redshift, and it should be considered an
important consistency check for the ΛCDM interpretation of the CMB. A clear detection of non-
zero curvature would have major implications for inflation, and perhaps for quantum cosmology
theories (Gott, 1982; Guth and Nomura, 2012; Kleban and Schillo, 2012). If the Alcock-Paczynski
method can be applied at smaller scales to obtain a precise determination of H(z)DA(z), then the
BAO values of DA(z) can also be used to improve H(z) determinations and thus the dark energy
density constraints (see §7.3).

4.4.3. Sampling Density

The acoustic oscillations in the power spectrum are primarily at wavenumbers 0.1−0.2h Mpc−1,
so we want to design surveys with nP (k = 0.2h Mpc−1) & 1. Furthermore, if one wins sample size
proportionally to survey time, then nP (k) = 1 is the optimal balance of survey depth to sample
volume at a given wavenumber (Kaiser, 1986a). One should beware that this assumption rarely
holds in surveys with multi-object instruments: the exposure time is driven by the faintest objects
in the survey, so that brighter galaxies are being overexposed in the chosen observation time. Also,
the number density is often a function of redshift, so one cannot hit the optimal density everywhere
in the survey. Finally, one might care about distance precision differently at different redshifts
because of one’s specific goals for testing dark energy models. See Parkinson et al. (2007) for a
worked example of survey optimization.

For the concordance cosmology, the amplitude of the power spectrum at k = 0.2h Mpc−1 is
about 2700σ2

8,gh
−3 Mpc3, where σ2

8,g is the variance of the fractional overdensity of the chosen tracer

at the survey redshift in spheres of 8h−1 Mpc radius. This implies that we seek number densities
around n = (4 × 10−4h3 Mpc−3)/σ2

8,g. Fortunately, this is well below the density of L∗ galaxies.
Higher galaxy bias is a good thing for the statistical errors of a BAO survey. The power

spectrum amplitude scales as the square of the bias, so an early-type galaxy is 3 − 4 times more
valuable (in the sense of boosting nP ) than a late-type galaxy. Given that there is no identified risk
— higher bias galaxies have larger acoustic scale shifts, but this is correctable (Figure 12, right) —
it makes sense to use higher bias tracers when possible. However, lower bias tracers can be more
effective if one can acquire their redshifts sufficiently quickly!

The balance of shot noise to sample variance is more complex in the case of surveys with
the Lyα forest or HI intensity mapping. However, the idea is the same: one wants to make a
map in which the pixel noise is dominated by sample variance, but not by much. The power at
k = 0.2h Mpc−1 corresponds roughly to density variance of 8h−1 Mpc spheres. Hence, we seek to
measure the density of individual regions of this size to a precision slightly better than the intrinsic
rms for such volumes for the chosen tracer (i.e., bσ8). If one is measuring too well, one would prefer
to do shallower measurements over a wider region. In the case of the Lyα forest, this criterion
concerns both the areal density of the quasar sightlines and the signal-to-noise ratio of the spectra
(McDonald and Eisenstein, 2007; McQuinn and White, 2011).

4.4.4. Spectroscopic vs. Photometric Redshifts

Photometric redshifts offer a cheap way to measure many galaxy redshifts and hence to measure
the BAO (Seo and Eisenstein, 2003; Glazebrook and Blake, 2005; Dolney et al., 2006; Seo and
Eisenstein, 2007). However, the larger errors are a challenge. For velocity errors larger than
1000 km s−1 one is smearing out the acoustic scale along the line of sight and failing to measure
H(z). Note that this scale is set by the width of the acoustic peak, not by the acoustic scale. One
only retains full information with rms precision below 300 km s−1.
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To measure DA(z), in principle precisions of σz/(1 + z) of 4% are enough. Worse precision
causes catastrophic degradation because the oscillations in angular power at the front and back of
the photometric redshift slab fall out of phase. Redshift precision of 3-4% yields poor constraints
on the BAO per unit volume, with a rule of thumb that one needs ten times more volume for a
photometric redshift survey than a spectroscopic survey (Blake and Bridle, 2005; Seo and Eisenstein,
2007). Better redshift precision reduces this gap. At z < 0.7, current and ongoing spectroscopic
surveys are already covering 1/4 of the sky, so photometric redshift surveys are only competitive
at higher redshifts. Extracting large-scale structure and BAO from photometric redshift surveys
requires very stringent calibration and more extensive modeling than for spectroscopic surveys.
Photometric surveys with many narrow bands offer an intermediate approach between imaging and
spectroscopy, which may be advantageous in some regimes (Beńıtez et al., 2009).

4.4.5. Tracers of Structure

As we have seen, BAO surveys require surveys of very large volumes with modest sampling
density. One wants to map a wide range of redshift so as to measure the history of expansion. The
current generation of surveys are mapping of order 1 million galaxies, and approaching the cosmic
variance limit at z > 1 requires of order 108 galaxies.

We have a lot of freedom in selecting the objects to trace the density field. Usually, we require
isotropy of the selection but do not require that the selection be unchanging as a function of redshift.
One is seeking to minimize the observational cost for a given well-sampled survey volume. There
are many competing considerations (Glazebrook and Blake, 2005). One desires a tracer with a
strong spectroscopic signature to allow a redshift determination to about 300 km s−1 rms as fast as
possible, with few catastrophic redshift errors. One desires a combination of density and clustering
bias so that nP (k = 0.2h Mpc−1) & 1. One desires a higher clustering bias, so that the required
number density is lower; this allows one to use brighter objects and reduce exposure time. For
targeted surveys, one desires that the tracer can be readily selected, so that one doesn’t waste
resources on undesired objects. In more detail, one desires photometric redshifts good enough that
one can shape the n(z) profile in a way that keeps nP close to unity at high redshift without being
swamped by low luminosity objects at low redshift. And, of course, the observed wavelength of the
spectroscopic feature determines a great deal about the instrumentation.

Luminous red galaxies are an effective choice at lower redshifts. They have strong absorption
features, notably the 4000Å break, and high surface brightnesses to allow rapid spectroscopy. They
have a high bias (b ∼ 2) to reduce the required number density and hence the number of spec-
troscopic fibers. They are also easy to select with photometric redshifts: essentially they are the
reddest galaxies at a given observed flux (Eisenstein et al., 2001).

As we work to z = 1 and beyond, the advantages of using emission-line galaxies increase. Red
galaxies are very faint in the optical at z & 1 because of K corrections, and the 4000Å break moves
into the infrared where the forest of OH sky glow lines makes spectroscopy more difficult. But
the star formation rates of normal galaxies at z > 1 are about ten times higher than today, and
this high star formation produces strong emission lines. These emission lines can be detected even
when the stellar continuum cannot, and the galaxies with the strongest lines can be measured in
remarkably little time. Spectral resolution of a few thousand is desirable to work between the OH
sky glow lines and to resolve the [OII] doublet. The challenge is primarily one of selection, how
to use photometric data to pick out the star forming galaxies with the strongest lines. Between
the lower clustering bias and the failure rate on weaker-lined systems, one needs to survey many
more blue galaxies than red. Current expectations are that the transition point from preferring
red galaxies versus blue is z ≈ 1 (Glazebrook and Blake, 2005). Slitless spectroscopy offers an
alternative route to surveying emission line galaxies, without prior target selection (see §4.6).
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Clusters of galaxies have been proposed as tracers (Angulo et al., 2005; Hütsi, 2006). These
can be readily found from imaging data sets but have the disadvantage that their nP does not
reach unity. Also, acquiring spectroscopic redshifts for the clusters imposes requirements similar
in area and depth to a red galaxy survey, so the gain in a highly multiplexed fiber survey is much
smaller than one would expect based on numbers alone. Quasars have a similar problem of having
nP < 1, but they are extremely luminous and easy to select. This makes them a possible target
for a sparse, wide-field survey at z > 1 (Sawangwit et al., 2012), and they are readily added to a
multi-fiber survey targeting emission line galaxies or LRGs at other redshifts.

Using the Lyα forest as a tracer is attractive because each spectrum yields many density mea-
surements (effectively about 50) rather than just a single point in a map (White, 2003; McDonald
and Eisenstein, 2007; Norman et al., 2009; McQuinn and White, 2011). One wants to sample the
width of the acoustic peak, which is about 20h−1 Mpc FWHM. This implies that one needs spectral
resolution of only a few hundred and moderate angular density of the lines of sight, preferably about
100 per square degree. Quasars of this surface density are much brighter than the Lyman-break
galaxies that would be required to match the effective sampling density. As one has little gain
from reducing the photon noise errors to below the intrinsic variation of the forest on 10h−1 Mpc
scales, one can afford to use low signal-to-noise ratio spectra. The challenge here is systematics,
as one must control the continuum of the quasar and the spectrophotometry of the measurements
to utilize the spectral information. It is also possible that theory systematics associated with the
state of the IGM enter; so far, IGM uncertainties have not been shown to affect BAO measurements
from the forest, but the case has not been investigated as thoroughly as it has for galaxies. The
recent detection of BAO in the Lyα forest at a scale and amplitude compatible with theoretical
expectations (Busca et al., 2012; Slosar et al., 2013) is already encouraging, but much work remains
to demonstrate that systematic effects are below the achievable level of statistical precision.

Star-forming galaxies also can be observed in the radio using the 21 cm line of neutral hydrogen.
This is a much weaker line, but future generations of radio interferometers such as the Square
Kilometer Array offer phenomenal survey speed because one can synthesize millions of simultaneous
beams computationally. Such instruments could in principle achieve spectroscopic samples of 109

galaxies out to z = 2 − 3 (Abdalla and Rawlings, 2005).
A different concept is that of 21 cm intensity mapping (Peterson et al., 2006; Ansari et al.,

2008; Chang et al., 2008; Loeb and Wyithe, 2008; Wyithe et al., 2008; Seo et al., 2010a). Here
one does not identify individual galaxies but instead measures the combined emission of the 21
cm line from all galaxies in a volume of order 10 Mpc on a side. The fluctuations in the map
encode the large-scale density field and hence the BAO. Relative to an interferometer like the SKA,
one uses shorter baselines (around 300 meters) and a nearly filled aperture to maintain surface
brightness sensitivity.27 Because one is not resolving individual galaxies above the instrumental
noise, one is using all of the neutral hydrogen even from low-mass galaxies. In principle, one can
map the BAO to the cosmic variance limit out to z ≈ 3 with new interferometric arrays. The
challenge is foreground subtraction, as the cosmic signal is several orders of magnitude below the
Galactic and extragalactic emission levels. A first detection of large-scale structure in redshifted 21
cm has been reported by Chang et al. (2010) by cross-correlating with an optical galaxy redshift
survey at z = 0.8; cross-correlation removes foregrounds that are not themselves correlated with
the optical galaxies. For intensity mapping to work on its own, one of course needs to measure the
auto-correlation signal.

27An interferometer directly measures the Fourier transform (in the transverse direction) of the emission field;
antennas separated by a distance L measure Fourier modes with k⊥ = 2πL/(λDA).
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Unlike for the case of galaxies, diffuse HI mapping does not provide the mean level of emission
(interferometers are not sensitive to this, and even if they were the Galactic emission would swamp
extragalactic HI); therefore δHI is measured only up to a multiplicative constant. This does not

present a problem for the BAO technique because one is using the shape and not the amplitude
of the power spectrum. It does have an impact on redshift-space distortions (§7.2), as without the
mean level one cannot turn the observable β into an estimate of the rate of growth of structure
fσ8(z). This drawback is, however, also an opportunity to learn about astrophysics: measurement
of βHI combined with independent knowledge of fσ8(z) would allow us to infer the mean HI signal
and thus obtain the cosmic abundance of neutral gas as a function of time (Wyithe and Brown,
2010).

4.5. Systematic Uncertainties and Strategies for Amelioration

Given that we seek to measure the acoustic scale and hence cosmic distance scale to a high level
of precision, it is important to consider the systematic errors that could cause the inferredDA(z)/rs
and H(z)rs to be incorrect. We consider three classes of systematic errors: (1) observational errors,
in which one mis-measures the large-scale structure of the universe; (2) astrophysical errors, in which
our model of large-scale structure for a given cosmology is incorrect; and (3) cosmological errors,
in which we mispredict the sound horizon given our measurements because of new cosmological
physics, either in the early universe or at late times.

4.5.1. Measurement Systematics

The measurement of large-scale structure requires the ability to produce a well-calibrated den-
sity map of the universe. The data need not be homogeneous in quality so long as the inhomo-
geneities are known well enough that one can correct for them statistically.

Observational errors involve imperfections in one’s map of the density field. Examples of sources
can be photometric miscalibrations of the input catalog, mis-assessments of the incompleteness in
the input catalog, redshift failures or errors, incorrect tracking of the target selection, failure to
correct for deleterious interactions between targets (e.g., fiber collisions), or imperfect assessment
of the redshift distribution of the map. Another class of problems involves understanding of the
errors of the map, as one must assess both the statistical properties of the density field and the
point sampling of it by galaxies.

Fortunately, these issues have been extensively studied in the general context of the measure-
ment of large-scale structure (e.g., Tegmark et al., 1998). BAO measurement itself is only a partic-
ular application of large-scale structure data, and it turns out to be a relatively easy one because
the acoustic peak is narrow in scale and hence one has another differential opportunity in the ex-
perimental design. That is, one can compare the behavior at 150 Mpc separation to the average of
that at 120 and 180 Mpc, so as to remove smooth errors. The only way to produce a non-smooth
error is to have a sharply preferred scale in the systematic error.

For galaxy redshift surveys, there is wide expertise in how to calibrate surveys and track their
selection functions, and there are many tests that can be employed to look for specific problems.
Failing that, residual errors are often intrinsically radial or angular in their nature, so one can reject
the purely radial and purely angular modes from a survey (Vogeley and Szalay, 1996; Tegmark et al.,
1998). This is a small cost in information content for an intrinsically 3-d field. A more targeted
version of this idea is to use angular templates to remove systematic errors with particular angular
dependence, e.g., survey depth variations due to sky brightness, seeing, or stellar density (Ho et al.,
2008; Ross et al., 2011, 2012). A further related idea is that for a sharp scale in a systematic error
to be a real threat, it must be sharp for three dimensional spheres of separation. For example,
even if a survey has an error that is modulated on a circular field of view, the diameter of the field
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affects a range of 3-d separations at a given redshift simply because of the random orientations of
pairs to the line-of-sight.

The BAO method is ultimately tied to the separation of galaxies, which depend on astrometric
positions and redshifts. These quantities can be exquisitely well measured, and achieving 0.1%
precision on one’s astrometric and wavelength scale is easy. The concern about systematic errors
in the map is that an erroneous tilt in the correlation function would cause one to mismeasure the
centroid of the acoustic peak. This is a weaker effect, and one can marginalize against such tilts if
one wants, using the techniques in §4.3.4.

In short, it is very likely that a reasonable design for a galaxy redshift survey will lead to
sufficient accuracy for the BAO method. The greater challenge for such surveys is to control the
clustering analysis for the broadband cosmological signals, which require a factor of more than ten
better accuracy.

On the other hand, the observational systematics for the Lyα forest and 21 cm intensity mapping
techniques are a serious concern. Here we are trying to use every spectral pixel for our mapping
data, rather than differencing spectral pixels to measure a single redshift per object. Imperfections
in the calibration of the spectra or the subtraction of sky emission or Galactic foregrounds will
appear as cosmic structure.

For the Lyα forest, we measure the absorption by assuming that the quasar continuum is
intrinsically smooth. However, even an unabsorbed spectrum would have variations due to the
intrinsic spectrum of the quasar and any errors in the removal of the sky emissions or flat-fielding
of the detector. We do not know the detailed unabsorbed quasar spectrum but instead need to
estimate it from the ensemble properties of quasars or from fitting to less absorbed pixels. The BAO
signal is a very weak modulation on large scales. Modeling errors far too weak to show up in any one
spectrum could inject correlations that bias the BAO scale or simply increase the noise far above
the expected sample variance. The most detailed discussions of systematic errors in large-scale
Lyα forest measurements are those of McDonald et al. (2006) and Slosar et al. (2011). Measuring
the scale of the BAO feature again appears much easier than determining the broad-band shape
or absolute amplitude of the power spectrum. Studies to date have not identified observational
problems that would prevent high precision BAO measurements, but the field is in its early days.

For 21 cm intensity mapping, we are looking for the correlations of the extragalactic line emission
as a function of wavelength (redshift) and sky position. However, the Milky Way is producing
synchrotron and free-free emission that is three orders of magnitude higher than the extragalactic
signal and highly variable on the sky (Chang et al., 2008, 2010). Fortunately these emission
mechanisms are smooth as a function of frequency, unlike the cosmological signal where frequency
maps to redshift, which should enable foreground removal (e.g., Liu and Tegmark 2012). The
challenge here is primarily instrumental: undesired features in radio interferometers such as far
sidelobes or standing waves in the antenna are strongly frequency dependent and can mimic a
cosmological signal if not suppressed. Moreover, the Galactic synchrotron radiation is polarized,
and Faraday rotation within the galaxy can lead to strongly wavelength-dependent polarization
amplitude (e.g., Haverkorn et al. 2003), so the instrument and software must measure the total
intensity and remove Stokes Q and U from their maps — a major challenge given that radio
antennas are inherently polarized. The problems are similar to those of the 21 cm mapping of the
epoch of reionization, where several experiments are trying to achieve first detections. Projects
aimed at z = 1 are being started in order to investigate and hopefully control the observational
systematics.
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4.5.2. Astrophysical Systematics

Astrophysical systematic errors are principally due to non-linear structure formation, redshift-
space distortions, and galaxy clustering bias. These were discussed in §4.3.2. Our understanding of
these effects in cold dark matter models has been greatly advanced by numerical simulations and
analytic theory over the past decades. Fortunately, the acoustic scale is much larger than the scales
of non-linear structure formation and the hydrodynamic effects on galaxy formation. Gravitational
forces are by far the dominant effect on 150 Mpc scales, and we can compute these at high accuracy.

Galaxy clustering bias based on halo occupations has been shown to be manageable for the BAO
method. The raw shifts of the acoustic scale are below 1%, and they can be reduced below any
reasonable detection limit with reconstruction (Mehta et al., 2011), as shown in Figure 12. Hence,
the concern is now for a more complicated clustering bias, e.g., one that couples more directly to
the large-scale density field or that features large-scale cooperative effects between galaxies (Bower
et al., 1993). But clustering bias is no longer an arbitrary bogeyman. We have many observational
probes that should test a bias model: two-point and higher-point clustering over all scales, redshift-
space distortion patterns, cross-correlations between types of galaxies, galaxy-galaxy weak lensing
maps, and various measures of halo masses. While the simplest formulation of HOD is surely
not the whole story of clustering bias (e.g., Gao et al., 2005; Harker et al., 2006; Gao and White,
2007), the model has passed significant tests. An alternative mechanism that couples to large-scale
densities in a very different manner so as to alter the BAO scale will almost certainly produce far
more detectable effects on smaller scales.

A possible complication to galaxy biasing at the BAO scale was pointed out by Tseliakhovich
and Hirata (2010) and Yoo et al. (2011). At the time of recombination, the pressure of the photons
causes the baryonic matter to have a relative velocity compared to the dark matter, with a typical
value vbc ∼ 30 km s−1. This relative velocity is largely due to the same standing acoustic waves that
produce the BAO feature; it is coherent on scales of a few Mpc and has a feature in its correlation
function at 150 Mpc. After recombination, the sound speed in the baryons drops to 6 km s−1,
so the relative velocity is supersonic. Tseliakhovich and Hirata (2010) argue that this boosts the
effective Jeans mass as small dark matter structures fail to retain baryons, thereby suppressing the
formation of the earliest galaxies (Mhalo ∼ 106M⊙ at z > 10). This level of suppression depends on
the local vbc, which varies on large scales. It is unclear whether this varying suppression causes a
detectable imprint on the properties of much more massive galaxies at low redshift; it may be that
it is completely erased as galaxy-mass (> 1011M⊙) halos form and wipe out the small-scale initial
conditions, or it may be that feedback mechanisms such as early metal pollution allow some trace
of vbc modulation to survive in structures at z ≪ 10. In the latter case, it represents a potentially
serious concern because (unlike other systematic errors) the modulation contains the BAO scale
(Yoo et al., 2011). However, the form of the modulation is predictable, and Yoo et al. (2011) find
that the measurements of the galaxy bispectrum would enable the detection and removal of this
effect.

Besides gravity, the only physical effect that we reasonably suspect can modulate galaxy prop-
erties on large scales is radiation transport. For example, it is predicted that reionization proceeds
with bubbles of scales of 10 Mpc for hydrogen and 100 Mpc for He II. This may affect the late-time
galaxy density field in non-gravitational ways (McQuinn et al., 2007; Iliev et al., 2008; Mesinger
and Furlanetto, 2008; Zheng et al., 2011; Wyithe and Dijkstra, 2011). However, the scale of the
reionization bubbles is not sharp enough to mimic the acoustic peak, e.g., any reasonable variation
in the luminosity of the ionizing sources will produce a wide spread of bubble sizes. Reionization
effects could be a larger issue for the Lyα forest than for galaxy surveys because one is mapping the
IGM directly. Simulations of Gpc3 volumes that incorporate models of these reionization effects

68



will be needed to see whether they can detectably influence BAO measurements, but the absence
of a sharply preferred scale in reionization should again provide protection if one marginalizes over
broad band tilts.

4.5.3. Cosmological Systematics

Cosmological effects that alter the sound horizon or the detailed prediction of the linear power
spectrum must contend with the fact that the z = 1000 universe and the acoustic oscillations
themselves are exquisitely well observed in the CMB anisotropies. For example, a change in the
recombination history could alter the sound horizon, but this produces correspondingly larger
changes in the damping tail of the primary anisotropies (Eisenstein and White, 2004; de Bernardis
et al., 2009). Effects such as particle decays that change the expansion history so as to alter the
sound horizon affect the gravitational potential of the fluctuations and have large impact on the
CMB anisotropies.

Models that combine adiabatic perturbations with smaller isocurvature ones offer additional
degrees of freedom to constrain in the CMB. Most such combinations yield differences that can be
detected in the acoustic peak structure of the CMB before they affect late-time BAO inferences.
However, Mangilli et al. (2010) show that a particular combination of isocurvature modes may
exist that can change the sound horizon by a moderate amount before the CMB anisotropies are
observably altered. This possibility bears more investigation, e.g., of other late-time observable
consequences of such a model (Mangilli et al., 2010; Carbone et al., 2011; Zunckel et al., 2011).

Finally, we note that if the sound horizon or power spectrum template predicted from z = 1000
is wrong, then the effect on the BAO distance scale will typically be a multiplicative error across
all redshifts. This would alter the inference of w(z), but with a particular redshift dependence that
one might choose to be suspicious of if one found it.

In short, while not all cosmological possibilities have been cataloged for their effect on the BAO
method, one should always judge such possibilities in light of the CMB as well. The combination
of CMB and BAO is likely to be self-diagnosing of new cosmological physics at high redshift.
There may be exotica that can slip through this net, but we don’t view this potential confusion
with dark energy dynamics as a demerit of the method. Large cosmological surveys offer a rich
spectrum of possible analyses with which to corroborate our model of structure formation, and the
discovery of any discrepancy from vanilla ΛCDM will surely inspire a vigorous search for alternative
explanations.

4.6. Space vs. Ground

The principal challenge of the BAO method is obtaining the redshifts of millions of faint galaxies.
Certainly we can obtain redshifts from the ground for tracers at any redshift; the difficulty is in
doing this quickly and cheaply enough.

Most BAO work to date has used multi-fiber spectroscopic surveys at optical wavelengths. This
is practical for surveys of order 107 galaxies. At z > 1, one relies on finding very luminous line
emitters, and the desired number of galaxies to reach the cosmic variance limit is of order 108.
Routing optical fiber to 108 objects is technically very demanding. We expect that fiber-fed optical
galaxy redshift surveys will do an excellent job out to z = 1 and will make a start at 1 < z < 1.5,
but will not approach the cosmic variance limit at z > 1.

Photometric redshifts of either galaxies or clusters are an option to sample a large volume at
z ≈ 1 with upcoming surveys and probably at higher redshifts with deeper surveys like LSST.
Redshifts z < 0.7 will be done better with funded spectroscopic programs. One is free to pick a
subset of galaxies on which one has better photometric redshift performance. However, photometric
redshifts are best when relying on strong breaks, notably the 4000Å and Lyman break. The former
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requires near-IR data at z & 1; the latter requires space UV data at z . 3. As mentioned above,
photometric redshifts are not precise enough to capture the BAO H(z) information, which is a
large loss at higher redshifts. We expect that the upcoming generation of imaging surveys will be
the first to map the BAO at z ≈ 1 over large areas of the sky. This will achieve an important
constraint on DA(z). Later spectroscopic surveys will improve the DA(z) measurement and add
H(z).

A space mission offers the opportunity for slitless spectroscopy (Glazebrook et al., 2005). This
efficiently finds the strongest line emitters over a wide instantaneous field. Slitless spectroscopy of
faint objects is only practical in space, where the foreground (or “sky”) emission is low. This is
particularly attractive in the near-IR, where the zodiacal background light is low and the Hα line
from z > 1 galaxies is very bright. The UV with Lyα is another opportunity.

At z > 2, the Lyα line (whether in emission or in the forest) can penetrate the atmosphere. This
offers a renewed opportunity for ground-based work, but only the Lyα forest is likely to be able to
approach the cosmic variance limit in the foreseeable future. As described above, this method still
has significant uncertainties about its observational and thoeretical systematics. Galaxy samples
would again require > 108 objects to reach the cosmic variance limit, a factor of 100 more than
planned surveys. The Lyα forest gets undesirably thick at z > 3.5, and BAO surveys above this
redshift might require a space mission, such as the Cosmic Inflation Probe (Melnick et al., 2009).

A 21 cm facility such as the SKA capable of detecting individual high-redshift galaxies is a
multi-billion dollar project and hence well in the future, albeit with a large cosmological payoff.
We note that not all technical implementations of the SKA permit full-sky mapping, and keeping
this option does increase the cost of the correlator. The 21 cm intensity mapping technique is con-
siderably cheaper, but we do not know whether it can achieve the required control of observational
systematics. Applying intensity mapping to the reionization epoch could eventually measure the
distance scale at z > 6 (Mao and Wu, 2008; Rhook et al., 2009).

A space mission that would target of order 108 1 < z < 2 galaxies is the only robust near-
term path to approaching the cosmic cosmic variance limit for BAO over the enormous comoving
volume available in this redshift range. Intensity mapping is an attractive opportunity, but it
needs substantially more development before it can be realistically assessed. Ground-based galaxy
redshift surveys and Lyα forest surveys will explore z > 2, though in the near-term approaching
the cosmic variance limit depends on controlling systematic errors in the Lyα forest method, which
are not yet understood at the percent or sub-percent level.

4.7. Prospects

In contrast to essentially all of the other observational probes that we consider in this review, we
anticipate that even the most ambitious BAO studies will remain limited by statistical errors rather
than systematic errors. This assumption could prove incorrect, either because we are overoptimistic
about BAO systematics or because we are too pessimistic about other methods. But it does imply a
natural long-term target for BAO investigations of cosmic acceleration: survey a large fraction of the
entire comoving volume out to z ≈ 3.5, beyond which the sensitivity to dark energy begins to decline
(Table 2), with high enough sampling density that the BAO measurements are limited by sample
variance rather than shot noise. No one survey will reach this goal on its own; rather, a variety of
projects can gradually map out the available volume by using different facilities and techniques to
target different redshift ranges and areas of sky. Surveys that cover the same redshift range with
the same technique are not redundant unless they cover the same region of the sky. To zeroth order,
the primary metric for a BAO survey is the comoving volume that is covered at adequate sampling
density, and it makes sense to choose redshift ranges according to observational convenience (though
of course one can further optimize both survey strategy and instrument design). Relative to the
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current state of the art described in § 4.2 — roughly speaking, analyses that have probed fsky = 0.4
to z = 0.15, fsky = 0.25 to z = 0.45, and fsky = 0.08 to z = 0.8 — BAO surveys have tremendous
possibility for growth, with correspondingly great opportunities for improved precision and redshift
leverage on DA(z) and H(z) (Fig. 15).

With the completion of WiggleZ (Parkinson et al., 2012), the only spectroscopic BAO survey
currently operating is SDSS-III BOSS (Dawson et al., 2013). BOSS is approximately midway
through its five years of spectroscopic observing and will conclude in mid-2014. Forecasts for the
galaxy survey predict 1.0% precision on DA at z = 0.35 and z = 0.6 and 1.8% precision on H(z) at
these redshifts. The Lyα forest survey is expected to yield 4.5% precision on DA and 2.6% on H(z)
at z = 2.5. BOSS will provide a solid BAO anchor at low redshift, the first BAO measurements
z > 2, and the first practical test of the Lyα forest technique.

The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is largely funded and cur-
rently under construction. HETDEX plans a survey of 800,000 Lyα emission-line galaxies over
420 square degrees at redshifts 1.8 < z < 3.7, using a blind-pointing strategy with a large set of
integral-field spectrographs (Hill et al., 2006). The forecast precision on DA and H is of order 2%
from BAO alone, with additional gain possible if one can take advantage of the increased linearity
of the large-scale density field at high redshift to model the full anisotropic clustering signal of the
galaxies.

PanSTARRS and DES are two near-term imaging surveys with the depth and area needed to
probe BAO at z ≈ 1. BAO analyses will likely focus on red galaxies as they afford more robust
photometric redshifts and the two cameras employ red-sensitive detectors that achieve good depth
in the z and y bands. These projects will likely yield the first strong BAO constraints at z = 1.

A multitude of more ambitious projects are being planned. On the imaging front, LSST should
eventually yield an enormous sample of galaxies with good photometric redshifts, enabling photo-z
BAO studies to reach to z = 2 and beyond. Two near-term Spanish projects, PAU and JPAS, aim
to do shallower imaging with many medium-band filters, designed to achieve high enough redshift
precision to recover H(z) information out to z ≈ 1 (Beńıtez et al., 2009; Gaztañaga et al., 2012).
(PAU would use a new large-format camera built for the William Herschel Telescope while JPAS
would use a new telescope dedicated to the project.) This medium-band strategy is intermediate
between photometric and spectroscopic approaches.

Returning to spectroscopy, eBOSS, part of a proposed (but not yet fully funded) program of
post-2014 surveys on the Sloan 2.5-meter telescope, would extend the BOSS survey in several
directions, using higher redshift LRGs (to z = 0.8), emission line galaxies, and quasars, including
a denser set of z > 2 quasars to improve measurements from the Lyα forest. eBOSS would cover
1500−3000 deg2 depending on strategy details that are still to be decided. The BigBOSS experiment
(Schlegel et al., 2011) would use spectrographs fed by 5000 optical fibers over a 3-degree field on
the Mayall 4-meter telescope at Kitt Peak to survey 14,000 deg2. For its five-year primary survey,
BigBOSS would target luminous red galaxies to z = 1 and emission line galaxies to z = 1.7, more
than 10 million galaxies in total, with sampling density nP > 1 out to z ≈ 1−1.2. BigBOSS would
target high redshift quasars with a high enough density to approach the sample variance limit for
the Lyα forest method at 2 < z < 3. The BigBOSS instrument could in principle be moved to the
Blanco telescope at CTIO to conduct a similar survey of the southern hemisphere. Alternatively,
the DES collaboration has considered a 4000-fiber instrument (DESpec) that would use the DECam
optical corrector on the Blanco (Abdalla et al., 2012); this instrument could pursue a similar galaxy
redshift survey but would not (in its current design) have the blue wavelength coverage needed to
map the Lyα forest. The SuMIRe project proposed for the Subaru 8-meter telescope would use
optical/IR prime focus spectrographs fed by 2400 fibers to carry out a large galaxy redshift survey,
mapping BAO in the redshift range 0.7 < z < 2.4. The current baseline program would survey 4
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million [OII]-emitting galaxies over 1420 deg2. Collectively, these ground-based optical/IR projects
could cover a substantial fraction of the sky with fully sampled galaxy surveys to z ≈ 1.2, provide
interesting BAO measurements with lower sampling densities to z ≈ 1.7, and possibly measure
BAO to something approaching the cosmic variance limit at z = 2 − 3 using the Lyα forest.

Both Euclid and WFIRST plan large BAO surveys as major components of their dark energy
science programs, using slitless near-IR spectroscopy to measure redshifts of strong Hα emitters.
Current incarnations of these plans are described in the Euclid Red Book (Laureijs et al., 2011)
and the WFIRST Science Definition Team’s final report (Green et al., 2012), though technical
specifications and survey strategies may evolve to some degree prior to launch. The present baseline
strategy for Euclid has a a survey area of approximately 14,000 deg2 and redshift range 0.7 < z <
2.0, while the baseline strategy for WFIRST adopts a smaller area (3,400 deg2), fainter flux limit,
and higher redshift range (1.3 < z < 2.7). Green et al. (2012; see their Figs. 24 and 25) attempt
a side-by-side comparison of Euclid and WFIRST BAO performance, using common modeling
assumptions that include recent estimates of the luminosity function (Sobral et al., 2013) and
clustering bias (Geach et al., 2012) of high-redshift Hα emission line galaxies. In their calculations,
Euclid achieves a sampling density nP > 1 out to z ≈ 0.9, falling to nP ≈ 0.15−0.3 at z = 1.3−2.0.
WFIRST maintains nP > 1 out to z ≈ 2.4, falling to nP ≈ 0.5 at z = 2.7. For Euclid they forecast
fractional errors σH/H of 1.3 − 1.8% in bins of ∆z = 0.1 out to z = 1.5, rising to 2.5% at z = 2.0,
while for WFIRST they forecast σH/H = 1.7 − 1.8% (again in ∆z = 0.1 bins) out to z = 2.4,
rising to 2.4% at z = 2.7. These numbers should be taken with a grain of salt, as they depend on
uncertain hardware and software performance and on details of survey strategy. For example, a 2.4-
meter implementation of WFIRST could potentially survey 3-4 times larger area at similar depth
(Dressler et al., 2012). By the time these missions are launched, results from earlier dark energy
experiments or developments in modeling techniques could well favor alternative strategies, e.g.,
with deeper sampling but smaller sky area. Furthermore, the Euclid and WFIRST dark energy
programs are both limited by observing time, and either could be more powerful with a longer
mission. It is clear, however, that these missions can dramatically improve our knowledge of dark
energy evolution at z = 1 − 3.

Shifting wavelengths, several 21 cm intensity mapping experiments for the range 0.8 < z < 3
are being planned, using different techniques. The CHIME project aims to build a 100 meter
square filled interferometer using a cylindrical telescope array (Peterson et al., 2006) and conduct a
lengthy survey at 0.8 < z < 2.5. If the foregrounds can be adequately controlled, CHIME would be
a powerful demonstrator of the 21 cm method and would yield excellent cosmological information.
Other projects include the FFT-based Omniscope (Tegmark and Zaldarriaga, 2010) and the Baryon
Acoustic Oscillation Broadband and Broad-beam (BAOBAB) interferometer array (Pober et al.,
2013). Moving beyond intensity mapping, the SKA could enable an HI-redshift survey of a billion
galaxies, reaching the sample variance limit over half the sky out to z = 3 (Abdalla and Rawlings,
2005), which would be a good approximation to the ultimate BAO experiment.
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5. Weak Lensing

The subtle distortion of shapes of distant galaxies by gravitational lensing is a powerful probe
of both the mass distribution and the global geometry of the universe. It has, however, turned
out to be one of the most technically difficult of the cosmological probes. This section will cover
the range of applications of weak lensing (which we will sometimes abbreviate to WL), the recent
and planned weak lensing surveys, and the technical aspects of weak lensing image processing and
control of systematics. By covering the latter subjects in some detail (including some methods that
we think have been under-appreciated or under-utilized), we hope to stimulate further progress and
be helpful to readers who are already experts in weak lensing.

This section is organized as follows: we begin with a qualitative overview of weak lensing and
its uses (§5.1). We then go into a mathematical treatment of the various statistics that can be used
and their dependences on the background cosmology and matter power spectrum (§5.2). We then
review the observational results from recent weak lensing surveys (§5.3). Section 5.4.1 discusses
the statistical errors and cosmological sensitivity of cosmic shear surveys at a rule-of-thumb level;
we expect this to be a useful entry point for readers interested in understanding survey design.
We then turn to more technical aspects of survey design and analysis, including source redshift
estimation and the galaxy populations of optical/near-IR and radio surveys (§§5.4.2-5.4.4), CMB
lensing (§5.4.5), the measurement of galaxy shapes (§5.5), and astrophysical uncertainties (§5.6).
We summarize the major systematic errors and mitigation strategies (§5.7). We finally consider
the advantages of a space mission for weak lensing (§5.8) and prospects for the future (§5.9).

Some of the material in this section is technical and in a first reading may be either skipped or
skimmed; but given that so much of the promise of weak lensing depends on these issues, we felt
compelled to include them. The more technical sections have been denoted with an asterisk (*).
They may be thought of as analogous to, e.g., the “Track 2” material in Misner et al. (1973).

5.1. General principles: Overview

The images of distant galaxies that we see are distorted by gravitational lensing by foreground
structures. In rare cases, such as behind clusters, one observes strong lensing: the deflection of light
by massive structures can result in multiple images of the same background galaxy. More often,
however, images of galaxies are subjected only to weak lensing: a small distortion of their size and
shape, typically of the order of 1%. Since one does not know the intrinsic size or shape of a given
galaxy, weak lensing can only be measured statistically by examining the correlations of shapes in
deep and wide sky surveys. However, the payoff if these statistical correlations can be measured is
enormous: weak lensing provides a direct measure of the distribution of matter, independent of any
assumptions about galaxy biasing. Since this distribution can be predicted theoretically, even in
the quasilinear regime, and since its amplitude can be directly used to constrain cosmology (unlike
for galaxy surveys where one must marginalize over the bias), weak lensing has great potential as
a cosmological probe.

In principle, one may attempt to observe either the shearing of galaxies (shape distortion) or
their magnification (size distortion). In practice, the shape distortions have been used much more
widely, since the mean shape of galaxies is known (they are statistically round: as many galaxies
are elongated on the x-axis as on the y-axis) and the scatter in their shapes is less than the scatter
in their sizes.

A variety of statistical approaches have been used to extract information from weak lensing
shear (see later subsections for references). The simplest is the angular shear correlation function,
or its Fourier transform, the shear power spectrum. These are related to integrals over the matter
power spectrum along the line of sight, and as such in the linear regime at low redshift they scale
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as ∝ Ω2
mσ

2
8.

28 Since the angular power spectrum is rather featureless, more information can be
extracted via tomography — the measurement of the shear correlation function as a function of the
redshifts of the galaxies observed, including the use of cross-correlations between redshift slices.
Information on the relation between galaxies and matter can be obtained via galaxy-galaxy lensing,
i.e., the correlation of the density field of nearby galaxies with the lensing shear measured on
more distant galaxies. In the linear regime, the galaxy-galaxy lensing signal scales as ∝ bΩmσ

2
8

and thus provides information on the bias of the lensing galaxies, while in the nonlinear regime
it probes individual galaxy halos and hence places constraints on the halo occupation distribution
(§2.3). Combination of this with the galaxy clustering signal (which scales as ∝ b2σ2

8) enables
one to eliminate the bias and measure Ωmσ8. The scaling of the galaxy-galaxy lensing signal as a
function of the source redshift, known as cosmography, depends purely on geometric factors and
hence can be used to partially29 construct a distance-redshift relation. Finally, the low-redshift
matter distribution is non-Gaussian, so higher-order statistics such as the bispectrum or 3-point
shear correlation function carry additional information.

For all of the applications of weak lensing to cosmology, deep wide-field imaging is essential. One
can see this from a simple order-of-magnitude estimate. For a scatter in galaxy shapes of σγ ∼ 0.2,
measuring a 1% shear with unit signal-to-noise ratio requires ∼ 400 galaxies (0.2/

√
400 ≈ 0.01).

Measuring the amplitude of density perturbations to 1% accuracy requires that this be done over
∼ 104 patches of sky, giving a requirement of order 107 galaxies, which for a density of 15 resolved
galaxies per arcmin2 amounts to surveying 200 deg2 of sky. This is the scale of the largest current
surveys such as CFHTLS; in practice the errors from these surveys are likely to be closer to several
percent due to “factors of a few” that we have dropped here, and due to the inclusion of systematic
errors. The eventual goal of the weak lensing community is one or more “Stage IV” surveys (such
as LSST on the ground and Euclid and WFIRST in space) that would measure shapes of ∼ 109

galaxies and achieve an additional order of magnitude in precision. Such surveys will have to face
the daunting task of reducing systematic errors by another order of magnitude.

There are unfortunately many sources of these systematic errors, and most of the effort of the
weak lensing community has been devoted to defeating them. One is the measurement of galaxy
shapes: while gravitational lensing by a large-scale density perturbation can coherently align the
images of many galaxies, this can also arise from shaking of the telescope or optical aberrations.
The accurate determination of the point-spread function (PSF) of the telescope (usually based on
observations of stars) and removal of its effects is thus critical. This problem gets much worse if one
tries to model galaxies with sizes similar to or smaller than the PSF. High-resolution, stable imaging
can help with this problem, motivating placement of future instruments at the best ground-based
sites or in space. The determination of redshifts for the large number of source galaxies is also a
concern. It is not practical to obtain a robust spectroscopic redshift of every galaxy, and hence
“photometric redshifts” — estimates of galaxies’ redshifts based on their broadband colors — are
used. These must be calibrated with well-known biases, scatters, and outlier distributions. Fi-
nally, there are astrophysical uncertainties: galaxies can suffer “intrinsic alignments” (non-random
orientations), and the matter power spectrum may deviate from pure CDM simulations at small
scales. Much of our discussion here will be focused on the methodologies that have been developed
to suppress systematics at each stage of the observations and analysis.

28Warning: these scalings are altered even at modest redshift, or in the nonlinear regime where the exponent of σ8

becomes closer to 3.
29The cosmography distance scale suffers from three degeneracies, including the absolute-scale degeneracy that

affects supernova measurements; see §5.2.7.
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5.2. Weak lensing principles: Mathematical discussion

We will now go into greater detail on the mathematical aspects of weak lensing, both the
construction of the weak lensing field and the various statistics that one can extract from it. The
modern theoretical formalism of weak lensing traces back largely to the papers of Blandford et al.
(1991), Miralda-Escudé (1991), and Kaiser (1992), though one can find roots in the much earlier
papers of Kristian and Sachs (1966) and Gunn (1967).

5.2.1. Deflection of light in cosmology

Gravitational lensing gives a mapping from the intrinsic, unlensed image of the sources of light
on the sky — the source plane — to the actual observable sky — the image plane. Our ultimate
goal is to extract information about the statistics and redshift dependence of this mapping and use
it to constrain cosmological parameters. Our task here is thus two-fold. First, we must derive the
mapping function that relates the source to the image plane. However, since we do not know the
intrinsic appearance of the sources, we cannot directly infer the lens mapping from observations.
Therefore, our second task will be to determine what properties of the lens map can be measured,
and with what accuracy.

In a fully general context, the lens mapping can be obtained by taking an observer and following
the geodesics corresponding to that observer’s past light cone. We will make some simplifying
approximations here, namely that: (i) the spacetime is described by a Friedmann-Robertson-Walker
metric with scalar perturbations and negligible anisotropic stresses (appropriate for nonrelativistic
matter, scalar fields, and Λ); (ii) deflection angles are sufficiently small that we may use the flat-
sky approximation; (iii) the evolution of perturbations is slow enough that we may neglect time
derivatives of the gravitational potential Φ in comparison to spatial derivatives (i.e., nonrelativistic
motion); and (iv) such perturbations are small enough that we may compute the lens mapping only
to first order in perturbation theory.30 Within these approximations, we may write the angular
coordinates (θ1, θ2) of a light ray projected back to comoving distance DC (see eq. 7) in terms of
the position (θI

1 , θ
I
2) in the image plane as31

θi(DC) = θI
i − 2

∫ DC

0
G(DC1,DC)

∂Φ

∂θi
[DC1, θi(DC1)] dDC1, (57)

where G is the Green’s function,

G(DC1,DC) =

∫ DC

DC1

[DA(DC2)]
−2dDC2 = cotK(DC1) − cotK(DC). (58)

Here cotK(DC) is the cotangentlike function,

cotK(DC) =





D−1
C flat

K−1/2 cot(K1/2DC) closed

|K|−1/2 coth(|K|1/2DC) open,

(59)

with the dimensional curvature K defined in equation (8), and Φ is the Newtonian gravitational
potential.

30These approximations are sufficient to analyze present power spectrum data, but corrections to (iv) will become
necessary in the future.

31The derivation of equation (57) can be found in many works, though not always in the same notation. See, e.g.,
eq. (6.9) in the classic review by Bartelmann and Schneider (2001). The appendix of Hirata and Seljak (2003a) gives
a shorter derivation in more similar notation.
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The potential derivative in equation (57) is evaluated at the position of the deflected ray
θI(DC1), so it represents an implicit solution to the light deflection problem. However, in lin-
ear perturbation theory (see our assumption iv above), we may evaluate it at the position of the
undeflected ray. This is known as the Born approximation. When we do this, it is permissible to
pull the angular derivative out of the integral and write

θS
i = θI

i +
∂ψ(DC , θ

I
i)

∂θI
i

, (60)

where ψ is the lensing potential:

ψ(DC , θi) = −2

∫ DC

0
[cotK(DC1) − cotK(DC)]Φ(DC1, θi) dDC1. (61)

Here it is important to remember that DC represents the distance to the sources; one integrates
over lens distances DC1.

Equation (60) provides the mapping from the observed image plane to the source plane, θS
i (θI

i).
In what follows, we will assume that this mapping is one-to-one: this is known as the regime of
weak lensing. In the small portion of sky covered by very massive objects, the alternate regime
of strong lensing occurs, in which several points in the image plane map to the same point in the
source plane. Strong lensing is an important probe of the matter distribution in clusters, but we
will not pursue it in this article; we briefly discuss some applications of strong lensing to cosmic
acceleration in §7.10.

5.2.2. Cosmic shear, magnification, and flexion

We have now accomplished our first task: deriving the lens mapping from the matter distribu-
tion. However, we now need a way to classify the observables in the lens mapping. The potential
ψ is of course not observable itself: like the Newtonian gravitational potential, its zero-level is
arbitrary. Its angular derivative ∂ψ/∂θi is the deflection angle: the difference between the true
position of a source θS

i and its apparent position θI
i. However, since sources (in practice, galaxies)

can be at any position, we cannot measure the deflection angle either.
Let us now consider the second derivative of the lensing potential. It is simply the Jacobian of

the mapping from image to source plane:

∂θS
i

∂θI
j

= δij +
∂2ψ

∂θiθj
=

(
1 − κ− γ+ −γ×

−γ× 1 − κ+ γ+

)
. (62)

We have separated the 3 independent entries in the symmetric 2 × 2 matrix of partial derivatives
into 3 components: the magnification (or convergence) κ and the 2 components of shear, γ+ and
γ×. The magnification has three effects:

• It makes the angular size of a galaxy look larger by a factor of 1 + κ.

• It makes the galaxy appear brighter by a factor of the inverse-determinant of the Jacobian,
1 + 2κ, since lensing conserves surface brightness as dictated by Liouville’s theorem.

• It dilutes the number density of galaxies by a factor of 1 − 2κ, since the angular spacing
between neighboring galaxies is increased by a factor 1 + κ.

Magnification is a “scalar” in the sense that it is invariant under rotations of the (θ1, θ2) coordinate
axes.
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The shear stretches the galaxy along one axis and squeezes on the other: the image of an
intrinsically round galaxy appears elongated along the θ1 axis if γ+ > 0 and along the θ2 axis if
γ+ < 0. The γ× component stretches and squeezes along the diagonal (45◦) axes. The shear is a
“spin-2 tensor” in the sense that under a counterclockwise rotation of the coordinate axes by angle
δ, it transforms as (

γ+

γ×

)

new

=

(
cos 2δ sin 2δ
− sin 2δ cos 2δ

)(
γ+

γ×

)

old

. (63)

If all galaxies were round, then each galaxy would provide a direct estimate of the shear, since
we could find the values of (γ+, γ×) that transformed an initially circular galaxy into the observed
image. In reality, galaxies come in many shapes, and any such estimate of the shear components
will have some standard deviation σγ known as the shape noise. But in an ensemble average sense
galaxies are round — there are as many galaxies in the universe elongated along the θ1 axis as
the θ2 axis. Thus, if we take N galaxies in the same region of sky, we may expect that the shear
components in that region can be measured with a standard deviation of ∼ σγ/

√
N .32

Several caveats are in order at this point, and they form the basis for most of the technical
problems in weak lensing. One is that a circular galaxy re-mapped by the Jacobian (eq. 62)
becomes an ellipse, but since in the real sky one does not observe a population of galaxies with
homologous elliptical isophotes, there is no unique procedure to estimate the shear. Moreover, real
telescopes, even in space, have finite resolution, and the observed image is convolved with a PSF
that smears the galaxy and may introduce spurious elongation on some axis. These two problems
together are referred to as the shape measurement problem. A more fundamental issue is that real
galaxies are not randomly oriented: they have preferred directions of orientation that are correlated
with each other and with large-scale structure, and thus contaminate statistical measures of the
cosmic shear field. This is known as the intrinsic alignment problem. Finally, as already mentioned
above, relating the lensing potential ψ to the gravitational potential Φ(z), and hence to cosmological
parameters, requires accurate knowledge of the source galaxy redshift distribution, presenting the
photometric redshift calibration problem. We will discuss all of these problems in §§5.4–5.7.

Measuring magnification κ has proven more difficult than measuring shear. One might imagine
comparing the size, magnitude, or abundance of galaxies in some region of sky to a typical or
“reference” value, but there is a very wide dispersion in galaxy sizes and magnitudes, and since
some galaxies are too faint to observe even in deep surveys one cannot measure such a thing as the
total number of galaxies. Rather, one can measure the cumulative number of galaxies brighter than
some flux threshold, N(> F ). If the number counts have a power-law slope α, i.e. N(> F ) ∝ F−α,
then magnification will perturb this distribution by a factor

N(> F, observed) ∝ [1 + 2(α − 1)κ]F−α. (64)

There are two competing effects here: in regions of higher magnification the galaxies appear
brighter, which gives the 2ακ factor in equation (64), but there is also the dilution of galaxy
number, which is responsible for the “−1” term. Unfortunately, for optical galaxies the observed
number count slope is close to the critical value α ≈ 1 for which magnification is not measurable.

32As discussed further in §5.5.2 below, a typical population of optically imaged galaxies (bulges and randomly
oriented disks) has an rms ellipticity erms ∼ 0.4 per component, which translates into an rms shear error σγ ≈ 0.2 via
the shear response factor (eq. 112). Because there are two components to shear one might expect to do a factor of√

2 better in statistical measurements, but in the shear correlation function or power spectrum only one of the two
measurable components (the “E-mode” discussed in the next section) contains a cosmological signal at leading order,
so the relevant number for order-of-magnitude sensitivity estimates is generally σγ ≈ 0.2. Similarly, for galaxy-galaxy
or cluster-galaxy weak lensing, only the tangential shear contains cosmological information.
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Moreover, the intrinsic clustering of galaxies gives large fluctuations in the number density that
greatly exceed those due to lensing effects. For these reasons, magnification has lagged behind
shear as a cosmological probe, and the cosmic magnification signal was not seen until Scranton
et al. (2005) measured it using cross-correlation of foreground galaxies and background quasars.
Ménard et al. (2010) provide a more detailed analysis, using color information to simultaneously
detect lensing magnification and reddening of quasars by dust correlated with intervening galaxies.

The most promising route to utilizing the cosmic magnification signal is to use scaling relations
that relate the size of a galaxy (as quantified by, e.g., the half-light radius) to parameters that
are magnification-independent and can be measured in photometric surveys (Bertin and Lombardi,
2006), such as the surface brightness, the Sersić index, or (for AGN) variability amplitude. Huff and
Graves (2011) present a first application of this “photometric magnification” method to galaxies,
and Bauer et al. (2011) an application to quasars.

After shear and magnification comes the third derivative of the potential, i.e. the variation of
shear and convergence across a galaxy. This effect is called the flexion, and it manifests itself via
asymmetric banana and triangle-like distortions of an initially circular galaxy (Goldberg and Bacon,
2005). Flexion has been measured by several groups (e.g. Leonard et al. 2007; Velander et al. 2011;
Leonard et al. 2011), and there is a growing literature on the theory of flexion measurement that
parallels the formalism required for shear measurement (e.g. Massey et al. 2007c; Schneider and Er
2008; Rowe et al. 2012). However, because of the extra derivative it is sensitive mainly to structure
at the very smallest scales, so it is primarily a tool for cluster lensing rather than cosmological
applications on larger scales.

5.2.3. Power spectra and correlation functions*

Just as for any other random field in cosmology, one may construct statistics for the cosmic
shear field. The most popular are the power spectrum and its real-space equivalent, the correlation
function.

To construct the power spectrum, we take the Fourier transform of the shear field,

γ̃+,×(l) =

∫
γ+,×(θ)e−il·θd2θ ↔ γ+,×(θ) =

∫
γ̃+,×(l)eil·θ

d2l

(2π)2
. (65)

When considering the shear produced by a plane wave perturbation of the lensing potential ψ(θ),
it is convenient to rotate the Fourier-space components from the coordinate axis basis to a basis
aligned with the direction of the wavevector, which is a preferred direction in the problem. The
rotated components are called the E-mode and B-mode:

γ̃E(l) = cos(2φl)γ̃+(l) + sin(2φl)γ̃×(l) and γ̃B(l) = cos(2φl)γ̃×(l) − sin(2φl)γ̃+(l), (66)

where tan φl = l2/l1, with l1 and l2 being the components of l in the pre-rotated coordinate system.
Thus the E-mode of the shear field corresponds to galaxies that are stretched in the direction of
the wave vector and squashed perpendicular to it, whereas the B-mode corresponds to stretching
and squashing at 45◦ angles. One may then define the power spectra:

〈γ̃∗E(l)γ̃E(l′)〉 = (2π)2CEE(l)δ(2)(l − l′), (67)

and similarly for CEB(l) and CBB(l). Rotational symmetry of structure in the universe guarantees
that these depend only on the magnitude of l and not its direction, and reflection symmetry
guarantees that CEB(l) = 0.
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In order to compute these power spectra, we need to express the Fourier modes in terms of those
of the lensing potential. From the definition, equation (62), the shear is seen to be the derivative
of the deflection angle and hence the second derivative of the lensing potential,

γ+(θ) = −1

2

(
∂2ψ

∂θ2
1

− ∂2ψ

∂θ2
2

)
and γ×(θ) = − ∂2ψ

∂θ1 ∂θ2
. (68)

Using the replacement ∂/∂θi → ili, we find in Fourier space

γ̃+(l) =
1

2
(l21 − l22)ψ̃(l) =

1

2
l2 cos(2φl)ψ̃(l) and γ̃×(l) = l1l2ψ̃(l) =

1

2
l2 sin(2φl)ψ̃(l). (69)

Substitution into equation (66) implies that

γ̃E(l) =
1

2
l2ψ̃(l) and γ̃B(l) = 0. (70)

We thus arrive at the remarkable conclusion that cosmic shear possesses only an E-mode; the B-
mode shear must vanish, and we have CBB(l) = 0. Confirming this prediction of vanishing B-mode
provides a valuable, though not foolproof, test for systematics in WL surveys.

The E-mode shear power spectrum is simply (l2/2)2 times the lensing potential power spectrum.
The latter may be found from the Limber (small-angle) approximation33 in terms of the Newtonian
potential power spectrum, yielding

CEE(l) = l4
∫ DC

0
[cotK(DC1) − cotK(DC)]2

PΦ(k = l/DA1)

D2
A1

dDC1. (71)

(Here the power spectrum is evaluated at the redshift corresponding to DC1.) We may put this in
a more familiar form by recalling Poisson’s equation, which tells us that the potential and matter
density perturbations are related by

PΦ(k) =

[
3

2
ΩmH

2
0 (1 + z)

]2

k−4Pδ(k) , (72)

yielding

CEE(l) =

∫ DC

0
[W (DC1,DC)]2

Pδ(k = l/DA1)

D2
A1

dDC1 , (73)

where the lensing window function34 is35

W (DC1,DC) =
3

2
ΩmH

2
0 (1 + z1)D

2
A1[cotK(DC1) − cotK(DC)]Θ(DC −DC1). (74)

The window function describes the contributions to lensing of sources at DC from lens structures
at distance DC1. Note that it vanishes as the lens approaches the source (DC1 → DC). In this

33See Limber (1953) and Limber (1954) for an introduction to the theory. An exposition in terms of the power
spectrum is given by Peebles (1973).

34Warning: many conventions in use!
35The Heaviside step function Θ is technically unnecessary in equation (74), but it is convenient when considering

multiple populations of sources.
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equation, DA1 is the comoving angular diameter distance (eq. 9) to DC1: in a curved universe
DA1 6= DC1. Note that in a flat universe, the window function reduces to

Wflat(DC1,DC) =
3

2
ΩmH

2
0 (1 + z1)

DC1(DC −DC1)

DC
Θ(DC −DC1). (75)

One may also define the angular correlation function of the shear for two galaxies separated
by angle ϑ. Since the shear is a tensor, this is more complicated than the correlation function for
scalars. Without loss of generality, we may rotate the coordinate system so that the galaxies are
separated along the θ1-axis, and then take the + and × components of the shear. We then define
the shear correlation functions,

C++(ϑ) = 〈γ+(0)γ+(ϑ)〉 and C××(ϑ) = 〈γ×(0)γ×(ϑ)〉. (76)

As in the scalar case, these are related to the power spectra:

C++(ϑ) = 〈γ+(0)γ+(ϑ)〉

=

∫
d2l

(2π)2

∫
d2l′

(2π)2
〈γ̃+(l)γ̃+(l′)〉 exp(il′ϑ cosφl′)

=

∫
d2l

(2π)2
[
cos2(2φl)CEE(l) + sin2(2φl)CBB(l)

]
exp(ilϑ cosφl)

=

∫ ∞

0

{
J0(lϑ) + J4(lϑ)

2
CEE(l) +

J0(lϑ) − J4(lϑ)

2
CBB(l)

}
ldl

2π
, (77)

where J0 and J4 are spherical Bessel functions. The expression for C×× is similar, but with PEE and
PBB switched. The correlation function {C++(ϑ), C××(ϑ)}, if measured over all scales, contains
exactly the same information as the power spectrum {CEE(l), CBB(l)}, as one can be derived from
the other. Therefore, the choice of which to measure is usually a technical one based on the ease of
data processing and handling of covariance matrices. The condition for no B-modes, CBB(l) = 0∀l,
is more complicated in correlation-function space.

An infinite number of other second-order statistics (i.e., expectation values containing two
powers of shear) can be constructed, such as the aperture-mass variance (Schneider et al., 1998),
ring statistics (Schneider and Kilbinger, 2007), and finite-interval orthogonal basis decompositions
(a.k.a. COSEBIs, Schneider et al. 2010). These alternative statistics were introduced because they
have useful properties from the point of view of data processing or systematics control — e.g., for
separation of E and B modes, or restriction to a particular range of scales – but all of them are
expressible as integrals over the power spectrum or correlation function.

Formulae such as (73) and (77) may be generalized to the full sky, as was first done for CMB
polarization (Kamionkowski et al., 1997; Zaldarriaga and Seljak, 1997), but for cosmic shear most
applications involve small angular scales where the flat-sky approximation suffices.36

Having built the formalism to describe the statistics of weak lensing, we can now consider the
proposed ways of using it to measure cosmology. Some methods will depend only on the expansion
history of the universe, while others are sensitive to the growth of perturbations.

36The leading order curved sky correction is the replacement of the scalar wavenumber |l| with
p

l(l + 1), where
here “l” is the spherical multipole number. Further corrections are of the order of 1/l2 and are most important for
the lowest multipoles.
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5.2.4. Method I: Cosmic Shear Power Spectrum*

The conceptually simplest approach to using WL is to collect a sample of source galaxies, obtain
an estimator for the shear at each galaxy, measure the correlation function or power spectrum, and
do a comparison to equation (73). Of course not all galaxies are at the same redshift, but there is
a probability distribution of distances p(DC), and the observed mean shear in a particular region
of sky is then

γ+,×(θ) =

∫ DC,max

0
p(DC)γ+,×(DC , θ) dDC , (78)

where DC,max is the comoving distance to the farthest galaxy in the slice. The power spectrum of
this field can then be written as

CEE(l) =

∫ DC,max

0
[Weff(DC1)]

2Pδ(k = l/DA1)

D2
A1

dDC1. (79)

This is similar to equation (73) with W replaced by an effective window function,

Weff(DC1) =

∫ DC,max

0
p(DC)W (DC1,DC) dDC , (80)

which is simply the usual window function appropriately weighted over the source galaxies.
The cosmic shear power spectrum CEE(l) is sensitive to many cosmological parameters. Being

an integral over the matter power spectrum, it is ∝ σ2
8 in the linear regime, although its behavior

in the nonlinear regime is closer to ∝ σ3
8 . It also contains two powers of Ωm, so we expect that the

most important dependences in the problem are that the WL power spectrum scales as ∼ Ω2
mσ

3
8 .

This is qualitatively correct, but the matter power spectrum and the mapping between DA and
DC at finite redshift contain sensitivities to all of the cosmological parameters, and so a full answer
to the question “what does the shear power spectrum constrain?” requires us to actually do the
integral to obtain CEE(l).

The sensitivity to every parameter is both a virtue of the WL power spectrum and its greatest
fault: the featureless WL power spectrum contains too many parameter degeneracies. One way
to break these degeneracies is to combine WL with other probes, as discussed in §8. However,
there are also ways of using WL that provide additional information and break these degeneracies
internally, as we now discuss.

5.2.5. Method II: Power Spectrum Tomography*

We can improve on the WL power spectrum constraints if we can split the source galaxies into
redshift slices. In most practical cases, this would be done with photometric redshifts. In this case,
instead of having a single power spectrum, we have N(N + 1)/2 power spectra and cross-spectra;
if we denote the slices by α, β ∈ {1, 2, ...N}, then these spectra are

Cαβ
EE(l) =

∫
Weff,α(DC1)Weff,β(DC1)

Pδ(k = l/DA1)

D2
A1

dDC1, (81)

whereWeff,α is the effective window function for the α slice. Note that because the window functions
are multiplied, this power spectrum depends only on the matter power spectrum at redshifts closer
than that of the nearby slice, i.e. at z < min{zα, zβ}. This makes sense because a given lens
structure must be in front of both sources to contribute to the shear cross-correlation. Lensing
analysis that splits samples by redshift and uses the redshift scalings to constrain cosmology is
known as tomography.
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Like the shear power spectrum, the tomographic spectra are sensitive to both the background
geometry and the growth of structure: the shear power spectrum at l depends on the DC(z)
relation, on Pδ(k = l/DA; z) as a function of redshift, and on the curvature K.37 With a single
power spectrum CEE(l) there is no hope of disentangling these functions with WL alone. One
might hope that having the tomographic cross-spectra as a function of zα and zβ would allow the
relevant degeneracies to be broken. Unfortunately, such a program runs into three problems:

• A real WL survey has a maximum source redshift, and there is obviously no sensitivity to
structures farther than this.

• There exist exact degeneracies among {DC(z), Pδ(k = l/DA; z),K} that lead to exactly the
same lensing power spectra for all (l, zα, zβ). The most obvious of these is the re-scaling
degeneracy: since lensing measures only dimensionless shears, it cannot measure the absolute
distance scale, only distance ratios. Two other degeneracies are discussed by Bernstein (2006);
see also §5.2.7.

• The broad, smooth nature of the lensing window functionsWeff,α(DC) implies near-degeneracies
between power spectra at adjacent redshifts. For example, if one were to test a nonstandard
cosmology in which Pδ(k, z) had a rapid oscillation in z superposed on the expected evolution,
the rapid oscillation would contribute little to equation (81) and would be easily buried by
statistical or systematic errors.

Despite these drawbacks, tomographic power spectra have far fewer parameter degeneracies than
the shear power spectrum alone. More importantly, having N(N + 1)/2 power spectra provides
many additional opportunities for internal consistency tests and rejection of systematic errors.

Some examples of theoretical tomographic power spectra are shown in Fig. 16.

5.2.6. Method III: Galaxy-galaxy Lensing*

A third way to use weak lensing is to look not just at the shear power spectrum but at its
correlation with the distribution of foreground galaxies. This subject is known as galaxy-galaxy

lensing (GGL), and it is a powerful probe of the relation between dark matter and galaxies. The
angular cross-power spectrum between the galaxies in one redshift slice α (the “foreground” or
“lens” slice) and the E-mode shear in a more distant slice β (the “background” or “source” slice)
is defined by

〈δ̃α∗
g (l)γ̃β

E(l′)〉 = (2π)2Cαβ
gE (l)δ(2)(l − l′), (82)

where δα
g is the 2-dimensional projected galaxy overdensity and δ̃α

g is its Fourier transform, and α
and β represent redshift slices. It can be computed via Limber’s equation as

Cαβ
gE (l) =

∫
pα(DC1)Weff,β(DC1)

Pgδ(k = l/DA1)

D2
A1

dDC1, (83)

where Pgδ(k) is the 3-dimensional galaxy-matter cross-spectrum. The real-space correlation func-
tion of galaxy density and shear is

Cαβ
g+(ϑ) = −

∫ ∞

0
Cαβ

gE (l)J2(lϑ)
l dl

2π
. (84)

37There is also a factor of ΩmH2
0 in the window functions, but for now we will assume this combination has been

measured accurately from the CMB. Our forecasts in §8 marginalize over the uncertainty in this combination, which
matters at the precision of Stage IV experiments.
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Figure 16 The E-mode shear power spectra predicted for the WMAP 7-year best fit cosmology
(Ωm = 0.265, σ8 = 0.8, H0 = 71.9 km s−1 Mpc−1). The curves show power spectra for sources
at z = 0.5 (bottom), 1.0, and 2.0 (top). The diagonal line shows the shot noise contribution at a
source density of neff = 10 galaxies per arcmin2; for this power spectrum measurement the shot
noise scales as n−1

eff . At small scales, where the noise power spectrum exceeds the signal, it is not
possible to measure individual structures in the weak lensing map. However, with sufficient sky
coverage, high-S/N measurement of the power spectrum or correlation function is still possible (see
§5.4.1, particularly eq. 96).
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In the case where the foreground galaxy slice (α) is narrow – either due to use of spectroscopic
foregrounds or high-quality photo-zs – the probability distribution in Limber’s equation (eq. 83)
becomes a δ-function, and the galaxy-matter cross-spectrum can be obtained.

One can also measure GGL by computing the mean tangential shear (i.e., shear in the direc-
tion orthogonal to the lens-source vector) of background galaxies around foreground galaxies as
a function of radius. This view of the measurement is taken in many papers, but it is (almost)
mathematically equivalent to correlating the shear field of the background galaxies with the density
field of the foreground galaxies.

From the perspective of dark energy studies, the principal advantage of GGL over the shear
power spectrum is observational: the shear is being correlated with galaxies rather than itself. A
spurious source of shear, e.g. from imperfections in the PSF model, is a source of systematic error
in the shear power spectrum, but in GGL it is only a source of noise because it is equally likely to
arise in regions of high and low foreground galaxy density. The principal disadvantage of GGL is
that its interpretation requires assumptions about the galaxies, which must ultimately be justified
empirically.

Galaxy-galaxy lensing can be used in the linear, the weakly nonlinear, and the fully nonlinear
regimes:

• Linear regime: In the linear regime, the galaxy-matter cross spectrum is Pgδ(k) = bPδ(k),

where b is the galaxy bias factor. Thus Cαβ
gE (l) is proportional to bσ2

8 , whereas the galaxy

power spectrum is proportional to (bσ8)
2. This provides a way to measure the linear bias of

the galaxies and hence obtain σ8. Unfortunately, one must reach very large scales (tens of
Mpc) for linear perturbation theory to be valid at the few percent level of accuracy, and at
these scales the signal-to-noise ratio of current GGL results is very low.

• Weakly nonlinear regime: At scales of order ∼ 10h−1 Mpc, nonlinear effects simply represent a
correction to the linear theory, and one might hope that a judicious combination of observables
can remove them. The key is to note that when stochasticity between galaxy and matter
densities is included, the GGL signal is proportional to brσ2

8, where r is the galaxy-matter
cross-correlation coefficient, so all we require to extract b and σ8 individually from GGL
and galaxy clustering observables is a theoretical prediction for the stochasticity. This is a
convenient result because simulations show that r = 1 is a much better approximation in the
weakly nonlinear regime than b = constant. This type of analysis is also best done in real
space rather than Fourier space so that the 1-halo contributions (see §2.3) to both clustering
and lensing can be eliminated. A specific outline for how to do this, including the next-order
perturbation theory corrections to r = 1 and comparison to simulations, is presented by
Baldauf et al. (2010).

• Fully nonlinear regime: GGL can be used on the scale of individual halos (k ∼ 1–10 Mpc−1) to
relate galaxy properties such as luminosity, color, and stellar mass to the properties of the host
dark matter halo. Such relations cannot be predicted ab initio because of the complicated
astrophysics involved. Empirical constraints on these relations are useful for dark energy
studies mostly because they enable us to test some of the underlying assumptions of galaxy
clustering models. To gain some cosmological power beyond the weakly non-linear regime,
one can construct full galaxy HOD models and marginalize over their parameters, using both
GGL and galaxy clustering as constraints (Yoo et al., 2006; Leauthaud et al., 2011, 2012).
Within the weakly non-linear regime, this approach effectively uses the HOD fits to compute
the scale-dependence of br, drawing on the information in the small-scale galaxy clustering
to improve the constraints.
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Yoo and Seljak (2012) provide an extensive discussion of the cosmological constraints that can
be derived from the combination of GGL and galaxy clustering, on small and large scales, in the
simplified case where one isolates the population of central galaxies, so that there is one galaxy per
dark matter halo.

Cluster-galaxy lensing is similar to GGL, but one takes clusters of galaxies rather than indi-
vidual galaxies as the reference points (Mandelbaum et al., 2006; Sheldon et al., 2009). We will
discuss this idea further in §6, arguing that it offers the most reliable route to calibrating cluster
mass-observable relations and has the potential to sharpen cosmological parameter constraints sig-
nificantly. Cluster-galaxy lensing may also be a useful tool for calibrating uncertainties in shear
calibration and photometric redshifts, since the shear signal in the cluster regime is stronger and
the cluster photometric redshifts themselves are usually well determined.

5.2.7. Method IV: Cosmography*

The previous sections motivate us to ask whether there is a way to combine the observational
advantages of GGL with the model independence of the shear power spectrum. There is, although
there is a large price to pay: one can only obtain geometrical information.

The idea is to consider narrow slices of galaxies centered at redshifts zα < zβ < zγ and measure
the lensing of galaxies in slices zβ and zγ by galaxies in the foreground slice zα. The ratio of the
galaxy-shear cross-spectra is, using equation (83),

Cαβ
gE (l)

Cαγ
gE(l)

=
cotK DC(zα) − cotK DC(zβ)

cotK DC(zα) − cotK DC(zγ)
. (85)

One can see that all dependence on the power spectra and the distribution of galaxies has been
cancelled, allowing a purely geometric test of cosmology. This is called the cosmography or shear-

ratio test (Jain and Taylor, 2003; Bernstein and Jain, 2004).
One can see from equation (85) that cosmography can determine the cotK DC(z) relation up

to any affine transformation, i.e. transformations of the form

cotK DC(z) → a0 + a1 cotK DC(z), (86)

which leave the ratios of differences of cotK DC(z)s unaffected. (Recall that cotK DC = 1/DC in a
flat universe.) It is clear that a1 is the familiar overall rescaling degeneracy: cosmography measures
only dimensionless ratios and cannot distinguish two models with different H0 but the same values
of Ωm, w, etc. Precisely the same degeneracy afflicts the supernova DL(z) relation because the
absolute magnitude of a Type Ia supernova is not known a priori. The a0 degeneracy is trickier,
arising from the fact that ∞ is not a special distance in lensing problems.38 Finally, since only
cotK DC(z) is measured, cosmography cannot by itself provide a model-independent measurement
of the curvature of the universe. But aside from these three degeneracies — a1, a0, and K — the
entire geometry of the universe over the range of redshifts observed is measurable.

Unfortunately, the aforementioned degeneracies are similar in functional form to the effects
of Ωm and w, and they have severely limited the application of cosmography thus far. This is
particularly true for observations restricted to low redshift: if one Taylor expands the distance as
tanK DC(z) = c1z + c2z

2 + c3z
3 + ... then any cosmological model is degenerate with one that has

(c1, c2) = (1, 0), and hence one must go through at least the z3 term before cosmography provides
any useful information. For example, at (zα, zβ , zγ) = (0.25, 0.35, 0.70), the difference in the shear

38This is the same reason that the “∞” setting on the focus knob for a camera is not special.
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ratio (eq. 85) between an Ωm = 0.3 flat ΛCDM cosmology and a pure CDM Ωm = 1 cosmology is
only 1%! In early work (Mandelbaum et al., 2005) cosmography was therefore used as a test for
shear systematics rather than a cosmological probe.

The outlook for cosmography is much brighter as we probe to larger redshifts, or if we consider
dark energy models with complicated redshift dependences that cannot be mimicked by the degen-
eracy of equation (86). A particularly promising possibility is to use cosmography with lensing of
the anisotropies in the CMB (z = 1100) to obtain a much longer lever arm (Acquaviva et al., 2008).
In principle one can also apply the cosmography method to strong gravitational lenses (see §7.10
below). Here the challenge is that different sources probe different locations in the lens, so one must
be able to constrain the lens potential extremely well to extract useful cosmographic constraints.

5.2.8. Method V: Non-Gaussian Statistics*

The primordial density fluctuations in the universe were very nearly Gaussian, as evidenced
by the CMB. In this case, the fluctuations are fully described by the power spectrum, and this
has become the common language of CMB observations. However, nonlinear evolution makes the
matter fluctuations and hence the lensing shear in the low-redshift universe highly non-Gaussian
on small and intermediate scales. Therefore, many other statistical measures of the shear field have
been proposed, the most popular of which is the bispectrum.

The bispectrum is obtained by taking the product of three Fourier modes:

〈γ̃α
E(l1)γ̃

β
E(l2)γ̃

γ
E(l3)〉 = (2π)2Bαβγ

EEE(l1, l2, l3)δ
(2)(l1, l2, l3). (87)

Statistical homogeneity forces the three wave vectors involved to sum to zero so the bispectrum
is actually a function of the triangle configuration; rotational and reflection symmetry then tell
us that it depends only on the side lengths (l1, l2, l3)

39, which must satisfy the triangle inequality.
Because there are 2 shear modes (E and B), there are actually 4 types of bispectrum: EEE, EEB,
EBB, and BBB, but only EEE can be produced cosmologically. Limber’s equation expresses it
in terms of the 3-dimensional matter bispectrum,

Bαβγ
EEE(l1, l2, l3) =

∫
Weff,αWeff,βWeff,γ

Bδ(l1/χ, l2/χ, l3/χ)

D4
A1

dDC1. (88)

The bispectrum contains information equivalent to the shear 3-point correlation function. The the-
ory of transformations between the two and the implied symmetry properties have been extensively
studied (Zaldarriaga and Scoccimarro, 2003; Schneider and Lombardi, 2003; Takada and Jain, 2003;
Schneider et al., 2005). Halo model based descriptions of the 3-point function are also available
(e.g. Cooray and Hu, 2001).

The original motivation to study the WL shear bispectrum was to break the degeneracy between
Ωm and σ8 (e.g. Bernardeau et al., 1997; Hui, 1999; Takada and Jain, 2004). At low redshift, and
on large scales where perturbation theory applies, the WL power spectrum is proportional to
Ω2

mσ
2
8 , whereas the bispectrum is proportional to Ω3

mσ
4
8; it contains three powers of the shear and

hence three powers of Ωm, but the matter bispectrum is generated by nonlinear interactions and is
proportional to the square of the matter power spectrum, i.e., to σ4

8 rather than σ3
8 . Unfortunately,

this route to degeneracy breaking has proven difficult because of the low signal-to-noise ratio and
high sampling variance of the bispectrum and because the degeneracy directions of the power
spectrum and bispectrum are almost parallel in the (Ωm, σ8) plane. A more interesting application

39The EEB and BBB bispectra flip sign under reflections of the triangle, and some convention, e.g. that the sides
are given in counterclockwise order, must be imposed to avoid ambiguity.
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of the WL bispectrum in future surveys may be as a constraint on modified gravity theories, though
this has not yet been well studied.

5.3. The Current State of Play

Weak lensing as a cosmological probe is only a decade old, although the ideas go back much
further. Zwicky (1937) famously suggested gravitational lensing as a tool to determine cluster
masses (although the discussion focused on strong lensing). We separately consider here the more
recent history of cosmic shear studies, and of galaxy-galaxy lensing as a cosmological probe. Also the
techniques and applications associated with lensing outside the optical bandpasses are sufficiently
different that we place them in a separate section. Lensing by clusters is considered in the cluster
section (§6).

5.3.1. Cosmic shear

Kristian (1967) described an initial attempt to measure statistical cosmic shear using photo-
graphic plates taken on the Palomar 5 m telescope. He even correctly identified intrinsic alignments
as a systematic error, and noted that the distance dependence could be used to separate them from
true cosmic shear. Interestingly, the objective of this analysis was to search for cosmological-scale
gravitational waves or other large-scale anisotropies (Kristian and Sachs, 1966). The author set a
limit on the magnetic part of the Weyl tensor40 of . 200H−2

0 , which he describes as “about the
best that can be done with this kind of measurement.” Fortunately this has not remained the case
– indeed it was improved upon by two orders of magnitude by Valdes et al. (1983).

The modern era of lensing studies was introduced by the availability of arrays of large-format
CCDs. Mould et al. (1994) searched for cosmic shear and reached percent-level sensitivity, but
did not detect a signal. Cosmic shear was finally detected in 2000 by several groups (Wittman
et al., 2000; Bacon et al., 2000; Van Waerbeke et al., 2000), and in deeper but narrower data from
HST (Rhodes et al., 2001; Refregier et al., 2002). Over the same period, several additional square
degrees were observed with long exposure times in excellent seeing using ground-based telescopes
(Van Waerbeke et al., 2001, 2002; Bacon et al., 2003; Hamana et al., 2003). The first wide-shallow
surveys were also carried out from the ground: the 53 deg2 Red-Sequence Cluster Survey (Hoekstra
et al., 2002) and the 75 deg2 CTIO survey (Jarvis et al., 2003). These studies established the
existence of cosmic shear, but at a level far below that which would be expected in Ωm ∼ 1 models
normalized to the CMB. The large error bars in early studies meant that only a single amplitude
could be measured, yielding a constraint on the combination σ8(Ωm/0.3)

ν , where the exponent ν
varied between 0.3 and 0.7 depending on the scale and depth. In the first detection of the cosmic
shear bispectrum, achieved with the VIRMOS-DESCART survey, Pen et al. (2003) measured the
skewness of the filtered shear signal and used it in combination with the power spectrum to rule
out large-Ωm, low-σ8 solutions, finding Ωm < 0.5 at 90% confidence. The deep COMBO-17 survey
first detected the evolution of σ8 as a function of cosmic time (Bacon et al., 2005).

However, the early studies of cosmic shear were not free of trouble. As one can see from Table 3,
while most were broadly in agreement with σ8 in the 0.7–0.9 range, a detailed comparison shows
that the measurements were not all consistent. This discrepancy stimulated discussions about a
number of possible ancillary issues with the data, such as the role of intrinsic alignments, whether
the source redshift distribution N(z) was properly calibrated, and whether the models for the
nonlinear power spectrum and assumptions about the P (k) shape parameter Γ could be leading to
discrepancies. More seriously, most of the early measurements contained B-mode signals at levels

40Equivalent to ∼ ω2h, where ω is the gravitational wave frequency and h is the strain.
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not far below the E-mode. This was a clear signal of contamination of non-cosmological origin,
probably PSF correction residuals. Also, intrinsic alignments of galaxies were detected at high
significance even in the linear regime, at a level that represented a potentially serious systematic
error even for then-ongoing surveys (Mandelbaum et al., 2006).

It was clear by 2006 that weak lensing was a very hard observational problem and that a
great deal of work lay ahead to turn it into a precision cosmological probe. This resulted in a
reduction in the rate of new cosmic shear results, the reorganization of the field into larger teams,
and detailed looks at systematic errors ranging from optical distortions in telescopes to intrinsic
galaxy alignments. Several wide-field optical surveys were ongoing at the time, including the deep
170 deg2 CFHT Legacy Survey (for which cosmic shear was a key science driver) and the very deep
multiwavelength COSMOS survey with high-resolution optical imaging from HST/ACS (Massey
et al., 2007b; Schrabback et al., 2010). The CFHTLS presented some early results (Hoekstra et al.,
2006; Semboloni et al., 2006a; Fu et al., 2008), but following this there was a rather bleak period
of time. No new ground-based wide-field cosmic shear results were published, and no new large
surveys were undertaken with HST, nor do future large HST weak lensing surveys seem likely.41

In the past five years, however, great progress has been made in overcoming the difficulties
that at first appeared so daunting. The community made a massive investment in algorithms to
determine and correct for PSF ellipticities (we will review some of these in §5.5), and in investigat-
ing the physics that determines the PSF, including such complications as atmospheric turbulence
(Heymans et al., 2012a). Equally important, these methods were tested in public challenges on
simulated data (STEP1, Heymans et al. 2006; STEP2, Massey et al. 2007a; GREAT08, Bridle
et al. 2010; GREAT10, Kitching et al. 2010; see further dicussion in §5.5). Progress was also
made on astrophysical systematic errors. We learned that large-scale intrinsic galaxy alignments
are strongest for luminous red galaxies (Hirata et al., 2007; Mandelbaum et al., 2011), and that
the linear alignment model, once considered a crude analytical tool (Catelan et al., 2001), is in fact
an excellent description of the observations of early-type galaxies at ≥ 10h−1 Mpc scales (Blazek
et al., 2011).

As a result of this great effort by the community, the Stage II weak lensing results are finally
coming to fruition and yielding large data sets that pass the standard systematics tests (e.g., B-
modes consistent with zero). Two groups (Lin et al., 2012; Huff et al., 2011) have performed a cosmic
shear measurement using the Sloan Digital Sky Survey deep co-added region — a 120-degree long
stripe observed many times over the course of three years as part of the SDSS-II supernova survey.
These analyses used different methods to co-add their data and correct for the PSF ellipticity, and
they imposed different selection cuts and hence had different redshift distributions, yet the results
were in agreement (and slightly more than 1σ below the WMAP prediction for σ8). The largest
of the Stage II weak lensing programs was the CFHT Legacy Survey. After a thorough analysis,
the lensing results and cosmological implications were recently published (Heymans et al., 2012b;
Benjamin et al., 2012; Erben et al., 2012; Kilbinger et al., 2012; Miller et al., 2013). They appear
consistent with the standard ΛCDM cosmology with WMAP-derived initial conditions, with the
amplitude σ8 measured to ±0.03.

A summary of the current status of optical cosmic shear results is shown in Table 3.

41The premier lensing instrument on the HST (the Advanced Camera for Surveys) failed in January 2007. While
its wide-field channel was restored during the 2009 servicing mission, the sky coverage possible with ACS is not
competitive with next-generation ground-based surveys, and it seems unlikely a major cosmic shear program will be
undertaken with HST. Rather, the next major steps in space-based cosmic shear will likely be the Euclid mission
planned for 2020 and the WFIRST mission planned for the early 2020s.

88



Table 3 A summary of cosmic shear results from the literature obtained in the optical. Note that
some of these results are independent analyses or extensions of previous data sets and hence are
not independent.

Reference Telescope/instrument Area Number of Result

(deg2) galaxies
Bacon et al. (2000) WHT/EEV-CCD 0.5 27k σ8 = 1.5 ± 0.5 (@ Ωm = 0.3)
Van Waerbeke et al. (2000) CFHT/UH8K+CFH12K 1.75 150k Detectiona

Wittman et al. (2000) Blanco/BTC 1.5 145k Detectionb

Rhodes et al. (2001) HST/WFPC2 0.05 4k σ8(Ωm/0.3)0.48 = 0.91+0.25
−0.30

Van Waerbeke et al. (2001) CFHT/CFH12K 6.5 400k σ8(Ωm/0.3)0.6 = 0.99+0.08
−0.10

(95%CL)c

Hoekstra et al. (2002) CFHT/CFH12K + Blanco/Mosaic II 53 1.78M σ8(Ωm/0.3)0.55 = 0.87+0.17
−0.23

(95%CL)

Refregier et al. (2002) HST/WFPC2 0.36 31k σ8 = 0.94 ± 0.14 (@ Ωm = 0.3, Γ = 0.21)

Bacon et al. (2003) Keck II/ESI + WHT 1.6 σ8(Ωm/0.3)0.68 = 0.97 ± 0.13

Brown et al. (2003) MPG ESO 2.2m/WFI 1.25 σ8(Ωm/0.3)0.49 = 0.72 ± 0.09d,e

Jarvis et al. (2003) Blanco/BTC+Mosaic II 75 2M σ8(Ωm/0.3)0.57 = 0.71+0.12
−0.16

(2σ)

Hamana et al. (2003) Subaru/SuprimeCam 2.1 250k σ8(Ωm/0.3)0.37 = 0.78
+0.55
−0.25

(95%CL)

Rhodes et al. (2004) HST/STIS 0.25 26k σ8(Ωm/0.3)0.46(Γ/0.21)0.18 = 1.02 ± 0.16

Heymans et al. (2005) HST/ACS 0.22 50k σ8(Ωm/0.3)0.65 = 0.68 ± 0.13

Massey et al. (2005) WHT/PFIC 4 200k σ8(Ωm/0.3)0.5 = 1.02 ± 0.15
Hoekstra et al. (2006) CFHT/MegaCam 22 1.6M σ8 = 0.85 ± 0.06 @ Ωm = 0.3
Semboloni et al. (2006a) CFHT/MegaCam 3 150k σ8 = 0.89 ± 0.06 @ Ωm = 0.3

Benjamin et al. (2007) Variousg 100 4.5M σ8(Ωm/0.3)0.59 = 0.74 ± 0.04
Hetterscheidt et al. (2007) MPG ESO 2.2m/WFI 15 700k σ8 = 0.80 ± 0.10 @ Ωm = 0.3

Massey et al. (2007b) HST/ACS 1.64 200k σ8(Ωm/0.3)0.44 = 0.866+0.085
−0.068

Schrabback et al. (2007) HST/ACS 0.4 100k σ8 = 0.52+0.11
−0.15

(stat)±0.07(sys) @ Ωm = 0.3f

Fu et al. (2008) CFHT/MegaCam 57 1.7M σ8(Ωm/0.3)0.64 = 0.70 ± 0.04

Schrabback et al. (2010) HST/ACS 1.64 195k σ8(Ωm/0.3)0.51 = 0.75 ± 0.08

Huff et al. (2011) SDSS 168 1.3M σ8 = 0.636+0.109
−0.154

@ Ωm = 0.265h

Lin et al. (2012) SDSS 275 4.5M σ8(Ωm/0.3)0.7 = 0.64+0.08h
−0.12

Jee et al. (2013) Mayall+CTIO/Mosaic 20 1M σ8 = 0.833 ± 0.034i

Kilbinger et al. (2012) CFHT/MegaCam 154 4.2M σ8(Ωm/0.27)0.6 = 0.79 ± 0.03
aConsistent with Ωm = 0.3 (Λ or open), cluster normalized; Ωm = 1, σ8 = 1 excluded.
bConsistent with ΛCDM or OCDM, but not COBE normalized Ωm = 1.
cReanalysis by Van Waerbeke et al. (2002) gives σ8 = 0.98 ± 0.06 (Ωm = 0.3, Γ = 0.2, 68%CL).
dReanalysis by Heymans et al. (2004) to correct for intrinsic alignments gives σ8(Ωm/0.3)0.6 = 0.67 ± 0.10.
e Brown et al. (2005) used a subset of this data to show that the matter power spectrum increased with time.
f In the Chandra Deep-Field South; the authors warn that this field was selected to be empty, hence σ8 may be biased low.
gA combination of 4 previously published surveys.
hBoth based on the same raw SDSS data, but with analyses and reduction pipelines by 2 different groups.
iOther parameters fixed to WMAP 7-year values.
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5.3.2. Galaxy-galaxy lensing as a cosmological probe

Like cosmic shear, galaxy-galaxy lensing is an old idea. The earliest astrophysically interesting
upper limit was that of Tyson et al. (1984), who used the images of 200,000 galaxies measured by the
now-obsolete method of digitizing photographic plates to exclude extended isothermal halos with
vc > 200 km s−1 around an apparent magnitude-limited sample of galaxies. Galaxy-galaxy lensing
was observed at ∼ 4σ by Brainerd et al. (1996), the first clear detection of cosmological weak lensing.
Their analysis used a total of 3202 lens-source pairs in a field of area 0.025 deg2. Several other
detections followed this in deep surveys with limited sky coverage (Hudson et al., 1998; Smith et al.,
2001; Hoekstra et al., 2003). However the full scientific exploitation of the galaxy-galaxy lensing
signal — in contrast to cosmic shear — favors wide-shallow surveys over deep-narrow surveys, since

the S/N in the shape-noise limited regime scales as only n̄
1/2
source rather than n̄source. Therefore, in the

decade of the 2000s the leading galaxy-galaxy lensing surveys became the 92 deg2 Red-Sequence
Cluster Survey (RCS; Hoekstra et al. 2004, 2005; Kleinheinrich et al. 2006) and eventually the
104 deg2 SDSS (references below). The availability of spectroscopic redshifts in the latter allowed
the signal from low-redshift galaxies to be stacked in physical rather than angular coordinates,
enabling the detection of features as a function of transverse separation. The spectroscopic survey
also provided detailed environmental information, measures of star-formation history, and full 3-
dimensional clustering data (e.g., correlation lengths and redshift-space distortions) for the lens
galaxies.

The SDSS remains the premier galaxy-galaxy lensing survey today, for both galaxy evolution
and cosmology applications, and it likely will remain so until DES and HSC results become available.
The SDSS Early Data Release, comprising only a few percent of the overall survey, already detected
the galaxy-galaxy lensing signal with high significance (Fischer et al., 2000; McKay et al., 2001).
Some of the major results of cosmological importance from the SDSS galaxy-galaxy lensing program
have been:

• The galaxy bias can be constrained directly by going to the very largest scales and measuring
galaxy-galaxy lensing in the 2-halo regime. By dividing the galaxy clustering signal by the
galaxy-mass correlation function, Sheldon et al. (2004) found for L∗ galaxies a bias of b =
(1.3 ± 0.2)(Ωm/0.27)r, where r is the stochasticity (presumably ∼ 1 at the largest scales),
with no evidence of scale dependence.42,43

• The measurement of halo masses — or more accurately, HOD parameters (see §2.3) — with
galaxy-galaxy lensing also enables one to predict the galaxy bias, by using the bias-mass
relation b(M). One can in principle use this to constrain cosmological parameters, since the
clustering of the lens galaxies can be measured and hence one can obtain σ8,gal ≡ bσ8. The
results of this analysis on 300,000 lens galaxies at z ∼ 0.1 were presented by Seljak et al.
(2005). The direct constraints on σ8 itself (with other parameters fixed) were uninteresting
because the inferred bias at fixed halo mass is a decreasing function of σ8, and the observable
product σ8b is almost independent of σ8. However, cosmological parameters that change
the shape of the power spectrum can be constrained quite well — e.g., a decrease in small-
scale power can make halos rarer and hence decrease b without a compensating change in
σ8. This breaks degeneracies internal to the CMB alone. Combining with first-year WMAP

data, Seljak et al. (2005) found that for the case of three degenerate neutrinos one must have∑
mν < 0.54 eV (95%CL).

42Since lensing measures δρ rather than δρ/ρ, there is a factor of Ωm in this measurement.
43A re-analysis with the final SDSS imaging data set and improved treatment of the stochasticity is underway.
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• The halo mass-concentration relation c(M) (e.g., Bullock et al. 2001) is not in and of itself
especially useful as a dark energy probe; it depends somewhat on Ωm, but also on baryonic
physics. Nevertheless, testing it is important for any cosmological application of the 1-halo
regime, including cosmic shear (King and Mead, 2011), and galaxy-galaxy lensing is well
suited to measuring it at a range of halo masses. (For clusters other techniques are available,
such as strong lensing or X-ray measurements.) Mandelbaum et al. (2008) measured this
relation across the 1012 − 1015M⊙ range, finding c200b(M) = (4.6± 0.7)M−0.13±0.07

14 , where M
is the halo mass in units of 1014h−1M⊙. The normalization is about 2σ below the theoretical
predictions, but the discrepancy may well be a statistical accident, particularly given that
other methods have led to larger concentrations.

• Reyes et al. (2010) tested GR by comparing the galaxy-mass correlation function, measured
via weak lensing, to the galaxy-velocity correlation function, measured via redshift-space
distortions. The SDSS luminous red galaxy sample was chosen due to its large volume. This
measurement requires an overlapping spectroscopic and WL survey. They find that

EG =
Υgm(R)

βΥgg(R)
= 0.39 ± 0.06, (89)

where Υ is a filtered correlation function (averaged over scales R = 10 − 50h−1 Mpc) and β
is the redshift-space distortion parameter of equation (43). The combination EG is equal to
Ωm/f(z) at the redshift of the lenses, for which GR predicts Ω0.45

m (z = 0.32) = 0.408± 0.029.
This measurement establishes that the peculiar velocities of galaxies are, to ∼ 15% precision,
in agreement with expectations based on the potential structure traced by lensing.

All of these measurements will become possible with much smaller error bars once the Stage III
WL experiments are operational. We look forward in particular to much smaller error bars on b/r
and EG derived from the largest scales, as well as improvements on c(M).

5.3.3. Lensing outside the optical bands

All wavelengths of light are gravitationally lensed. The optical44 is not special in this regard —
rather, the emphasis on optical wavelengths has been technological, as this is the cheapest band in
which to observe and resolve large numbers of galaxies at cosmological distances and obtain some
redshift information. However, advances in technology in other wavebands have resulted in weak
lensing being detected at several other wavelengths:

• In the radio, kilometer-scale interferometers are required to resolve extragalactic sources, and
at the present time one cannot obtain a radio photo-z because of the featureless synchrotron
spectra. However, Chang et al. (2004) detected cosmic shear of extended radio sources using
the Very Large Array FIRST survey.

• Lensing of the CMB has been of interest for some time as it provides the most distant possible
source screen. The first search was carried out in cross-correlation by Hirata et al. (2004)
using luminous red galaxies in SDSS as the lenses and WMAP temperature anisotropies as the
sources. The signal was detected three years later with combinations of SDSS and NVSS data,
and two additional years of WMAP data (Smith et al., 2007; Hirata et al., 2008). Recently,

44By “optical,” we mean to include near-infrared wavelengths λ > 0.7 µm at which stars are still the dominant
source of luminosity, and which are observed through traditional optical telescopes and with detector technology
based on the creation of electron-hole pairs in semiconductors.
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the Atacama Cosmology Telescope (ACT) carried out a cosmic shear autocorrelation analysis
using the CMB as a source and detected the signal at 4σ (Das et al., 2011). While apparently
weak, this measurement shows that ΩΛ > 0 using CMB data alone, without assuming a flat
universe (Sherwin et al., 2011). The ACT and South Pole Telescope (SPT) collaborations are
next planning polarization surveys, which should yield much higher S/N detections of lensing
and provide constraints on the neutrino mass.

5.4. Observational Considerations and Survey Design

5.4.1. Statistical Errors

The forecasting of statistical errors on the cosmological parameters is much more involved for
WL than for supernovae or BAO because of the complex dependence of the observables on the
underlying model. Nevertheless, some intuition can be gained by making approximations to enable
exact evaluation of the integrals. Specifically, we assume (i) a single source redshift zs; (ii) a
power-law matter power spectrum,

Pδ(k, z) = 4.2 × 10−4σ2
8H

−3
0 G2(z)(k/H0)

−1.3 , (90)

where the slope k−1.3 is chosen to match that of the ΛCDM power spectrum at a scale of ∼ 10
Mpc and the normalization is chosen to give the correct σ8; (iii) evaluation of the normalization
(1+ z)G(z) not at the true lens redshift zl (over which we integrate from 0 to zs) but at a “typical”
lens redshift zs/2; and (iv) a flat universe. Then equation (73) gives

CEE(l) = 1.1 × 10−3σ2
8

[(
1 +

zs
2

)
G
(zs

2

)]2
Ω2

m[H0DC(zs)]
2.3l−1.3. (91)

The variance per logarithmic range in l is

∆2(l) ≡ l2

2π
CEE(l) = 1.8 × 10−4σ2

8

[(
1 +

zs
2

)
G
(zs

2

)]2
Ω2

m[H0DC(zs)]
2.3l0.7; (92)

this is a measure of the shear variance at a particular angular scale θ ∼ l−1. Recall that (1+z)G(z)
varies from ≈ 0.75 at z = 0 to one at high redshift (see Fig. 3). Since H0 enters only in the
combination H0DC(z), and DC(z) ∝ H−1

0 , we see again that the WL signal depend on relative
rather than absolute distances.

In practice, equation (92) is only a rough guide because of deviations of Pδ(k) from a power
law and the nonlinear enhancement of the matter power spectrum on small scales. Nevertheless,
we can see several important features:

1. The typical shear, given by
√

∆2(l), is of order 1% at cosmological distances (zs ∼ 1) and
degree scales (l ∼ 100). The shear fluctuations are larger at smaller scales.

2. The shear power spectrum scales as ∝ σ2
8 . Assuming a known background cosmology and

source redshift, a measurement of the power spectrum to X% determines σ8 to an uncertainty
of 1

2X%. In the nonlinear regime the dependence of the shear power spectrum is closer to σ3
8 ,

so in practice the constraint on σ8 is better than equation (92) would suggest.

3. Alternatively, if one assumes perfect knowledge of the growth of structure (hence σ8, Ωm, and
G), then the distance DC(zs) to the sources can be determined to an uncertainty of 1

2.3X%.
Lensing thus acts as a standard “ruler.”
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4. Measuring the shear power spectrum as a function of source redshift zs allows one to measure
some combination of the growth function and the distance as functions of redshift. However,
one does not measure both separately. In order to simultaneously constrain the functional
forms G(z) and DC(z), lensing must be combined with another cosmological probe.

5. Systematic errors in any of the terms in equation (92) will bias the cosmology results. In
particular, a 1% change in zs, e.g. 1.00→ 1.01, changes the power spectrum by 2%. (This is
the result of a full calculation, not evident by simple inspection of the equation.) Therefore,
careful estimation of the source redshift distribution is required for a WL survey — a challenge
when relying on photometric redshifts for the vast majority of sources.

The statistical uncertainty on the shear power spectrum is determined by two factors: sampling
variance at low l and shape noise at high l. Sampling variance uncertainty is associated with the
fact that there are only a finite number N of Fourier modes in the survey area, and consequently
the fractional uncertainty in the power can be no smaller than

√
2/N (where the 2 arises because

power is the variance of γl, not the rms amplitude). If we measure the power spectrum in a bin of
width ∆l, then the number of modes is N = 2l∆lfsky, where fsky is the fraction of the sky observed.
This corresponds to a sampling variance uncertainty

σ[CEE(l)]

CEE(l)
=

1√
l∆l fsky

, sampling variance only. (93)

If we measure modes up to some lmax, there are l2maxfsky modes, and the sampling variance uncer-

tainty in the normalization of the power spectrum is
√

2f
−1/2
sky l−1

max.
At high l, the errors on the WL power spectrum become dominated not by the number of

modes available but by how well each mode can be measured with a finite number of galaxies.
Individual galaxies are not round, and so a shear estimator applied to a galaxy has an intrinsic
scatter σγ ∼ 0.2 rms in each component of shear (γ+ or γ×), for typical galaxy populations with
rms ellipticity erms ∼ 0.4 per component. This phenomenon is known as shape noise. Since it is
uncorrelated between distinct galaxies (at least as a first approximation), shape noise produces a
white noise (l-independent) power spectrum45,

Cshape
EE (l) =

σ2
γ

n̄eff
, (94)

where n̄eff is the effective number of galaxies per steradian (this is the true number of galaxies with
a penalty applied for objects where the observational measurement error on the shear becomes
comparable to σγ ; see below). Since the cosmic shear CEE(l) is decreasing with l, there is a transi-
tion scale ltr where the shape noise becomes comparable to the lensing signal. Using equation (92),
we estimate

ltr = 1300
( σ8

0.8

)1.54 [(
1 +

zs
2

)
G
(zs

2

)]1.54
(

Ωm

0.3

)1.54

[H0DC(zs)]
1.77

( n̄eff

20 arcmin−2

)0.77

. (95)

At angular scales smaller than θ ∼ l−1
tr , lensing cannot detect (at S/N> 1) a typical fluctuation in

the density field.46 Statistical measurements are still possible, however, and the power spectrum

45We give the E-mode noise here. There is an equal amount of shape noise power in the B-mode, but the lensing
B-mode is used only as a systematics test because it contains no cosmological signal to first order.

46High-amplitude features such as clusters may still be visible.
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can be measured to an accuracy of
√

2/N Cshape
EE (l) where N is the number of modes. Thus, in the

shape-noise limited regime,

σ[CEE(l)]

CEE(l)
=

1√
l∆l fsky

Cshape
EE (l)

CEE(l)
=

1√
l∆l fsky

(
l

ltr

)1.3

, l > ltr. (96)

One can see from this equation that the fractional uncertainty on CEE(l) in bins of width ∆l/l ∼ 1
increases with l for l > ltr. Therefore we arrive at the important conclusion that the power
spectrum is best measured at the transition scale ltr: on larger scales sampling variance degrades
the measurement even though individual structures are seen at high signal-to-noise ratio (SNR),
and on smaller scales shape noise dominates. The aggregate uncertainty in the normalization of
the power spectrum is thus of order

σ(normalization)

normalization
∼ 1

ltr
√
fsky

. (97)

A full-sky experiment47 reaching tens of galaxies per arcmin2 at redshifts of order unity would have
ltr ∼ 1000 and so could measure the normalization of the power spectrum to a statistical precision
of order 0.1%. This would be an unprecedented measurement of the strength of matter clustering.
However, as we will see below, there are substantial statistical and systematic hurdles to such an
experiment.

Finally, we consider galaxies measured at finite SNR. In the above analysis, we assumed that
each galaxy provided an estimate of the shear with uncertainty σγ . At finite SNR there is also

measurement noise σobs, so that each galaxy provides an estimate with error
√
σ2

γ + σ2
obs. Using

inverse-variance weighting, in the finite-SNR case the shape noise becomes equation (94), with the
effective source density

n̄eff =
1

A

Ngal∑

i=1

σ2
γ

σ2
γ + σ2

obs,i

, (98)

where A is the survey area and the sum is over the galaxies. This is always less than n̄ = Ngal/A.
The effective source density n̄eff is limited in part by the depth of the survey: σobs,i typically scales
with integration time as ∝ t−1/2, but once σobs,i ≪ σγ one no longer continues to gain. How long
does this take? In §5.5.3, we will show that for nearly circular, Gaussian galaxies48

σobs =
1

ν

(
1 +

r2psf

r2gal

)
, (99)

where rpsf and rgal are the half-light radii of the PSF and the galaxy, respectively, and ν is the
detection significance (in σs). Thus for galaxies with a similar size as the PSF, we expect to reach
σobs = 0.1 (measurement noise half of shape noise) after integrating long enough to see the galaxy
at 20σ.

In principle, the summation in equation (98) is over all objects detected as extended sources, and
any galaxy could be used if its detection significance is high enough. In practice, this is dangerous:
while one might hope to obtain σobs = 0.1 on a galaxy with rgal = 0.5rpsf and a 50σ detection,

47In practice the Galactic Plane must be avoided, so it is unlikely that optical astronomy would push beyond
fsky ∼ 0.7 for any cosmological application.

48For realistic non-Gaussian profiles, the shape measurement error is usually worse by of order 20%.
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the “ellipticity measurement” on this galaxy consists of measuring the small deviation of the image
from the PSF. Such a procedure tends to magnify systematic errors in the PSF model and is usually
unadvisable. Therefore, most WL surveys impose a cutoff on rgal/rpsf or some similar property.

5.4.2. The Galaxy Population for Optical Surveys

The design of a WL survey must begin by considering the population of galaxies. We will focus
here on the population in the 3-dimensional space of redshift z, effective radius reff , and apparent
AB magnitude in the I-band (a convenient choice for shape measurement with red-sensitive CCDs
from the ground). The plots shown here are based on the mock catalog of Jouvel et al. (2009),
which uses real galaxies from the COSMOS survey but fills in missing information for individual
galaxies (e.g. redshifts or line fluxes) with photo-zs and models.

Figure 17 shows the mean surface density of galaxies and the median source redshift as a
function of limiting magnitude IAB for effective radius cuts of 0.15′′, 0.248′′, and 0.35′′. In general,
one would like to use galaxies larger than the PSF to avoid amplification of systematics when
applying a PSF correction to the shapes. The “effective radius” (EE50, for 50% encircled energy)
of a typical ground-based PSF is ∼ 0.35′′ under good conditions, corresponding to a FWHM of
∼ 0.7′′. The 0.248′′ cut is a factor of

√
2 smaller, appropriate if one can make use of galaxies

smaller than the PSF or has sufficient étendue to do the entire survey under the very best seeing
conditions. Measuring galaxies at reff = 0.15′′ is well beyond present ground-based cosmic shear
survey capabilities, for both algorithmic and PSF-determination reasons, and will likely require a
space (or balloon) based platform.

5.4.3. Photometric Redshifts and their Calibration

Modern WL analyses all use photometric redshifts in some way. They are central to tomography
and cosmography measurements, and they are also needed in most schemes to remove the intrinsic
alignment contamination. In the case of GGL, photo-zs are used to select sources that are actually
behind the lens plane (sources in front of the lens are unlensed and dilute the signal, whereas
sources at the same redshift as the lens can contribute intrinsic alignments).

One can characterize the photo-z distribution using the joint probability distribution for the
photo-z zp and the true redshift z for some sample of galaxies, P (zp, z). In the case of lensing,
we care about the conditional probability distribution, P (z|zp). This distribution is sometimes
characterized by its conditional bias and scatter,

δz(zp) = zp − 〈z〉|zp , σz(zp) =
√

〈z2〉|zp − 〈z〉|2zp
, (100)

but it is always non-Gaussian and in practice there are “outliers” or “catastrophic failures” with
|z − zp| ∼ O(1). The conditional probability distribution is not symmetric: Bayes’s theorem tells
us that

P (z|zp) =
P (z)

P (zp)
P (zp|z), (101)

so a photo-z that is is “unbiased” in the conventional sense of 〈zp〉|z = z may still have δz(zp) 6= 0.
It is not required that photometric redshifts have δz(zp) = 0, but one does need to know the value
of δz(zp) to relate observations to model parameters. From the simplified example discussed in
§5.4.1, we can see that a systematic error of ∼ 0.01 in δz(zp)/zp will lead to a normalization error
in the matter power spectrum of the order of 2%. Similarly, if 1% of galaxies in a source redshift
bin zs are actually outliers with redshift z ≪ zs, they will dilute the expected lensing signal by 1%,
and the power spectrum by 2%.
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Figure 17 The mean surface density of galaxies (top panel) and median redshift (bottom panel)
as a function of limiting magnitude. The three curves show different reff cuts: the top curve is a
cut at 0.15′′, which might be applied to a space-based survey; the middle curve is a cut at 0.248′′,
which would be an optimistic choice from the ground; and the bottom curve is a cut at 0.35′′, a
more conservative choice for a ground-based survey with ∼ 0.7′′ seeing (FWHM). For galaxy-galaxy
lensing, one could make more aggressive cuts.
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Figure 18 The SEDs of three stellar populations are shown: a single burst at age 25 Myr (top); a
continuous star-forming population of 6 Gyr age (middle); and a single burst at 11 Gyr (bottom).
All have solar metallicity. Blueward of Lyα they have been adjusted for an IGM transmission factor
of 0.8 (appropriate for z = 2.25; see McDonald et al. [2006]), but other corrections (dust, nebular
emission) are not included. The models are obtained from Bruzual and Charlot (2003). Note the
break at ∼ 0.37 − 0.40µm present in all models, albeit with varying shape, strength, and precise
location.

If the full distribution P (z|zp) is known, then the shear cross-power spectra for any pair of
redshift slices can be determined for a given cosmological model. However, the use of photo-zs
to suppress intrinsic alignments (§5.6.1) does not work if the intrinsic alignments of the outliers
are significant, or even if the scatter is large enough that galaxies can evolve significantly within a
redshift bin, so there is a strong motivation to reduce them to the minimum level possible. Thus
lensing programs must face two challenging problems: (i) obtaining a low outlier rate, and (ii)
determining P (z|zp) to sub-percent precision.

To understand how to reduce the outlier rate, we must investigate how photo-zs work: they
take several broad-band fluxes from a galaxy and try to identify spectral features (see Fig. 18). At
low redshifts, the strongest feature in the optical part of a galaxy spectrum is the break around
3800–4000Å, arising from metal line absorption in early-type galaxies and the Balmer continuum
(plus high-order lines) in late-type galaxies. As the redshift of the galaxy increases, this feature
moves to the red, and above redshifts of z ∼ 1.3 it is no longer useful for optical photo-zs (depending
on the SNR in z and y bands). At z ≥ 2, the Lyα break redshifts into the optical bands and can be
used – but it is possible to confuse it with the Balmer/4000Å break. This is the principal example
of a photo-z degeneracy.

The above discussion suggests that to reduce outliers across the whole range of redshifts used
for WL surveys (z = 0 to ∼ 3) one desires coverage from blueward of the Balmer/4000Å feature
(i.e. a u-band) through the near-IR (J+H bands), so that either the Balmer/4000Å feature or Lyα
is robustly identifiable. The optical bands can be easily observed from the ground. As one moves
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redward, however, the sky brightness as observed from the ground increases rapidly, and obtaining
the J +H band photometry matched to the depth of future surveys is only practical from space.

One is then left with the problem of measuring the photo-z error distribution. The most direct
and conceptually simplest way to do this is to collect spectroscopic redshifts of a representative
subsample of the sources used for WL. This is, however, very expensive in terms of telescope time:
many galaxies have weak or absent emission lines (particularly if one restricts to the optical range),
and so one searches for absorption features of faint (i ∼ 22−25) galaxies. Stage III/IV experiments
may require O(105) redshifts to calibrate photo-zs at the level of their statistical errors, and we
desire sub-percent failure rates because the failures are likely concentrated at specific redshifts.
These failure rates are far below those that have actually been achieved by spectroscopic surveys
at the desired magnitudes.

An alternative idea (Newman, 2008) is to use the 2-D angular cross-correlation of the photo-z
galaxies with a large area spectroscopic redshift survey, which can target brighter galaxies and/or
the subset of faint galaxies that have strong emission lines. For a bin of galaxies with photo-z cen-
tered on zp, the amplitude of cross-correlation is proportional to bspec(z)bphot(z, zp)P (z|zp), where
bspec and bphot are the clustering bias factors of the spectroscopic and photo-z galaxies, respectively,
at redshift z. The auto-correlations of the spectroscopic and photo-z samples provide additional
constraints on the bias factors, and one also has the normalization condition

∫
P (z|zp) dz = 1

for each zp bin. The key uncertainty in this approach is constraining the full redshift-dependent
bphot(z, zp); if the bias varies with photo-z error (e.g., because high-bias red galaxies and low-bias
blue galaxies have different photo-z error distributions) then this dependence must be modeled
to extract P (z|zp) (Matthews and Newman, 2010). If one is using intermediate or small scale
clustering, then one must also allow for scale-dependent bias and for cross-correlation coefficients
lower than unity between different galaxy populations, which would lower the amplitude of cross-
correlations relative to auto-correlations. Finally, the approach requires a spectroscopic sample
that spans the full redshift range of the photometric sample; a quasar redshift survey may provide
sufficient sampling density for probing the high-redshift tail of P (z|zp). The cross-correlation tech-
nique has to date not been used for WL surveys, but it has been used to measure other redshift
distributions — see, e.g., the application to radio galaxies by Ho et al. (2008). Adding galaxy-
galaxy lensing measurements to the galaxy clustering measurements may improve the robustness
and accuracy of the cross-correlation approach and allow some degree of “self-calibration” without
relying on an external spectroscopic data set (Zhang et al., 2010).

Overall, the problem of measuring P (z|zp) to the required accuracy remains one of the greatest
challenges for future WL projects. Given the difficulty of assembling an ideal spectroscopic cali-
bration sample, the treatment of photo-z distributions in Stage III and Stage IV WL analyses is
likely to involve some combination of direct calibration, cross-correlation calibration, empirically
motivated models of galaxy SEDs, and marginalization over remaining uncertainties in parameter-
ized forms of P (z|zp). Tomographic WL measurements themselves have some power to constrain
these distributions (at the cost of some leverage on cosmological parameters), and weak lensing by
clusters that have well determined individual redshifts may also be a valuable tool.

5.4.4. Lensing in the Radio

An interesting alternative to shape measurement in the optical is to work in the radio part of
the spectrum, where late-type galaxies are observable via their synchrotron emission. In order to
achieve the required resolution, one needs to use a large interferometer: a fringe spacing of 1′′ is
achievable at 1 GHz with a baseline of 60 km. One also needs a large collecting area to obtain
high-SNR images on a competitive number of galaxies; the SKA could in principle measure billions
of galaxies (Blake et al., 2004). But let us suppose such an interferometer were built. What would
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it do for WL? In principle, it could solve many problems at once:

• Shape measurement: An interferometer directly measures the Fourier transform of the surface
brightness of a galaxy, Ĩ(u), thereby avoiding the difficulty of interpolating PSF properties
from stars. On long baselines, the u-plane is usually sparsely sampled, i.e., not all values of u

are observed; the Fourier mode u = L⊥/λ, where L⊥ is the interferometer baseline projected
into the plane of the sky. At a given wavelength, as the Earth rotates, each baseline thus
traces out an ellipse in the u-plane. However, if one combines a finite range of λ and many
baselines, one could fill in the u-plane, and model-fitting shape measurement techniques can
work even with significant coverage gaps. Model-fitting methods were used in the analysis
of the FIRST survey at λ = 20 cm (Chang et al., 2004), which resulted in a 3σ detection of
cosmic shear.

• Redshifts: Late-type galaxies contain atomic gas, and thus radiate in the H i 21 cm line. For
nearby galaxies (z < 0.1) this line has a long history of being used as a redshift indicator.
A Stage IV radio interferometer survey could collect hundreds of millions of spectroscopic
redshifts in this line out to z ∼ 1 − 2, thereby obviating the need to rely on photo-zs and
calibrate photo-z error distributions. Conversely, it is not clear that one could make use of
the many radio galaxies not detected in H i, as even photometric redshifts for large radio
galaxy samples are difficult to obtain at high completeness.

• Shape noise reduction: The radio part of the spectrum offers interesting opportunities to
reduce shape noise. For example, if one spatially resolved the H i disk of a galaxy, one
could produce a velocity map. A perfect inclined disk has the long axis aligned with the
velocity gradient, and if sheared this alignment is destroyed, so a measurement of the velocity
gradient provides independent information on the intrinsic shape of the galaxy (Morales,
2006). Another idea is to use the polarization of the synchrotron emission, which tends to
be perpendicular to the galactic disk and hence is an indicator of the position angle of the
intrinsic minor axis (Brown and Battye, 2011). While promising, these ideas are new, and
their practical application to a WL survey may have to await at least a partial SKA.

5.4.5. Lensing of the CMB

It is also possible to do lensing analyses on the CMB. Here there are several advantages: the
source redshift is known exactly from cosmological parameters, zsrc = 1100; theory predicts exactly
the statistical distribution of hot and cold spots on the CMB, so there is no intrinsic alignment
effect; and the PSF (or “beam” shape) of microwave experiments tends to be far more stable
than in the optical. The CMB is a diffuse field rather than a collection of objects (galaxies), so
reconstructing the shear requires a different mathematical formalism than for galaxy lensing. The
basis for this formalism is two-fold:

• In the presence of lensing by a Fourier mode of the potential ψ̃(l), the CMB anisotropy field
is no longer statistically isotropic: different temperature Fourier modes become correlated,
〈T̃ ∗(l1)T̃ (l2)〉 ∝ ψ̃(l2 − l1). These products of temperature modes can be used as estimators
of the lensing potential (Hu, 2001).

• A more dramatic effect occurs for CMB polarization. The unlensed CMB polarization is pure
E-mode,49 i.e., the polarization in each Fourier mode is parallel to the wavevector rather

49Primordial gravitational waves can generate a B-mode on large scales, but such gravitational waves are adiabat-
ically damped on angular scales below a degree. Thus the ∼ 10′-scale B-mode should be dominated by lensing.

99



than at a 45◦ angle. Lensing shear changes the direction of the wavevector l but not the
polarization, so it can generate B-mode shear.

Until recently, because of SNR issues, lensing of the CMB had been detected only in cross-
correlation with foreground galaxies (Smith et al., 2007; Hirata et al., 2008; Bleem et al., 2012).
The advent of the arcminute-scale CMB experiments ACT and SPT (primarily motivated by cluster
cosmology using the SZ effect) has enabled robust detections of the power spectrum of the CMB
lensing field (Das et al., 2011; van Engelen et al., 2012).

Because CMB lensing only provides a single source slice, it is unlikely to ever replace galaxy
lensing. However, in combination with galaxy lensing, it can provide the most distant source slice
for tomography (Hu, 2002b) and cosmography (Acquaviva et al., 2008).

5.5. Measuring Shears

So far we have treated shear measurement as a black box: it takes in an image of the galaxy and
some knowledge of the instrument, and it returns γ̂+,×, an unbiased estimator for the true shear
γ with some uncertainty per component σγ . This black box is very complicated on the inside, as
one needs an accurate and robust shape measurement algorithm, and even providing the necessary
inputs to such an algorithm, particularly an accurate determination of the PSF, has proven to be
difficult. After a brief overview of these algorithms, we describe the idealized problem of measuring
shear from an ensemble of galaxy images, then turn to a more detailed discussion of the challenges
that arise in practice.

There are two general strategies for shape measurement methods in common use today. One
class of methods is to measure moments of galaxies (in real or Fourier space), and relate, e.g.,
the mean quadrupole moment of galaxies to the shear. These methods started with ad hoc “PSF
correction” prescriptions, but they have recently evolved toward methods that attempt to statisti-
cally close the hierarchy of moments of galaxies and PSFs in a model-independent way. The other
class of methods is based on forward modeling: one adopts a model for a galaxy (e.g., an elliptical
Sersić profile, or a linear combination of basis images), simulates the observational procedure, and
minimizes χ2. Both approaches have their advantages and disadvantages. Much of the early WL
work used moments-based methods, but for years a generally applicable PSF correction scheme
seemed out of reach. Some of the more recent incarnations of the Fourier domain moments-based
methods work for arbitrary distributions of galaxy and PSF profiles; however these are less mature
in their practical implementation, and they impose stringent requirements on input data quality
(e.g., sampling). The forward modeling methods can handle a much wider range of observational
defects (e.g., under some circumstances one may even be able to measure a galaxy containing miss-
ing pixels), but they depend on a model for the galaxy being observed; one must carefully assess
the impact of an insufficiently general model. Both strategies require exquisite knowledge of the
PSF.

Currently there are many algorithms in use in each category. The prototype moments-based
method was that of Kaiser, Squires, and Broadhurst (KSB; Kaiser et al. 1995; improved by Luppino
and Kaiser 1997; Hoekstra et al. 1998). Many improvements of these methods have been made
— e.g., in computing better conversion factors from shear to quadrupole moments50 (Semboloni
et al., 2006b). Elliptical-weighted moments and the concept of shear-covariance were introduced by
Bernstein and Jarvis (2002) and have been used extensively in SDSS (Hirata and Seljak, 2003b).
Further progress was made by moving to moments in Fourier space, where the PSF “correction”
becomes trivial (one divides by the Fourier transform of the PSF, at least in the regions where it is

50Massey et al. (2007a) §3.1.1 give an excellent technical review of the methods derived from KSB.
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nonzero). This has culminated in the development of a shape measurement method that is exact
in the high-SNR limit (Bernstein, 2010). We discuss this method and its development in §5.5.2.
An early example of the model-fitting approach was im2shape (Bridle et al., 2002). More recently,
Bayesian model fits have been introduced that are stable at lower SNR (Miller et al., 2007; Kitching
et al., 2008); these are currently being applied to the CFHTLS. The “shapelet” basis (Refregier,
2003; Refregier and Bacon, 2003), derived from energy eigenstates of a 2D quantum harmonic
oscillator, is useful in both types of methods. The coefficients in a shapelet decomposition are

moments, but one may also fit a model galaxy parameterized by its shapelet coefficients.
The various shape measurement algorithms have been tested and compared in blind simulations,

such as the Shear Testing Program (STEP1/STEP2; Heymans et al. 2006; Massey et al. 2007a),
GREAT08 (Bridle et al., 2010), and GREAT10 (Kitching et al., 2010). In most of these cases, the
objective is to minimize both the shear calibration error m (i.e. the error in the response to a given
input shear) and the spurious shear c (i.e., the shear measured by the algorithm on an unlensed
sample of galaxies). The STEP2 simulations used typical ground-based PSFs and complex galaxy
morphologies and found that many of the measurement methods had shear calibration errors |m|
of one-to-several percent, and spurious shear |c| ranging from several ×10−4 to several ×10−3.
This level of performance should thus be considered typical of the more mature, heavily used
shear measurement algorithms, although recent methods have done better. On the other hand, the
algorithmic errors are only a portion of the error budget in a WL experiment — most importantly,
the early simulation tests did not require participants to recover the spatial variability of the PSF.
Such a test is currently ongoing as part of the GREAT10 challenge (Kitching et al., 2010). Early
results from GREAT10 are now available, but their significance is still being digested.

In the remaining portions of this section we will discuss the mathematical problem of shape
measurement (§5.5.1) and the basis for some of the commonly used methods (§5.5.2) and their
statistical errors (§5.5.3). We cannot of course do justice to every method that has been suggested
or used. We have chosen to highlight the recent progress in Fourier-space methods, since in principle
they provide an exact solution in the limit of high SNR and are thus ripe for further development
and utilization (Bernstein, 2010). There are some biases that can result even for perfect shape
measurement (or galaxies measured with a δ-function PSF), including the noise-related biases and
selection biases, which are probably present at some level for all known algorithms; these are
discussed in §5.5.4. Finally §5.5.5 describes the determination of the PSF, which is taken as an
input for any shape measurement algorithm.

5.5.1. The Idealized Problem

The idealized shape measurement problem is as follows: we have a galaxy in the source plane
whose surface brightness is f0(x), where x is a 2-dimensional vector in the plane of the sky. It is
first sheared, i.e., the galaxy in the image plane is f(x) = f0(Sx), where S is the shearing matrix,

S =

(
1 − γ+ −γ×
−γ× 1 + γ+

)
. (102)

(We assume |γ| ≪ 1 here and work to linear order in γ for simplicity, although higher-order
corrections will be important for Stage IV surveys.) We do not observe the actual image on the
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sky, however — we observe it through an instrument with PSF51 G(x). The resulting image is

I(x) = [f ⋆ G](x) =

∫

R2

f(x′)G(x − x′)d2x′ =

∫

R2

f0(Sx′)G(x − x′)d2x′. (103)

This equation may also be written in Fourier space: if we define

Ĩ(u) =

∫

R2

I(x)e−2πiu·xd2x ↔ I(x) =

∫

R2

Ĩ(x)e2πiu·xd2u, (104)

then equation (103) simplifies to
Ĩ(u) = G̃(u)f̃0(S

−1u). (105)

In practice, the image I is only obtained at discrete values of x, i.e., at the pixel centers spaced
by separation ∆. If the image is oversampled, i.e., if the Fourier transform52 of the PSF is zero
(or negligible) at wavenumbers above some |u|max with |u|max < 1/(2∆), then it can be sinc-
interpolated to recover the full continuous function,

I(x) =
∑

n1n2

I(n1∆, n2∆) sinc
π(x1 − n1∆)

∆
sinc

π(x2 − n2∆)

∆
. (106)

The pixelization thus represents no special difficulty, except that the sinc function has noncompact
support and must be smoothly truncated. A second implication of oversampling is that integrals
of the form

∫
P (x)I1(x)I2(x) d2x, where P is a polynomial in the coordinates and I1 and I2 are

oversampled functions, can be replaced without error by (infinite) sums over pixels:
∫

→ ∆2
∑

.
Again, in practice such sums must be truncated.

We will also define a critical wavenumber ucrit, which is the smallest wave number for which
there is a Fourier mode with G(u) = 0 with |u| = ucrit. Then we have G(u) 6= 0 for any |u| < ucrit.
This critical wavenumber determines the region within the Fourier plane over which deconvolution
is possible, and over which measurement of f̃(u) is possible.

A shape measurement algorithm is a functional γ̂i[I;G], i ∈ {+,×}, that returns a shear
estimate. When averaged over a population of galaxies with the same shear, such an algorithm will
yield an expectation value

〈γ̂a〉 = ca + (δab +mab)γb + O(γ2). (107)

Here ca is called the additive shear error andmab is the multiplicative shear error or shear calibration
error. An ideal algorithm will have ca = mab = 0.

Many WL surveys take multiple exposures of each field; if they are oversampled, one may use
equation (106) to reconstruct a continuous function I(x) for each exposure. If the PSFs in each
exposure differ (which they usually do), then to construct a stacked image, one can either apply
a convolution kernel to each input image to make the PSFs the same or do a noise-weighted least
squares fit to each Fourier mode f̃(u). If the individual exposures are undersampled (as is likely for
space-based data) and appropriately dithered, methods are available in both Fourier space (Lauer,
1999) and real space (Fruchter, 2011; Rowe et al., 2011) to reconstruct a fully-sampled and hence

51Here we use the term “PSF” to include not just the image of a point source produced by the telescope optics but
also pointing jitter and detector effects. For example, if the detector has square pixels, the PSF is that delivered by
the telescope convolved with a square top-hat function.

52It is important to recall that the definition of oversampling required for equation (106) operates in Fourier space.
The commonly used condition for oversampling that the FWHM should exceed 2 pixels is a good rule of thumb for
smooth profiles such a Gaussian, but it is not appropriate for general PSFs.
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continuous image I(x).53 In either case, the problem is still one of measuring the shear from an
ensemble of images of different galaxies. The one exception is that model-fitting shape measurement
techniques can operate either on the combined images or via a direct fit to the raw input images.
Even in this case, however, with many exposures (as planned for LSST) object detection will have
to be carried out on the combined image in order to reach the full survey depth.

One would intuitively expect that shape measurement becomes more difficult when the PSF
is larger than the intrinsic size of the galaxy being measured. This is indeed the case. While the
idealized problem of measuring shapes in the presence of a PSF is well-defined for any nonzero
galaxy size, in practice both statistical and systematic errors blow up when the PSF becomes
significantly larger than the galaxy. The extent to which the systematic errors in the high-SNR,
rgal < rpsf regime can be addressed will likely determine the constraining power of large-étendue
ground-based WL programs such as that planned for LSST.

5.5.2. Shape Measurement Algorithms*

The most obvious — but flawed — way to construct a shape measurement algorithm is to
simply use the quadrupole moment tensor of a galaxy: one could compute

Qij[I] =

∫

R2

I(x)(xi − x̄i)(xj − x̄j)d
2x, (incorrect) (108)

where x̄ is the centroid and the [I] implies that we compute the quadrupole moment on an observed
image. It is easily seen from the properties of convolutions that Qij[f ] = Qij [I] −Qij[G], i.e., one
may obtain the pre-PSF quadrupole moment of a galaxy by subtracting the observed quadrupole
moment from that of a PSF. Then one could construct the ellipticities of the galaxy, which are
simply the trace-free components of the quadrupole moment normalized by the trace:

e+[f ] =
Q11[f ] −Q22[f ]

Q11[f ] +Q22[f ]
and e×[f ] =

2Q12[f ]

Q11[f ] +Q22[f ]
. (109)

Since the quadrupole moment of f is simply related to that of f0 via

Qij[f ] = (S−1)ik(S
−1)jlQkl[f0], (110)

we may derive the transformation law for ellipticities under infinitesimal shear:

e+[f ] = e+[f0] + 2γ+ − e+[f0](γ+e+[f0] + γ×e×[f0]) and

e×[f ] = e×[f0] + 2γ× − e×[f0](γ+e+[f0] + γ×e×[f0]). (111)

It is then easily seen that the mean ellipticity of a population of galaxies that has an initially

isotropic distribution of ellipticities – i.e., P (e+, e×) depends only on the magnitude
√
e2+ + e2× and

not on the direction arctan(e×/e+) — is

〈ea〉 =
(
2 − e2rms

)
γa, (112)

where e2rms is the mean square ellipticity per component (+ or ×). Since we work to first order in
γ, we may use the mean square ellipticity of the observed sources in equation (112). So the galaxy

53Much of the HST/COSMOS weak lensing work used the “Drizzle” algorithm (Fruchter and Hook, 2002), which
in general leads to a slightly different PSF in each pixel. However, this did not represent a limiting systematic for
the ∼ 2 deg2 observed in COSMOS.
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ellipticity divided by 2− e2rms is a shear estimator satisfying our desired conditions: by comparison
to equation (107) there is no additive or multiplicative bias.

The problem with this procedure is that the unweighted quadrupole moment, equation (108),
involves an integral over the entire sky, with a weight that increases ∝ x2 as one moves away from
the centroid of the galaxy. Therefore its measurement noise is infinite. It also fails to converge
if the wings of the PSF decline as G(x) ∝ |x|−α for α ≤ 4, i.e., it fails to converge for all PSFs
realized in modern optical telescopes. Therefore equation (108) needs modification.

A conceptually simple approach is to do a model fit to each galaxy. If one fits a model of an
exponential or de Vaucouleurs profile galaxy with homologous elliptical isophotes, then one can
obtain the quadrupole moment Qij[f ] analytically from the model and hence the ellipticity of the
galaxy. Modern model-fitting techniques can even fit more general radial profiles, or simultaneously
fit bulge + disk models. Model fitting is also robust against many types of nastiness that occur in
real data, such as dead pixels, cosmic rays, or nonlinear detector effects. However, model fitting
assumes that the galaxy actually obeys the model — and especially at z > 1, the appearance of
galaxies is not simple and they are not describable by simple analytical functions. At present,
our best approach to understand what happens when simple model fits are confronted with com-
plex galaxies is with simulations. One can even imagine “re-calibrating” these methods using the
simulations, e.g. by subtracting the simulated ci from each shear and multiplying by the matrix
inverse of δij +mij (see eq. 107); but of course one is then relying on the galaxy population in the
simulation to closely trace reality.

One could also attempt to do a regularized deconvolution of the galaxy. The most popular
such technique is a basis function technique: one writes the galaxy image as f(x) =

∑
n bnψn(x),

where {ψn} are a finite basis set and bn are the fit coefficients; this then becomes a model-fitting
problem. A common choice is the “shapelet” basis, where the {ψn} are the energy eigenmodes of
the 2-D quantum harmonic oscillator (polynomials times Gaussians); this requires (N+1)(N+2)/2
eigenfunctions to represent the 0...N energy levels (Refregier, 2003; Refregier and Bacon, 2003).
This basis is complete in the limit of large N , and the Gaussian endows the basis coefficients with
simple transformation properties under translation and shear. Real galaxies often require very large
N to be well-represented, however, especially for cuspy profiles.

A final class of ideas has been to note that any ellipticity formula that is shear-covariant in the
sense of transforming via equation (111) enables us to use equation (112). For example, suppose
that we had the galaxy image f before PSF convolution, and did an unweighted least-squares fit,
in the sense of minimizing

c =

∫

R2

[f(x) − fmodel(x|p)]2 d2x. (113)

Here fmodel is an elliptical Gaussian fit to the image with free amplitude A, centroid x̄i, and second
moment matrix Qelfit

ij (6 parameters). Then Qelfit
ij and the ellipticities constructed from it would be

shear-covariant — even if the galaxy’s true radial profile does not resemble a Gaussian!54 Early
work on implementing this idea in the presence of a PSF attempted to determine the second mo-
ment matrix of the image on the sky Qelfit

ij [f ] from the observed image and the PSF. For example,

Gaussian galaxies and PSFs satisfy Qelfit
ij [f ] = Qelfit

ij [I] −Qelfit
ij [G], and so “non-Gaussianity correc-

tions” were introduced (Bernstein and Jarvis, 2002; Hirata and Seljak, 2003b) that yielded shear
calibration errors of a few percent. But these methods were heuristic, and moreover they suffer
from a fundamental limitation: Qelfit

ij [f ] depends on very high-wavenumber Fourier modes u of the

image, which are not preserved by the PSF, i.e. G̃(u) = 0. It is therefore mathematically impossible

54This is easily seen because the measure d2
x in equation (113) is shear-invariant.

104



to determine Qij[f ] from the data in a model-independent manner.
To understand this point more fully, and illustrate a solution, let us imagine that we are doing

an unweighted least-squares fit of a parameterized image fmodel(p), using equation (113). For
convenience, we will write the parameters as p = {A,σgal, x̄1, x̄2, e+, e×}, where σgal = (detQ)1/4

is a characteristic scale length of the galaxy, so that they have simple transformation properties
under rotations. Written in Fourier space, it becomes

c =

∫

R2

[f̃(u) − f̃model(u|p)]2 d2u, (114)

and its minimum is given by the simultaneous solution of the 6 equations

0 =

∫

R2

f̃(u)
∂f̃model(u|p)

∂pα
d2u, (115)

where pα is any of the 6 parameters. The problem occurs because ∂f̃model(u|p)/∂pα has support
at |u| > ucrit, where we cannot determine f̃(u).

A solution to this problem has been proposed by Bernstein (2010)55, which is in principle exact
in the low-noise limit and has been applied to simulations (but not yet to actual data). The key
is to work in the Fourier domain, where the effect of the PSF is simple and the effect of the shear
is as simple as in real space. We present the solution here in its most general form, and refer the
reader to Bernstein (2010) for implementation details. The solution is to replace equation (115)
with

0 = tα =

∫

R2

f̃(u)W̃α(u|p) d2u, (116)

where W1...W6 are weight functions. These should be envisioned to be qualitatively similar to
the derivatives in equation (115); but the only rules that we will impose are that: (i) the Fourier
transforms W̃α(u|p) have compact support, confined to |u| < ucrit; and (ii) they are rotation and
translation-covariant, e.g., changing the centroid parameter by δx̄ simply translates the function
Wα(x) → Wα(x − δx̄), and there is a similar transformation when rotating the ellipticity compo-
nents.56 We do not require the Wα to be shear-covariant: indeed, since a large shear can map any
mode to another mode with |u| > ucrit, such a requirement would be inconsistent with rule (i).
Now we may write equation (116) as

0 =

∫

|u|<ucrit

Ĩ(u)
W̃α(u|p)

G̃(u)
d2u. (117)

The combination W̃α/G̃ is well-defined, and Ĩ(u) is the Fourier transform of the observed image,
so the parameters p can be measured from the data.

By rule (ii), we have rotation covariance, so the mean of the ellipticities 〈e〉 over an isotropic
population of galaxies is zero — even if the PSF is anisotropic. Thus there is no additive bias
(except for selection and noise effects — see warnings below). However, dropping shear covariance
has come at a price: the ellipticities (e+, e×) no longer transform according to equation (111), and
the responsivity coefficient 〈e〉 = Rγ must be determined. Fortunately, we can evaluate the effect

55See also Kaiser (2000), which contains many of these ideas but seems to have been promptly forgotten by most
of the WL comminity!

56Note that Wx̄ must transform as a vector under rotations, and We as a spin-2 tensor.
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of an infinitesimal shear on equation (116): if S = 1 + δS, then to first order in δS,

δf̃(u) = −ui[δS]ij
∂f̃(u)

∂uj
, (118)

and so

0 = δtα = −
∫

R2

ui[δS]ij
∂f̃(u)

∂uj
W̃α(u|p) d2u +

{∫

R2

f̃0(u)
∂W̃α(u|p)

∂pβ
d2u

}
δpβ . (119)

The integral in braces {} is simply a 6 × 6 matrix, which we denote Eαβ . Using integration by
parts, the tracelessness of δS in the first integral, and the substitution f̃ → Ĩ/G̃, we then find

δpβ = −[E−1]βα[δS]ij

∫

|u|<ucrit

Ĩ(u)

G̃(u)
ui
∂W̃α(u|p)

∂uj
d2u, (120)

which is well-defined. This equation tells us how the parameters for each galaxy vary under an
infinitesimal shear; their ensemble average gives R. Note that once shear covariance has been
dropped, it is only possible to know the responsivity factor R if one has a sample of real galaxies
to observe, since one needs the sample of real galaxies to compute the matrix Eαβ.

A related approach to solving the shear calibration problem was suggested by Mandelbaum
et al. (2012). They noted that given a high-resolution image of a galaxy (e.g., a space-based image)
with PSF G1, it is often possible to construct a lower resolution but sheared image of the same
galaxy with PSF G2 in a model-independent way. One can thus directly test any shear estimator
on the sheared images, and extract the shear calibration factor. Conceptually, the criterion for
this to work is that all of the Fourier modes of the image observable using PSF G2 must be within
the band limit of G1 with enough “padding” to make sure that the shear (which also shears the
Fourier plane!) does not bring unobserved high-wavenumber modes not seen with G1 into the
region seen by G2. Mathematically, the criterion for this to be possible are that there exist two
critical wavenumbers uc and ud such that (i) all the power in the low-resolution PSF is below
uc, i.e. G̃2(u) = 0 for |u| ≥ uc; (ii) the high-resolution transfer function G̃1(u) is far from zero,
i.e. 1/G̃1(u) is well-behaved, at all |u| < ud; and (iii) uc > (1 − γ)ud. Then one can use the
Fourier-domain multiplication:

Ĩ
(γ)
2 (u) = G̃2(u)T̃ (S−1u)Ĩ1(S

−1u), (121)

where T̃ (u) = 1/G̃1(u) for wave vectors |u| < ud. As implemented, this method requires a higher-
resolution image of a fair subsample of galaxies, which is not always available. It may however be
quite useful in the Stage III ground-based programs, where one might use HST data for the “high
resolution” image; see Mandelbaum et al. (2012) for a preliminary application of HST data to shear
calibration in SDSS.

5.5.3. Shape Measurement Errors*

The statistical uncertainty in ellipticity estimation depends on the method used and the radial
profile of the galaxy, as well as the sizes of the galaxy and PSF and the SNR. Rules of thumb can
be obtained by considering nearly circular Gaussians. Propagating instrument noise through the
elliptical Gaussian fitting method, Bernstein and Jarvis (2002) find, in the absence of a PSF,

σ(e+[f ]) = σ(e×[f ]) =

√
16πnσf

F
=

2

ν
, (122)
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where n is the flux noise variance per unit area, F is the galaxy flux, σf is the 1σ width of the
galaxy (note: the effective radius of a Gaussian is 1.177σf ), and ν is the detection SNR in an
optimal filter. In the presence of a circular Gaussian PSF, the ellipticity is diluted by

e[I] =
σ2

f

σ2
I

e[f ] =
σ2

f

σ2
f + σ2

G

e[f ], (123)

where σG is the PSF width and σI is the width of the PSF-convolved galaxy image. Furthermore, the
detection SNR is reduced because the galaxy is smeared out into an aperture with more noise, so it
follows that equation (122) should be modified by replacing σf → σI ; and, if we want the uncertainty
in the pre-PSF galaxy ellipticity, we must divide out the σ2

f/σ
2
I factor from equation (123). This

gives

σ(e+[f ]) = σ(e×[f ]) =

√
16πn σ3

I

Fσ2
f

=
2

ν

σ2
I

σ2
f

. (124)

This provides a large advantage for making the PSF smaller than the galaxy: since the noise
variance n scales with observing time as t−1, the time required to measure the shape of a galaxy
scales as

t ∝ σ6
I ∝

(
1 +

σ2
G

σ2
f

)3

; (125)

in the limit of a poorly resolved galaxy (σf ≪ σG) a factor of 2 improvement in the PSF provides
a factor of 64 gain in speed. However, as the PSF becomes smaller than the galaxy this advantage
saturates.

Equation (123) also illustrates another property of shape measurement: systematic errors as
well as statistical errors are inflated by having large PSFs. For example, if there is a systematic
error in the ellipticity of the observed image I, it propagates to the estimated pre-PSF ellipticity
e[f ] with a multiplying factor of (σ2

f +σ2
G)/σ2

f . Therefore there is a systematics advantage to having
σG ≪ σf .

The shear uncertainty is a factor of ∼ 2 smaller than the ellipticity uncertainty owing to the
responsivity factor 2 − e2rms (eq. 112). It does however have a minimum value: the ellipticity of an
individual galaxy has an RMS variation of erms ∼ 0.4 per component, so there is a limiting “shape
noise” contribution to the shear measurement uncertainty of σγ ≈ 0.2. There are some ideas
for how to circumvent this limit using the color- or scale-dependence of ellipticity (Lombardi and
Bertin, 1998; Jarvis and Jain, 2008) or taking advantage of the non-Gaussianity of the ellipticity
distribution (Kaiser, 2000; Bernstein and Jarvis, 2002), but there are no clear routes to large
improvement for optical galaxies. For galaxies imaged in the HI 21cm line, one might be able to
use kinematic signatures to distinguish random orientation from lensing shear (e.g. Morales, 2006).

5.5.4. Noise Rectification and Selection Biases*

Two pernicious biases can arise even for the “exact” shape measurement algorithms described
above: the noise rectification and selection biases.

Noise rectification bias arises whenever a nonlinear transformation, such as ellipticity measure-
ment, is applied to noisy data. If we Taylor-expand the mean of the ellipticity measured on the
true image Iobs around the noiseless image I, we find

〈e[Iobs]〉 = e[I] +
1

2

∑

ab

∂2e

∂I(xa)∂I(xb)
Cov[I(xa), I(xb)] + ..., (126)
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where the sum is over pairs of pixels in the image, and xa and xb are positions of those pixels. The
bias is proportional to the noise variance, i.e., to (S/N)−2 at leading order.

One might at first think that the pixel covariance is described by uncorrelated white noise, which
is statistically shear-invariant and thus leads to no bias, but in the presence of a PSF correction
[i.e., dividing by G̃(u)] this is no longer the case. The noise rectification bias was first recognized
in the context of WL by Kaiser (2000), who showed that because the centroiding of a galaxy
is more accurate on the “short” than the “long” axis of the PSF there is a preference for the
measured second moment of the galaxy to be elongated along the PSF, even if the PSF correction
method is perfect in the deterministic case. This was generalized by Bernstein and Jarvis (2002) to
incorporate other noise-related biases and by Hirata and Seljak (2004) to include the effect on shear
calibration errors. Equation (126) provides a unified framework for computing all of these biases
to order (S/N)−2. At low S/N higher-order terms in the expansion may become important, and
the expansion itself may break down, e.g., as fitting algorithms jump to alternate χ2 minima. It is
our judgment that it is best to stay away from this “nonperturbative noise” regime. For a recent
investigation of noise rectification bias in the context of current shape-measurement algorithms, see
Melchior and Viola (2012).

Selection biases are well-known in astronomy. In our case, they will affect the shear if there is
a bias in favor of detecting galaxies in some orientations rather than others, producing an additive
shear error, or if selection depends on the magnitude of the ellipticity, which leads to a multiplicative
shear error because galaxies are preferentially selected when their intrinsic ellipticity is aligned with
the shear (Hirata and Seljak, 2003b). A similar bias results if galaxies are weighted by various
properties (e.g., ellipticity uncertainty) that are not shear-invariant. The formalism of §5.5.2 can
in principle handle this problem if instead of computing 〈e〉 we compute 〈we〉 where the weight
w = 0 for galaxies that are rejected. However, the assessment of selection biases in practice has
been addressed through simulations such as the STEP program.

A problem related to selection biases is blending: the superposition of images of two galaxies.
If the galaxies are at the same redshift, they are affected by the same shear, and an ideal shape
measurement algorithm that measures the blend should recover the “correct” answer — indeed,
existing WL surveys must contain many sources that are actually blended with their own satellite
galaxies. But if the deblending algorithm is not shear-invariant there can be a bias in the shear.
Another issue, particularly for ground-based Stage IV experiments that will aim for high source
densities at modest resolution and very small statistical errors, is accidental blending of galaxies at
different redshifts (and hence different shears).

The general strategy for dealing with these categories of biases is: (1) make choices (e.g., S/N
cuts) that keep them small to the extent possible; (2) compute corrections using simulations and/or
analytic estimates, and apply them to the measurements; (3) test the accuracy of these corrections
in the data by looking for the expected scalings with S/N, source size, and so forth; and (4)
marginalize over remaining uncertainties in the corrections.

5.5.5. Determining the PSF and Instrument Properties

Shape measurement algorithms are only as useful as their inputs: in this case a map of the
PSF G(x) at each point in the field. Determining the PSF to sub-percent accuracy is one of the
major challenges in WL. Errors in the PSF model introduce correlated structure into the ellipticity
field of the galaxies, since residual anisotropy in the PSF determination is interpreted as shear by
a shape measurement algorithm.

Fortunately, Nature has provided us with stars, which under typical observing conditions can
be treated as point sources. Unfortunately, there is only a finite density of stars in high Galactic
latitude fields, typically of order 1 per arcmin2, so one must interpolate the PSF to the position
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of a galaxy. This is a demanding challenge; any error in the interpolated PSF is likely to have
spatial structure. It is also not an easy problem, as the PSF is an entire function G(x; θ) at
every 2-d position θ on the sky, and in contrast to shape measurement, interpolation from stars is
underconstrained.57 To date, most of the methods applied to real data are heuristic. For example,
the SDSS analyses fit a low-order polynomial,

G(x; θ) =

N∑

i=0

N−i∑

j=0

M∑

k=1

aijkθ
i
1θ

j
2G

(k)(x), (127)

where the {G(k)} are the top M = 3 principal components of the stellar images, N = 2 is the
interpolation order, and aijk are coefficients. Small scale structure in the PSF variation may not
be well represented by this approach unless N is large, but if the required number of polynomial
coefficients (N+1)(N+2)/2 exceeds the number of stars in each frame then the method falls apart.
If the small-scale structure is repeatable, for example if it is associated with low-order aberrations
in the telescope or the topography of the focal plane, then one may make progress by applying
PCA to the angular dependence in instrument-fixed coordinates (Jarvis and Jain, 2004), choosing
the top K modes out of the space of (N + 1)(N + 2)/2 polynomials. Recent work has focused on
improved interpolation schemes that outperform polynomials (e.g., Bergé et al. 2012).

For space-based data, one can either build a physical model of the PSF (Rhodes et al., 2006) or
use PCA (Jee et al., 2007). However, for ground-based data where the PSF has a large contribution
from atmospheric turbulence, the more empirical interpolation schemes have been the methods of
choice.

Once one has the PSF, one needs a method of quality assessment. We need to be able to
determine, or at least bound, the power spectrum of the residual PSF systematics that leak into
cosmic shear results. (For GGL, this job is easier because residual PSF anisotropy adds noise but
does not correlate with the positions of the galaxies.) One way is to do null tests: one can compute
the correlation function of ellipticities of the stars and (supposedly) PSF-corrected galaxies, or
search for B-mode shear. The latter is not foolproof, as a PSF systematic of E-mode type can
arise from some aberrations. A very attractive (but underutilized) test is to mask some of the stars
in the PSF fitting and compare the interpolated PSFs at their locations to the observed stellar
images. There are also methods for using combinations of these correlation functions to test for
“overfitting” – the phenomenon in which a too-general PSF model begins to fit noise or small-scale
structure in the stellar images, with the effect that the interpolated PSF is actually worse (Rowe,
2010).

Even when this is done, there remain two other errors that have received increasing attention
recently, which may cause the PSF of a galaxy to differ from that of a star:

• Color dependence: Real PSFs depend on the wavelength of light: a diffraction-limited tele-
scope has a PSF size that scales ∝ λ, seeing through a Kolmogorov atmosphere gives a size
∝ λ−1/5, aberrations introduce λ-dependence into not just the size of the PSF but its mor-
phology and radial profile, real detectors have response functions that depend on wavelength,
and in ground-based data atmospheric dispersion acts like a prism and causes a centroid shift
with wavelength. Since galaxies have different SEDs than the stars used to fit the PSF (the
galaxies are usually redder), the PSF measured from the stars is not always appropriate to
the galaxies (Cypriano et al., 2010). Moreover, each galaxy contains a range of SEDs due to

57As a reminder, here x is used to refer to the location within the image of each star, i.e., of order ∼ 1′′, whereas
the independent variable θ accounts for variation across the entire field, of order ∼ 1◦.
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differing stellar ages and metallicities and dust columns; and for each of these SEDs there is
a different PSF, with the resulting images superposed on the focal plane (Voigt et al., 2012).
This represents a major challenge: while the centroid wavelength of galaxies in a typical
filter (λ/∆λ ∼ 5) varies by several percent, Stage IV surveys will require sub-percent shear
calibration accuracy, and as yet no WL survey has published a color correction to its PSF at
all. While this area requires much more work, in a problem of this complexity prevention is
the first step to a cure. For example, one can employ an atmospheric dispersion compensator
on the ground, and one can use narrower filters. For smooth spectra or spectra averaged
over moderate redshift ranges, the variation of wavelength centroid scales as ∝ ∆λ2. The
advantage for narrower filters must of course be weighed against the slower survey speed with
smaller ∆λ. If many observations of a given field are taken under varying conditions, as
planned for LSST, one has the intriguing possibility of using the different seeing, focus, or
hour angle dependences of these errors to solve them out and distinguish them from shear. A
final strategy is to use “calibration samples” of galaxies observed in multiple filters to correct
the effect for a lensing survey with a single, wide band (Semboloni et al., 2012).

• Detector effects: A CCD image can be altered during readout due to finite charge-transfer

inefficiency. This results from photoelectrons that temporarily bind to defects (“traps”) in
the material, causing each sky object to leave a trail along the readout direction. If not
corrected, this can appear as a PSF anisotropy, and it is greater for faint objects than for
bright objects because some of the traps saturate, so stellar images tend to underestimate
the effect. Charge transfer inefficiency is primarily a concern for space-based data, since the
principal cause of traps is radiation damage. Remedies applied to HST data have included
empirical corrections to the galaxy ellipticities as a function of row and magnitude, or pixel-
level corrections that begin by “undoing” the charge transfer inefficiency before subsequent
processing (Massey et al., 2010; Rhodes et al., 2010).

• Near-infrared detectors (as planned for WFIRST) suffer from different potential detector-
induced systematic errors than CCDs. In particular, since the image is read “in place” on
the detector rather than transferred out as on a CCD, there is no charge transfer inefficiency.
Instead the major concerns have been interpixel capacitance (the sensitivity of the voltage
on each pixel to the charge collected in neighboring pixels); persistence (a charge trapping
and release phenomenon in which each exposure contains a small amount of residual signal
from previous exposures); and reciprocity failure (a detector exposed to twice the signal for
half the time does not produce the same response, which becomes an issue for comparing the
images of stars and galaxies of very different magnitudes).

5.6. Astrophysical systematics

The principal advantage of weak lensing is that — despite its technical difficulty — it is directly
sensitive to mass. It is thus less affected by astrophysical uncertainties than other probes of cosmic
structure such as the galaxy power spectrum or X-ray cluster counts. However, it is not entirely
free of astrophysical contamination. The two major sources of uncertainties in this case are intrinsic
galaxy alignments, which can mimic the coherent distortion of galaxies by gravitational lensing,
and the prediction of the matter power spectrum.

5.6.1. Intrinsic Alignments*

We have thus far assumed that the intrinsic ellipticities of galaxies are independent, adding
noise but not spurious signal to cosmic shear measurements. However, the orientations of galaxies
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are determined by physical processes — mergers, torquing by tidal fields from the host halo and
large scale structure, etc. — that could produce correlated intrinsic alignments. We first describe
here the general formalism for the impact of intrinsic alignments, then consider what observations
and theory have taught us about them. We conclude by discussing prospects for intrinsic alignment
removal.

The field of intrinsic galaxy ellipticities is a tensor function e(r, n̂) of position r and viewing
direction n̂. In this sense it is very similar to CMB polarization. In principle it also depends on
the type of galaxy under consideration and on the observational details — for example, the B
and I-band images of a galaxy could have different ellipticities. We may also discuss either the
unweighted intrinsic ellipticity field eunwt or the field weighted by the galaxies,

ewt(r, n̂) ≡ [1 + g(r)]eunwt(r, n̂), (128)

where g = (ngal − n̄)/n̄ is the galaxy overdensity. In what follows, we use e to denote the galaxy-
weighted field ewt, since this is most closely related to what one observes in a survey.

Like any other field, e can be Fourier transformed to give ẽ(k, n̂), with a power spectrum

〈ẽ∗a(k, n̂)ẽb(k
′, n̂′)〉 = (2π)3δ(3)(k − k′)Pe;ab(k, n̂, n̂

′) , (129)

where a, b are spin-2 tensor indices. Here we break from the train of reasoning in CMB polarization
studies: instead of doing a multipole decomposition of e, we note that in the Limber approximation
(which we use exclusively here) there is only one relevant viewing direction – the direction to the
observer — so n̂ = n̂′. Moreover, the Fourier wave vectors that we care about are perpendicular to
the line of sight, so k · n̂ = 0. We will thus write this particular configuration as simply Pe;ab(k). An
E/B mode decomposition is also possible if we rotate the coordinate basis so that the E-component
of ellipticity is aligned along the direction of k and the B-component is at a 45◦ angle; we then
have two ellipticity power spectra, PEE

e (k) and PBB
e (k) (the EB-term vanishes by parity). One

can also write correlations of the ellipticity with scalar fields such as the galaxy or matter density.
In this case, only the E-mode can be correlated, and we write Peδ, Peg, etc.

The measured shear on the sky is a superposition of the WL shear and the intrinsic ellipticity
(converted to shear using the algorithm-specific responsivity factor R):

γobs(θ) = γ(θ) +
1

R

∫
p(DC)e(θ,DC) dDC . (130)

Limber’s equation can then be used to obtain the observed shear power spectrum between the α
and β redshift slices. The E-mode contains three terms:

Cαβ
EE(l; obs) = Cαβ

EE(l;GG) + Cαβ
EE(l;GI) + Cαβ

EE(l; II), (131)

where the GG term is the gravitational lensing shear contribution, II is the intrinsic ellipticity
contribution, and GI is the cross-correlation. The GG term is the desired signal and is given by
equation (81). The other terms are

Cαβ
EE(l; II) =

1

R2

∫
pα(DC1)pβ(DC1)

PEE
e (k = l/DA1)

D2
A1

dDC1 (132)

and

Cαβ
EE(l;GI) =

1

R

∫
[Weff,α(DC1)pβ(DC1) +Weff,β(DC1)pα(DC1)]

Peδ(k = l/DA1)

D2
A1

dDC1. (133)
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There is also an II contribution to the B-mode power spectrum similar to equation (132). Since
there is no B-mode gravitational shear, there is no GG or GI contribution to the B-mode power
spectrum.

Several generic features can be noted from these equations:

• The II contribution to the cross-spectrum is only nonzero if the two redshift distributions
overlap, since it arises from intrinsically aligned galaxies at the same redshift. Therefore,
if low-scatter photo-zs are available, it can be eliminated. This is one motivation for doing
tomography instead of simply measuring the shear power spectrum on a magnitude-limited
sample of galaxies.

• The GI contribution is more troublesome. It arises from the lensing of the more distant slice
by the same matter field that controls the intrinsic ellipticity of the nearby slice. Inspection
of the properties of the window function Weff shows that equation (133) is nonzero for all

redshift distributions, unless either Peδ(k) = 0 or the redshift distributions are δ-functions at
the same redshift, which would dramatically enhance II. Thus we are led to conclude that
every tomographic power spectrum can suffer intrinsic alignment contributions.

• B-mode “shear” can be generated by intrinsic alignments, and if nonzero Cαβ
BB(l) is observed

this is one possible explanation (PSF model errors are another). However, it is possible for
the intrinsic alignment contribution to the E-mode to be much larger because (i) there is no
theoretical reason from galaxy formation to expect PEE

e (k) ∼ PBB
e (k) — indeed, we will see

below that PEE
e (k) ≫ PBB

e (k) may be natural — and (ii) Cαβ
EE(l) can also contain a GI term,

which for broad redshift distributions usually dominates over II. Therefore a nondetection
of B-mode shear does not rule out significant intrinsic alignment contamination.

Before we discuss removal of intrinsic alignments, it is helpful to consider the physics underlying
their power spectra. One can distinguish two cases: early-type galaxies, which are triaxial and
whose intrinsic ellipticity is presumably related to the direction of the most recent merger or
the direction of anisotropic collapse (depending on one’s idea of how these galaxies are formed),
and late-type galaxies, whose ellipticity is determined by the disk angular momentum (perhaps
acquired via tidal torquing during collapse, reshuffled by disk-halo interactions, and perturbed by
minor mergers). The detailed physics of these processes remains elusive, but some predictions can
still be made by traditional galaxy biasing arguments. For example, if one considers the formation
of early-type galaxies in a particular region of the universe, one could argue that at linear order in
the large-scale density field a galaxy’s formation sequence can be sensitive only to the density and
tidal field coming from the linear modes, and to small-scale structure. Since only the tidal field has
the correct symmetry properties to be related to an ellipticity, it follows that the ellipticity should
be proportional to the tidal field,

e+ =
C1

4πGρ̄a2
(∂2

1 − ∂2
2)Φ, and e× =

C1

4πGρ̄a2
(2∂1∂2)Φ , (134)

where C1 controls the strength of alignment and ∂1 and ∂2 denote derivatives along two orthogonal
axes on the sky. This implies that the ellipticity traces the density field, and in particular

PEE
e (k) = C2

1Pδ(k), PBB
e (k) = 0, and Peδ = C1Pδ(k). (135)

Equations (134, 135) are known as the linear alignment model (Catelan et al., 2001). Note that
they predict only E-mode intrinsic alignments, because the alignments are linearly sourced by a
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scalar field.58

Observations of LRGs in the SDSS have shown that the galaxy-ellipticity correlation59 wge(rp)
has the same power-law slope as the galaxy correlation function wg(rp) ∝ r−0.7 (Mandelbaum et al.,
2006; Hirata et al., 2007), with an amplitude that increases rapidly with LRG luminosity. This is
a quantitative success of the linear model. However, on small scales it is not clear how accurate
equation (135) should be.

For late-type galaxies, it is less clear what to expect. The oldest and most widely discussed
model is that disk galaxies acquired their angular momentum from tidal fields acting on nonspherical
protogalaxies, an effect that would make the resulting intrinsic ellipticity quadratic in the tidal field:
this is known as the quadratic alignment model (Pen et al., 2000). This model produces both E
and B-mode II signals, but to leading order it predicts Peδ(k) = 0 and hence gives no GI signal
(Hirata and Seljak, 2004). However, one should be cautious about this argument for several reasons,
most importantly because there has not yet been any quantitative observational confirmation of
the scale and configuration dependence predicted by the quadratic model, and additionally because
perturbation theory arguments show that the nonlinear evolution of the tidal field can generate a
linear type alignment (Hui and Zhang, 2008). What is clear from observations is that the alignments
of late-type galaxies on large scales, at least as measured by wge(rp), are consistent with zero and
are certainly much less than for LRGs (Hirata et al., 2007; Mandelbaum et al., 2011).

Detailed assessments of the intrinsic alignment contamination have been made on the basis of
SDSS, 2SLAQ, and WiggleZ observations of wge(rp) (Hirata et al., 2007; Mandelbaum et al., 2011;
Joachimi et al., 2011). These studies show that for surveys of modest depth (zmed ∼ 0.7) the
GI contamination may be up to several percent of the expected cosmic shear signal for late-type
galaxies if it is near current upper limits, and it could be tens of percent for LRGs. As one probes
to higher source redshifts the level of contamination becomes increasingly uncertain, because there
are not yet galaxy surveys at z ≥ 1 that are capable of probing intrinsic alignments at interesting
levels. The II contamination for broad redshift distributions is found to be much less than GI for
linear alignment models.

Finally, we consider the methods used to remove intrinsic alignments. One starts with preven-
tion: in the recent COSMOS analysis, Schrabback et al. (2010) suppressed II by throwing out the
auto-power spectra of each of their redshift slices with itself, keeping only the cross-spectra. They
also suppressed GI by not including LRGs in the foreground redshift slice, since LRGs contribute
the most to the contamination. However, it is not clear that sample selection alone will provide
sufficient GI rejection for Stage III surveys and beyond. Two general approaches to GI rejection
have been proposed, model-independent and model-dependent.

The model-independent GI rejection method is to note that if we have narrow redshift bins,
and denote the foreground and background slices by zα and zβ respectively, then the GI signal
depends only on intrinsic alignments at zα (i.e., in the nearer bin). Then at fixed zα the GI signal
is proportional to

Cαβ
EE(l;GI) ∝ cotK DC(zα) − cotK DC(zβ), (136)

which becomes small if zβ − zα is small. This is a different redshift dependence than the GG
signal, which is a linear function of cotK DC(zβ) but remains finite as zβ → zα. Hence it could

58If one interprets the model of equation (134) as applying to the unweighted ellipticity field, then converting to a
galaxy-weighted field introduces a B-mode. However it is much smaller than the E-mode signal and vanishes in the
linear regime.

59This has been measured as the line-of-sight integral of the correlation function, w(rp) where rp is the transverse
separation, which contains the same information as the power spectrum.
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be projected out (Hirata and Seljak, 2004) — e.g., one could take the αβ shear cross-spectrum
at several background bins and extrapolate to zα. An alternative implementation of this idea is
nulling (Hirata and Seljak, 2004; Joachimi and Schneider, 2008, 2009), constructing a synthetic
redshift slice by weighting of the different zβ whose window function

Weff,syn[DC(zα)] =
∑

β

wβW [DC(zα),DC (zβ)] = 0. (137)

Clearly some of the weights wβ must be negative. This class of techniques assumes nothing about
the physics of intrinsic alignments, but because of the extrapolations or negative weights it can
amplify observational systematics, and to date it has not been successfully implemented on real
data.

A model-dependent alternative, less demanding in terms of observational systematics, is to con-
struct the 3× 3 symmetric matrix of power spectra of the matter, galaxies, and intrinsic ellipticity,

P(k) =




Pδ Pgδ Peδ

Pgδ Pg Peg

Peδ Peg PEE
e


 (k). (138)

This has six free functions of wavenumber, of which one (Pδ) can be predicted from cosmological
parameters. However, since the tidal field is determined by the matter distribution, if galaxy
alignments are really determined by the tidal field then they should not additionally care where the
other galaxies are: the conditional probability distribution Prob(e|δ, g) =Prob(e|δ). In this case,
and in the limit of a Gaussian field, one should have the restriction60

Peδ(k) =
Pδ(k)

Pgδ(k)
Peg(k). (139)

This relation was assumed by the DETF in their WL parameter forecasts (Albrecht et al., 2006),
and if valid it is very useful because it relates the GI contamination (Peδ) to theory (Pδ), GGL
(Pgδ), and galaxy-ellipticity correlations at the same redshift (Peg). Unfortunately, its accuracy
is unclear in the nonlinear regime, since for non-Gaussian density fields, Prob(e|δ, g) =Prob(e|δ)
no longer implies equation (139); an investigation of this in simulations should be a high priority.
Nevertheless, equation (139) may be usable if the GI correlation for late-type galaxies turns out to
be far below current upper bounds, in which case even a crude correction could reduce it to below
statistical error bars. Further discussions of this approach and an application to observational data
may be found in Bernstein (2009), Joachimi and Bridle (2010), and Kirk et al. (2010).

Intrinsic alignments also represent a contaminant to GGL if the “lens” and “source” redshift
distributions overlap; some of the “sources” may then be physically associated with the lens and
show an alignment that is a result of galaxy formation physics rather than lensing (Bernstein and
Norberg, 2002; Hirata et al., 2004). However, in this case the availability of good photo-zs solves
the problem, since for GGL there are only II alignments, which can be eliminated by restricting
cross-correlations to non-overlapping redshift slices. Consistency checks between GGL and cosmic
shear may provide a useful route to diagnosing the impact of intrinsic alignments on the latter.

60This is a slightly more general relation than assuming that the galaxies are linearly biased with no stochasticity,
in which case one could replace Pδ(k)/Pgδ(k) → 1/b.
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5.6.2. Theoretical uncertainties in the matter power spectrum*

An important systematic error in weak lensing is the prediction of the cosmic shear power
spectrum, which — although far more theoretically tractable than galaxy clustering — is not free
of uncertainty. WL gets most of its information from the nonlinear regime, where the only way to
accurately predict the power spectrum is using large N -body simulations. At the present time, most
WL constraints have used physically motivated fitting formulae calibrated to N -body simulations
(e.g., Peacock and Dodds 1996; Smith et al. 2003), but these have limited accuracy because of the
limited resolution and box size of the simulations and the limited ranges of cosmological parameters
that have been explored. The situation has improved dramatically in recent years thanks to Moore’s
law and the fact that the “interesting” region of parameter space has shrunk considerably. Much
improved nonlinear matter power spectrum calculations have been obtained from the “Coyote
Universe” simulations (Heitmann et al., 2009; Heitmann et al., 2010; Lawrence et al., 2010). Given
this progress, and given that the N -body problem is perfectly well-defined mathematically, we
expect that the theoretical uncertainty in the power spectrum for pure dark matter models will not
be a limiting systematic for WL.

The situation is more complicated when one goes beyond pure dark matter. Baryons make
up ∼ 17% of the matter in the universe, and on small scales they do not trace the dark matter.
Hydrodynamic simulations can follow them, but one cannot hope to model the processes of cool-
ing, star formation, metal enrichment and feedback from first principles. On quasilinear scales,
k ∼few×0.1hMpc−1, the largest uncertainty appears to come from clusters, where redistribution
of the radial distribution of baryons affects the 1-halo contribution to the power spectrum. Obser-
vations of clusters — in particular measurement of cluster concentrations — may help to constrain
this effect (Rudd et al., 2008). It has been proposed to either “self-calibrate” the cluster profile
effect (Zentner et al., 2008) or incorporate information from cluster-galaxy lensing (Mandelbaum
et al., 2008), although this has not yet been necessary for present cosmic shear experiments.

A second uncertainty is associated with the missing baryon problem — the fact that most of
the baryons that should be in galaxy-sized halos (assuming a cosmic baryon:CDM ratio) are not
observed in the stellar, H i, and molecular gas components. If these baryons have been ejected from
the host halo, e.g. via galactic winds or AGN feedback, then they could reduce the matter power
spectrum. These effects were discussed in an idealized “nightmare scenario” by Levine and Gnedin
(2006); more recently, the detailed hydrodynamic simulations of van Daalen et al. (2011) have shown
a suppression of the matter power spectrum by 1% at k = 0.3h/Mpc and 10% at k = 1h/Mpc. These
effects are large compared to the statistical errors of Stage IV WL experiments. Worrisomely, van
Daalen et al. (2011) find that the predictions for the matter power spectrum depend significantly
on the treatment of star formation and AGN feedback in the simulations. In their simulations,
AGN feedback has the effect of reducing the baryon content of the haloes, consistent with X-ray
observations of intrahalo gas: the matter power suppression quoted above is thus within the range
of “reasonable” rather than “extreme/unrealistic” models.

Semboloni et al. (2011) show that the results of the simulations can be captured by a param-
eterized halo model for the baryons, so one may be able to use this approach to marginalize over
uncertainties, but at the price of reducing the cosmological information derived from WL measure-
ments on these scales. Moreover, their mitigation procedure involves tuning the halo model to the
van Daalen et al. (2011) simulations. Therefore one should worry that the removal of baryonic
physics-induced bias seen by Semboloni et al. (2011) might not be realized in practice, if the sim-
ulation captures the qualitative features of AGN feedback but does not quantitatively reproduce
the correct functional form. Zentner et al. (2012) avoid this issue by fitting cosmic shear power
spectra based on the van Daalen et al. (2011) simulations using a mitigation procedure tuned to
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the Rudd et al. (2008) simulations. However they find that this procedure, while successful on
simulated Stage III (DES) survey data, is not adequate for the more ambitious task of Stage IV
data analysis.

In summary, it is clear that better predictions for baryonic effects in the matter power spec-
trum, ancillary observations of baryonic gas to constrain the range of outcomes realized in the real
universe, and optimal methods for incorporating these effects with minimal damage to cosmological
constraints are critical areas for further investigation.

A final issue is the accuracy of the leading-order mapping from Pδ(k, z) to the shear power
spectrum, equation (73). Next-order perturbation theory arguments (Krause and Hirata, 2010)
suggest that the correction is small, only a few σ for Stage IV experiments. Ultimately, this
correction should be computed with ray-tracing simulations that solve the full deflection equation.

5.7. Systematic Errors and their Amelioration: Summary

Summarizing results from our earlier discussion, the principal systematic errors in weak lensing
measurements are:

• PSF correction and shape measurement biases (§§5.5.2–5.5.5): For the typical case of a PSF
of a similar size to the galaxy, the correction of the galaxy ellipticity for PSF effects is of
order unity, and the desired accuracy is < 10−3. This requires both very accurate knowledge
of the PSF and appropriate algorithms to correct for it.

• Redshift distribution uncertainties (§5.4.3): Using source galaxies at a higher redshift in-
creases the WL power spectrum, and hence there is a degeneracy between zsource and the
inferred cosmological parameters. If the source redshift distribution (or distributions, in the
case of a tomographic analysis using photometric redshifts) are not well-calibrated, there is
a resulting error in the inferred cosmology.

• Intrinsic alignments (§5.6.1): The ellipticities of nearby galaxies may be correlated with each
other due to formation in a common environment. This “II effect” adds to the observed shear
power spectrum and represents a systematic error. There can also be cross-correlation of the
intrinsic ellipticity of a nearby galaxy at z = z1 with the lensing signal on a more distant
galaxy at z = z2 > z1, since both depend on the tidal field at z = z1. This latter “GI effect”
contaminates all tomographic cross-power spectra and hence is more difficult to remove than
II.

• Matter power spectrum uncertainties (§5.6.2): Predicting Pm(k, z) from a set of cosmological
parameters is a nontrivial task. This can now be done accurately for dark matter only
cosmologies (assuming that the dark matter behaves as simple CDM), but on small scales the
influence of baryonic physics (cooling, feedback, etc.) is difficult to model.

These errors, and the steps to remove them, are not independent — for example, marginalizing out
the intrinsic alignment effects can amplify systematic errors in photometric redshifts (Bridle and
King, 2007). The development of systematic error budgets and requirements for future surveys thus
requires a global analysis of all of the statistical and systematic uncertainties and their possible
degeneracies (Bernstein, 2009).

We have described numerous strategies for suppressing most of these effects, but a few features
stand out. First, exquisite knowledge of the PSF must be achieved through some combination of
good engineering (designing a stable telescope and instrument and putting it in the best possible
environment), good choice of observing strategy (more dithers and repeat visits), and good algo-
rithms (one needs to generate a homogeneous catalog with well-understood ellipticity errors and
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selection effects). Second, precise photo-zs over the entire range covered by the survey are desirable
for characterizing the redshift distribution, and they are required if one is to even attempt a model-
independent removal of intrinsic alignments — something that has not yet successfully been done.
To achieve these photo-z requirements, one wants optical and near-IR photometry to distinguish
Balmer/4000Å breaks from Lyα breaks and spectroscopic samples that span the full range of the
WL samples. Cross-correlation against large redshift surveys can be an important tool in photo-z
calibration (Newman, 2008).

5.8. Advantages of a Space Mission

A space platform offers two critical advantages for weak lensing: (i) the availability of a small
and stable PSF, and (ii) the low sky brightness in the near-IR, which allows deeper observations.
For this reason, weak lensing has been highlighted as an important science objective for the Euclid

and WFIRST space missions.
The small PSF enables the telescope to resolve many more galaxies (see Fig. 17). The space-

based PSF size is normally determined by the diffraction limit: for an ideal Airy disk with an un-
obstructed circular aperture (off-axis telescope), the 50% encircled energy radius EE50 is 0.535λ/D.
This worsens for obstructed telescopes, reaching 1.25λ/D in the extreme case of blocking 25% of
the area of the telescope entrance. Nevertheless, for typical λ (of order 0.8 µm for a visible mission
and 1.5 µm for a near-IR mission) and reasonable telescope size (D ≥ 1.1 m) the EE50 radius is
several times smaller than the typical ∼ 0.3 − 0.4 arcsec from a good ground-based site. There
are additional contributions to the PSF size – charge diffusion, the pixel tophat, aberrations, and
pointing jitter – but on a space weak lensing mission these would be designed to be subdominant
to diffraction.

A perhaps more important advantage is the stability of the PSF on a space mission, which allows
for better characterization. The dominant contribution to a ground-based PSF is from atmospheric
turbulence, which varies rapidly as a function of time and field position. This is eliminated in space.
Moreover, contributions to the optical distortions from temperature variations and gravity loading
can be reduced or (in the latter case) eliminated, particularly at the L2 Lagrange point, in a high
Earth orbit during periods where shadow is avoided, and/or by using temperature-controlled optics.
The three dominant contributions to PSF ellipticity on a space mission are (i) astigmatism, which
causes the ellipticity of the PSF to vary with focus position; (ii) coma from misaligned optics, which
at second order leads to ellipticity; and (iii) anisotropic pointing jitter. Of these, (i) and (ii) are
functions of mirror positions, whose time and field position dependence are controlled by a small
number of parameters. The pointing jitter is the least stable – it may be different in every exposure
— but it has a controlled position dependence, no color dependence (at least with all-reflective
optics), and can be monitored with the same fine guidance sensors used to point the telescope.
Therefore a space mission offers the possibility of a PSF whose entire structure is determined by
a small number of parameters that can be tracked as a function of time (Ma et al., 2008). This
means it provides the best possibility of providing accurate PSF knowledge at every point in every
exposure. The diffraction PSF has the unfortunate feature of having a size that is highly color-
dependent (∝ λ/D), and in the presence of aberrations the ellipticity is color-dependent as well.
However, in contrast to ground-based observations, the color dependence is controlled by the same
wavefront error that determines the PSF morphology.

As already noted, optimal photo-z performance across the entire relevant range of redshifts
can be obtained only with continuous coverage from blueward of the 4000 Å break (at z = 0)
through the near-IR. In particular the Balmer/4000 Å feature is always detected except at very
high redshift (z > 3), which reduces the number of objects with no breaks identified and provides
cleaner separation of the Lyα versus Balmer/4000 Å breaks. Collecting photometric data points in
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the bluer bands (starting at the ∼ 3200 Å atmospheric cutoff) is quite reasonable from the ground,
and in this area there is no major advantage to a space mission. However, as we move to the red the
space mission begins to look much more attractive. From the ground, the near-IR sky brightness
(relevant for broadband imaging) is dominated by the decay of OH radicals, which are produced
in vibrationally excited states at ∼ 90 km altitude in the Earth’s upper atmosphere (Leinert et al.,
1998). The typical sky brightness rises from 18.5 mag AB arcsec−2 in the Z band through 15.4
mag AB arcsec−2 in the H band.61 In space in the 1–2 µm region the dominant background is
instead scattering of sunlight off of interplanetary dust particles (the “zodiacal light”). The typical
brightness is ∼ 23 mag AB arcsec−2 near the ecliptic poles and 21.5 mag AB arcsec−2 in the ecliptic
plane (Leinert et al., 1998). Thus in the H band the sky brightness is a factor of 300–1000 lower in
space, which means that a space telescope with even ∼ 1 m2 collecting area would outperform the
best ground-based telescopes in terms of near-IR imaging survey speed. Note also that because of
the altitude of the OH emitting layer, airplane or balloon based platforms cannot access the low
background available in space.

5.9. Prospects

The next several years promise to be very exciting for weak lensing as we enter the Stage III
era. Two major wide-field ground-based imagers are coming online in the 2012/13 timeframe: the
Dark Energy Camera62 (DECam) at CTIO in the Southern Hemisphere, and the Hyper Suprime
Cam (HSC) on Subaru in the Northern Hemisphere (Miyazaki et al., 2006). These will provide
great leaps in étendue, roughly 35 m2 deg2 for DECam and 70 m2 deg2 for HSC (versus 8 m2

deg2 for CFHT/MegaCam). The Dark Energy Survey (DES; using DECam) plans to observe 5000
deg2 in the grizy bands over five years to ∼ 24th magnitude (10σ r band AB, shallower in y). The
HSC plans a somewhat deeper and narrower survey, also in grizy (2000 deg2, 25th magnitude 10σ).
These projects together will measure the shapes of roughly 300 million galaxies and provide accurate
photometric redshifts out to z ∼ 1.3; this represents a 11

2 order of magnitude increase relative to
current data sets. We expect that the use of several revisits and shape measurements in multiple
bands, as well as incorporating the lessons from Stage II WL projects such as the CFHTLS and
SDSS, will provide additional control over systematic errors in shape measurement. With careful
attention to the source redshift distribution as well, and the photo-z capability provided by y-band
imaging, the Stage III cosmic shear projects (DES and HSC) should reach the 1% level of precision
on the amplitude σ8, as well as providing high-S/N measurements of its increase as a function of
cosmic time. If the stochasticity issue turns out to be tractable, a similar level of precision will be
reached by using galaxy-galaxy lensing to constrain the bias of galaxies and infer σ8 indirectly from
galaxy clustering.

The Stage III projects will also mark the completion of the research program of extrapolating
the amplitude measured from the CMB forward in time and comparing it to the value of σ8

measured via WL, and using the agreement of the amplitudes to measure w(z) or test GR. There
is a fundamental limitation to this type of comparison coming from reionization: while Planck will
measure the CMB power spectrum to very high accuracy, one needs the optical depth τ to convert
this into a normalization of the initial perturbations. This seems unlikely to be measured from the
CMB E-mode to significantly better than 0.01 due to cosmic variance, foregrounds, and modeling
uncertainties (Holder et al., 2003; Mortonson and Hu, 2008; Colombo and Pierpaoli, 2009).63

61See the WFCAM website, http://casu.ast.cam.ac.uk/surveys-projects/wfcam, and beware of Vega to AB
conversions, which are significant in the near-IR.

62http://www.darkenergysurvey.org/
63In the more distant future, 21 cm measurements may improve our understanding of reionization to the point
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The completion of the DES and HSC will not, however, mark the end of the road for cosmic
shear. Because of the reionization degeneracy, the next step will be to make highly accurate mea-
surements of the shape of the signal (dependence on scale and redshift) rather than its amplitude.
This is a scientific matter of critical importance: if DES/HSC find a convincing deviation from the
expected amplitude of low-redshift structure, one does not know whether this reflects a breakdown
of GR at late times (a phenomenon that might be linked to cosmic acceleration) or something that
happened to alter the growth of structure between z ∼ 103 and z ∼a few (such as massive neutrinos,
though early dark energy would also be a possible explanation). What is needed next is the survey
that measures the rate at which the growth of structure is suppressed internally to the low-redshift
data. In our §8 forecasts we describe deviations from the GR-predicted growth rate using the pa-
rameter ∆γ (see eqs. 15 and 44), though other choices are possible. Even the Stage III surveys may
make only preliminary measurements in this direction. Albrecht et al. (2009) estimated that DES
could measure ∆γ to a 1σ accuracy of only 0.2 using the evolution of the WL signal, and our fiducial
Stage III forecast in §8.3 yields σ∆γ = 0.148 (see Table 9). Clusters calibrated by stacked weak
lensing might enable a significantly tighter constraint (§8.4, Fig. 47), and redshift-space distortions
could also enable good measurements of ∆γ (§7.2). It is not clear, however, that any method will
achieve percent-level measurements of the rate of low redshift structure growth in the 2010 decade.
Reaching this goal is one of the major drivers for Stage IV projects using WL and other probes
of structure growth. It requires highly accurate, low-systematics shape measurements, of galaxies
across a wide range of redshifts, including z > 1 where the angular radii of galaxies are small and
the shape measurement challenges are immense.

Fortunately, the Stage IV WL experiments are already being planned, although their first
light is not expected until ≥ 2020. There are several approaches. One is the Large Synoptic
Survey Telescope (LSST), which would feature a giant-étendue (290 m2 deg2) telescope dedicated
to optical surveys of the Southern Hemisphere. Over a ten-year operating period, LSST would
acquire hundreds of images of every point on the sky, which should go a long way toward identifying
and removing any residual sources of PSF systematics. The incorporation of 6 bands (ugrizy) will
likely lead to the best photometric redshifts practical from the ground over such a wide area. LSST
will survey the entire extragalactic sky available from the south, perhaps 12,000–15,000 deg2. The
usable density of source galaxies, particularly at high redshift, is not certain as it depends on
both advances in measuring galaxies small compared to the PSF and the quality of photometric
redshifts in the notorious 1.3 < z < 2 range. However, by achieving high S/N on almost every
resolved galaxy, LSST is likely to represent the “ultimate experiment” for ground-based optical
weak lensing.

An alternative approach is to exploit the small and stable PSF and availability of the near-IR
bands from space, as planned for ESA’s Euclid mission (scheduled launch in 2020) and the NASA
WFIRST mission (launch date to be determined; see below). Euclid will be a 1.2 m telescope with
a 0.5 deg2 focal plane that will survey 15,000 deg2 in a parallel WL+BAO mode, with shape mea-
surements performed in a broad red band (0.55–0.92 µm). Euclid will have only 3–4 observations of
each galaxy, but this is predicted to be acceptable given the much greater stability of Euclid’s PSF
relative to anything possible on the ground. At ∼ 30 galaxies per arcmin2, Euclid would measure
shapes for ∼ 1.6 billion galaxies. Euclid will also obtain near-IR photometry in three bands, which
will be combined with ground-based optical photometry (from LSST where available) for photo-
metric redshifts; the IR imaging is underresolved and will not be used for shape measurements.
WFIRST, in the “DRM1” configuration described by Green et al. (2012), would be a 1.3m, unob-

where this limitation is removed; however such an advanced understanding is not anticipated in the immediate future.
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structed (i.e., off-axis secondary) infrared space telescope capable of surveying 1400 deg2/yr in a
combined WL+BAO mode (4-band imaging and slitless spectroscopy with resolution λ/∆λ ≈ 600).
The baseline WL program has 5–8 exposures in each of three shape measurement filters (J, H, and
K), with an effective source density neff = 40arcmin−2, and in a shorter wavelength filter (Y) that
provides additional information for photometric redshifts. (LSST or other ground-based data are
again required to provide optical photometry.) Multiple bands provide control of color-dependence
of the PSF, and the degree of data redundancy is much higher than in Euclid because of the larger
number of exposures and the ability to correlate shape measurements in different bands — the WL
signal should be achromatic, but many systematics would not be. However, this greater redun-
dancy, and the fact that the telescope is shared with other science programs, comes at the expense
of what will likely be a smaller survey. The Green et al. (2012) design reference mission calls for 2.4
years of high-latitude imaging and spectroscopy (out of a 5-year mission lifetime), which is sufficient
to cover 3400 deg2.64 As mentioned in §1.3, the transfer of two 2.4-m on-axis space telescopes from
the U.S. National Reconnaissance Office (NRO) to NASA opens an alternative route to WFIRST,
with initial ideas described by Dressler et al. (2012). While this implementation may not increase
the survey area65, the superior angular resolution and light-gathering power of this hardware make
it the only plausible option (at least in the optical-NIR bands) to reach source galaxy densities
of ∼ 70 galaxies/arcmin2 over thousands of deg2. A detailed study of a 2.4-m implementation of
WFIRST is ongoing, with a report planned for April 2013.

By the end of the 2020s, we should have a rich data set from all three of these projects (LSST,
Euclid, and WFIRST) — and perhaps also from a large-scale radio interferometer such as the SKA.
These surveys represent very different approaches to the Stage IV WL problem and will provide
for multiple cross-checks of final results and internal cross-correlations of different data sets. The
total number of galaxies with accurately measured shapes will probably reach ∼ 4 billion, with
most observed by at least two instruments and some with all three. Robust measurements of the
suppression of the growth of structure to σ∆γ ≈ 0.03 — a factor of several better than Stage III
— should then be possible (see Table 8), as well as tests of other possible deviations from ΛCDM
that we have not yet imagined. But a great deal of work will be necessary before then to ensure
that the systematic errors are controlled at this level.

For our forecasts in §8 we adopt a fiducial Stage IV WL program that assumes an effective source
density neff = 23 arcmin−2 over 104 deg2, for a total of 8.3× 108 shape measurements in 14 bins of
photometric redshift (see §8.1 for details). We incorporate (and marginalize over) a multiplicative
shear calibration uncertainty of 2 × 10−3 and a mean photo-z uncertainty of 2 × 10−3; these are
aggregate values, and are larger by

√
14 in each photo-z bin. LSST and Euclid both anticipate a

larger number of shape measurements and thus smaller statistical errors than our fiducial program.
The baseline WFIRST DRM1 survey has a factor of two fewer shape measurements, but the
mission’s technical requirement for shape systematics is a factor of two better. Thus, our fiducial
program is conservative relative to the stated goals of all three experiments, though highly ambitious
relative to the current state of the field.

For this fiducial Stage IV program, Figure 19 shows the predicted shear power spectrum and

64An additional 0.45 years would be devoted to an imaging and spectroscopic survey for supernovae.
65In wide-field ground-based surveys, an increase in telescope aperture, e.g. 2 m → 4 m, increases the étendue,

resulting in a faster survey at the same seeing-limited resolution. For space-based surveys, the natural choice when
receiving a larger telescope is to maintain the same sampling of the PSF (and hence the same f -ratio if the detector
properties remain fixed), which results in each pixel subtending a smaller number of arcseconds. The étendue and
hence survey speed to reach the same extended-source sensitivity are unchanged if the pixel count is held fixed, but
the angular resolution is improved as ∼ λ/D. This is of course an enormous advantage for weak lensing.
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Figure 19 (Left) The predicted cosmic shear power spectrum and statistical errors in each of 14
photo-z bins assuming a ΛCDM cosmological model with the parameters of Albrecht et al. (2009)
and the survey parameters of our fiducial Stage IV WL program. (Right) Impact of systematic
errors relative to statistical errors. For three of the photo-z bins from the left panel, error bars show
the ±1σ statistical errors (in bins of width ∆ log l = 0.2 dex), with vertical offsets between bins
for clarity. Solid, dashed, and dotted curves show, respectively, the effect of a multiplicative shear
calibration bias of 2× 10−3 ×

√
14 (orange), a mean photo-z offset of 2× 10−3 ×

√
14 (green), or an

additive shear bias of 3 × 10−4 ×
√

14 (blue) per z-bin. (The
√

14 is inserted here since an actual
survey would combine all 14 bins.) The power in the additive shear bias was equally distributed in
ln l for the purposes of this plot.

1σ statistical errors, in each of the 14 photo-z bins. In addition to these auto-spectra, the data
allow measurements of Nbin(Nbin−1) cross-spectra among the bins, providing additional statistical
power and tests for intrinsic alignment and other systematics. In a given photo-z bin, the errors
in different l bins are independent. However, the errors from one photo-z bin to another are
correlated because the same foreground structure can lens galaxies in multiple background redshift
shells. We compare the statistical errors to the impact of cosmological parameter changes in §8.7.
The aggregate statistical precision on the overall amplitude of the WL power spectrum, i.e., on
a constant multiplicative factor applied to the auto- and cross-correlations in all photo-z bins, is
≈ 0.21%. The corresponding error on σ8, treated as a single parameter change, is about three
times smaller because the power spectrum scales as σ3

8 in the regime where it is best measured.
The right panel compares the statistical errors in four representative photo-z bins to the effects of
a multiplicative shear calibration bias of 2× 10−3, a mean photo-z bias of 2× 10−3, or an additive
shear bias of 3 × 10−4. We see that systematic errors of this magnitude would be smaller than
the statistical errors in an individual photo-z bin, but the overall impact would be larger than the
aggregate statistical errors. Thus, for our fiducial assumptions the Stage IV program is systematics
limited rather than statistics limited, but not by an enormous factor. Even though our assumptions
for this fiducial program are arguably conservative, it would achieve powerful constraints on the
cosmic expansion history and the history of structure growth, as discussed in §8.

Is there a future for WL beyond Stage IV, both in terms of science motivation and technical
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capability? It seems unlikely that there would be a follow-on experiment that consists of simply a
super-size LSST, Euclid, or WFIRST, particularly given that these experiments will come within
a factor of a few of the cosmic variance limit at several tens of galaxies per arcmin2. Rather the
more distant future would have to involve new technology and a new science case not subject to
the usual limitations. An example might be to look for lensing by primordial gravitational waves,
which is not practical using galaxies as sources (Dodelson et al., 2003) but is at least in principle
possible using highly-redshifted 21 cm radiation as the source, even for tensor-to-scalar ratios as
low as 10−9 (Book et al., 2012). But we have now entered the speculative realm of post-2030 science
and technology, where our ability to forecast the future is of limited reliability. We thus conclude
our discussion of weak lensing here.
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6. Clusters of Galaxies

6.1. General Principles

Galaxy clusters have a long and storied history as cosmological probes. They provided the
first line of evidence for the existence of dark matter (Zwicky, 1933; Smith, 1936), and cluster
mass-to-light ratio measurements suggested that the matter density in the universe was sub-critical
(Ωm < 1) as far back as the early 1970’s (see Gott et al., 1974, and references therein). The evidence
for low Ωm was substantially strengthened by baryon fraction measurements (White et al., 1993;
Evrard, 1997), and by the discovery of massive clusters at high (z ≈ 0.8) redshift (e.g., Henry, 1997;
Eke et al., 1998; Donahue et al., 1998). Today, clusters remain an important cosmological tool,
capable of testing cosmology in a variety of ways. Here we focus on cluster abundances as a tool
for constraining the growth of structure in the matter distribution. Tight geometrical constraints
from BAO and supernovae in turn yield tight predictions for structure growth assuming GR to be
correct. Deviations from these predictions, revealed by weak lensing or by clusters, would constitute
direct evidence for modified gravity as the driver of accelerated expansion. The excellent review by
Allen et al. (2011) discusses other cosmological applications of clusters and examines recent cluster
abundance results in detail (see also the earlier review by Voit 2005); we summarize recent work in
§6.2 but devote most of our attention to methods for Stage III and Stage IV cluster surveys. Other
recent reviews in the field include Kravtsov and Borgani (2012), who review the physics of cluster
formation with emphasis on the insights gained from hydrodynamic cosmological simulations, and
Kneib and Natarajan (2011), who review strong and weak lensing by clusters.

The basic idea of cluster abundance studies is to compare the predicted space density of massive
halos (Figure 1) to the observed space density of clusters, which can be identified via optical, X-
ray, or CMB observables that should correlate with halo mass. In optical searches, the basic
observable is the richness, the number of galaxies in a specified luminosity and color range within a
fiducial radius (typically taken to be the estimated virial radius of the halo). In X-ray searches, the
luminosity LX , temperature TX , and inferred gas mass Mgas all provide observable indicators of
halo mass. In CMB searches, clusters can be characterized by the central or integrated value of the
flux decrement YSZ produced by the Sunyaev-Zel’dovich (1970; hereafter SZ) effect: Compton up-
scattering of CMB photons by hot electrons in the intracluster medium. The product YX = TXMgas

defines an X-ray observable that should scale with YSZ, and numerical simulations predict that YX

tracks halo mass more closely than temperature or gas mass alone (Kravtsov et al., 2006).
The first applications of this approach were made by Peebles et al. (1989) and Evrard (1989),

who used observed cluster abundances to argue against an Ωm = 1 CDM cosmological model (see
also Kaiser 1986b, 1991, who compared the observed evolution of X-ray clusters to predictions of
a self-similar model with Ωm = 1). Halo abundance is sensitive to the amplitude of the matter
power-spectrum σ8 and the matter density Ωm. The mean matter content in a sphere of comoving
radius 8h−1 Mpc is ≈ 2× 1014 M⊙. Thus, cluster-mass halos form from the gravitational collapse
of fluctuations on about this scale, and their abundance naturally tracks σ8. Moreover, because
the total mass of each collapsed volume scales linearly with Ωm, the number of halos at a given
mass can be raised either by raising σ8, so that fluctuations are larger, or by raising Ωm, so that
the mass associated with each perturbation is larger. The quantity most tightly constrained by
cluster abundances is a combination of the form σ8Ω

q
m, with q ≈ 0.4 (White et al., 1993). The

degeneracy between σ8 and Ωm can be broken by measuring abundances at a variety of masses.
This argument also holds at higher redshift, so one can think of cluster abundances as primarily
constraining σ8(z)Ω

q
m, modulated by the additional cosmological dependence of the volume element

dVc(z) ∝ D2
AH

−1dΩdz, and by any intrinsic dependence of cluster observables on the distance–
redshift relations. Note that, as elsewhere in this article, Ωm always refers to the z = 0 value unless
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Figure 20 (a) Cumulative halo counts as a function of limiting mass for a 104 deg2 survey in a
redshift slice z = 0.4± 0.05. The solid line shows the fiducial model from Table 1. The dashed line
corresponds to w = −0.8 with the amplitude of the primordial matter power spectrum held fixed.
The dotted line has w = −0.8, but holds σ8(z = 0.4) fixed. Residuals relative to the fiducial model
are shown in the bottom panel. The small, nearly constant offset of the dotted line is sourced by
the dark energy dependence of the comoving volume element dVC . (b) The significance with which
this hypothetical halo sample could distinguish the fiducial model from the alternatives in panel
(a) as a function of mass threshold, using the statistical error of equation (140). The dot-dashed
line shows an additional model in which σ8(z = 0) is held fixed. Even though the high mass end
of the halo mass function depends most strongly on cosmology, the statistical power of the cluster
abundances is dominated by the low mass end because of the much lower measurement errors.

Ωm(z) is written explicitly.
We illustrate these ideas in Figure 20. Panel (a) shows the expected halo abundance as a

function of the limiting mass in a redshift slice z = 0.35 − 0.45 subtending 104 deg2. Plots for
other redshift slices are qualitatively similar. For this plot, and throughout the rest of this section
unless otherwise noted, halo mass refers to the mass enclosed within a sphere whose mean interior
overdensity is ∆ = 200 relative to the mean matter density of the universe. The solid line is the
abundance in our fiducial model (see Table 1), while the dashed line shows the corresponding halo
abundance when setting w = −0.8 and holding Ωm and the primordial power spectrum amplitude
As(k = 0.002Mpc−1) fixed. Unlike in Figure 1, this choice does not leave the CMB observables
fixed, but it better illustrates the intrinsic sensitivity of cluster abundances. For w = −0.8, dark
energy becomes dynamically important earlier than for w = −1, suppressing growth and lowering
σ8(z = 0.4) from 0.66 to 0.62. This sharply reduces the halo abundance, by ≈ 30% at a threshold
of 1014M⊙ and by ≈ 60% at 1015M⊙. If we raise As so as to hold σ8(z = 0.4) fixed, then the
w = −1 and w = −0.8 models differ by a nearly constant factor of 1.1, which is the ratio of the
comoving volumes of the redshift slices in the two cases. This volume effect is clearly weaker than
the overall scaling of halo abundances with σ8.

While the mean halo abundance becomes more sensitive to σ8(z) at higher masses, the statistical
precision with which one can measure σ8(z) decreases with increasing mass because of the larger
Poisson fluctuations for rarer clusters. This point is illustrated in Figure 20b, which shows the
statistical significance at which a 104 deg2, z = 0.35 − 0.45 cluster survey would distinguish the
models shown in panel (a). For reference, we also show the case in which σ8 is held fixed at z = 0,
which reduces model differences because the growth and volume element effects act in opposite
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directions. We discuss statistical errors in cluster abundances, including the role of sample variance,
in §6.3.1. The key conclusion from Figure 20b is that lower mass clusters allow stronger model
discrimination.

Cluster cosmology requires making an explicit link between the theoretically predicted pop-
ulation of halos as a function of mass and an observed population of clusters. This problem is
complicated by the fact that the halo population is usually characterized using dark matter simu-
lations, whereas clusters are identified using baryonically-sourced signatures such as the presence
of galaxy overdensities, extended X-ray emission, or SZ decrements (see §6.3.2). The lower mass
limit probed by cluster abundance experiments is partly set by the detection thresholds intrinsic
to each method, but also by the difficulty of characterizing the relation between low mass halos
and poor clusters. Different researchers adopt varying definitions of halos and of clusters. Within a
reasonable range, such variation is acceptable, provided each study is self-consistent and the halo–
cluster relation is accurately characterized. In recent years, numerical studies have mostly shifted
from the friends-of-friends algorithm used in earlier work (e.g., Efstathiou et al. 1988) to spherical
overdensity definitions (e.g., Tinker et al. 2008), thus avoiding the tendency of the friends-of-friends
method to occasionally link distinct mass concentrations via narrow bridges (see More et al., 2011,
and references therein for a more detailed discussion). Halo boundaries are typically drawn at
overdensities ∆ ≈ 100 − 500, where clusters are in approximate dynamical equilibrium and where
mass predictions are fairly robust to baryonic physics. The overdensity ∆ can be quoted relative
to the mean matter density of the universe at the cluster redshift or relative to the critical density
at that redshift. In this section, we will adopt ∆ = 200 with respect to the mean density as our
definition unless otherwise specified.

The principal challenge to precision cosmology with clusters is not cluster identification per

se, but the accurate calibration of the relation between cluster observables (e.g., richness, X-ray
luminosity, SZ decrement) and halo masses. Figure 21 illustrates this point by flipping the x and
y axes of panel (a) in Figure 20, thus plotting the mass threshold at fixed cluster abundance for
the different cosmological models. Changing from w = −1 to w = −0.8 while holding As fixed
changed the predicted abundances by 30− 60%, but the corresponding change in mass threshold is
only about 20%. For fixed σ8(z = 0.4), the 15% change in abundance corresponds to a 2.5% − 6%
change in mass threshold. These, then, are the levels of accuracy in mass calibration that must be
attained to distinguish between the two w = −0.8 models and our fiducial w = −1 model. The
issue of mass calibration will arise repeatedly in this section, especially in §6.3.3 and §6.4.3.

In principle, cluster abundances are sensitive to σ8(z), Ωm, and the comoving volume element
dVC , as well as any inherent sensitivity of the relation between cluster mass and cluster observ-
ables on the distance–redshift relations. To simplify our discussion, we will usually assume that a
combination of other data sets (CMB, SN, BAO, WL, etc.) will determine both Ωm and dVC(z)
at higher precision than that achievable from cluster abundances. Consequently, we will focus
on the sensitivity of cluster abundances to σ8(z) while holding Ωm, dVC(z), and the angular and
luminosity distances fixed. In practice, we expect our assumption should be a good one as far as
the comoving volume element and the distances are concerned. However, the sensitivity attainable
with clusters is high enough that holding Ωm fixed may be incorrect in detail. We will discuss this
point in §6.6 and again in §8.4.

Many cluster cosmology papers quote masses in h−1M⊙ because observational mass estimates
(and, to some extent, theoretical predictions) scale inversely with h. However, at non-zero redshift
many other parameters also come into play, and h is itself one of the parameters constrained by
dark energy experiments. Thus, we have elected to quote masses in M⊙ rather than h−1M⊙.
In a similar vein, we will switch most of our subsequent discussion from σ8 to σ11,abs, the rms
fluctuation on a scale of R = 11 Mpc (equal to σ8 for h = 0.727). For some observables (e.g.,
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Figure 21 Halo mass thresholds as a function of cumulative number counts, i.e. flipping the x and
y axes of Figure 20a. The x-axis shows the number of halos predicted in a 104 deg2 survey in a
redshift slice z = 0.4±0.05. The lower panel shows the fractional change in mass threshold relative
to the fiducial cosmological model.

the X-ray estimated gas mass Mgas, the inferred cluster mass is sensitive to the angular diameter
distance DA(z) and this dependence itself provides useful cosmological constraints; this point is
discussed by Allen et al. (2011) but we will not address it further here. Our primary focus is
the statistical precision with which cluster abundances constrain σ11,abs(z), and the level at which
systematic uncertainties must be controlled to achieve these statistical limits. In §6.6 we compare
the precision potentially attainable with clusters to forecasts (described in §8) from fiducial Stage
III and Stage IV CMB+SN+BAO+WL programs.

6.2. The Current State of Play

Most cluster cosmology studies of the past decade have been based on X-ray catalogs, with
typical cluster samples numbering in the several tens to few hundreds of clusters. The vast majority
of these catalogs rely on ROSAT data — either from the ROSAT All-Sky Survey (RASS; Voges
et al., 1999) or from serendipitous detections in pointed observations — though there are also
samples selected based on XMM-Newton and Chandra imaging. Table 4 summarizes some of the
main X-ray catalogs that have been employed in these studies. The recently approved XXL survey
will add ≈ 50 deg2 of imaging, contributing ≈ 600 clusters out to z = 1 and above. The next
big step forward for X-ray samples is the eROSITA mission, which should identify ≈ 80,000 galaxy
clusters at high confidence (see §6.5).

The largest existing cluster samples are optically selected, using either spectroscopic or pho-
tometric galaxy catalogs. The former benefit from much finer spatial resolution along the line of
sight. They tend to be shallow, with typical z . 0.2 (Merchán and Zandivarez, 2002; Kochanek
et al., 2003; Miller et al., 2005; Merchán and Zandivarez, 2005; Berlind et al., 2006; Yang et al.,
2007; Li and Yee, 2008; Blackburne and Kochanek, 2012), though high redshift spectroscopic cat-
alogs do exist (Gerke et al., 2005; Coil et al., 2006). Photometric cluster catalogs hail back as
far as the original Abell (1958) catalog, which contained upwards of 2500 systems and served as
the primary basis of cluster studies for decades. Though many recent photometric catalogs have
focused on narrow but deep survey data (z . 1, e.g., Gonzalez et al., 2001; Gladders and Yee,
2005; Milkeraitis et al., 2010; Adami et al., 2010), the SDSS has led to the publication of several
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Table 4. X-ray Cluster Catalogs

Catalog/Reference Type of Survey No. of Clusters Redshift Limit

BCS (Ebeling et al., 2000) Wide/Shallow 107 0.3
NORAS (Böhringer et al., 2000) Wide/Shallow 378 0.3

HIFLUGCS (Reiprich and Böhringer, 2002) Wide/Shallow 63 0.2
WARPS (Perlman et al., 2002) Narrow/Deep 34 0.8
SHARC (Burke et al., 2003) Narrow/Deep 48 0.7
160 deg2 (Mullis et al., 2003) Narrow/Deep 201 0.7

REFLEX (Böhringer et al., 2004) Wide/Shallow 447 0.3

400 deg2 (Burenin et al., 2007) Narrow/Deep 287 0.8
MACS (Ebeling et al., 2010) Wide/Shallow 34 0.6

MCXC (Piffaretti et al., 2011) Compilation 1783 0.8
XCS (Lloyd-Davies et al., 2011) Narrow/Deep 1022/3669∗ 0.8

Note. — All cluster catalogs included above are drawn from ROSAT data, except for XCS, which
is a serendipitous cluster search in XMM-Newton archival data (see Mehrtens et al., 2012, for the
first data release). Wide/shallow survey catalogs refer to cluster searches in the ROSAT All-Sky
Survey (RASS), whereas narrow/deep catalogs are drawn from pointed ROSAT or XMM-Newton

observations. MCXC is a compilation of various X-ray cluster catalogs. The characteristic high
redshift limit shown is not the redshift of the highest redshift cluster in the sample, but rather a
redshift that contains & 90% of the galaxy clusters. The highest cluster redshifts can be significantly
higher than the redshift quoted, as expected for flux limited surveys.
∗1022 is the number of galaxy clusters with ≥ 300 photons, allowing for TX estimates. 3669 is the
number of 4σ cluster candidates.
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moderately deep (z . 0.5) and wide catalogs, which can contain upwards of 50,000 clusters (e.g.
Koester et al., 2007; Wen et al., 2009; Hao et al., 2010; Szabo et al., 2011). Extensions that reach
out to z ≈ 1 over 1000 deg2 or more from current or near future photometric surveys — such as
RCS-2, DES, Pan-STARRS, and HSC — will expand samples to the hundreds of thousands.

One limiting factor that affects these optical cluster finding experiments is that the 4000 Å
break in the spectrum of early-type galaxies shifts into the near-IR at z ≈ 1, making optical
detection challenging above this redshift. This difficulty can be overcome with IR adaptations of
optical cluster finding techniques. Today, there are two independent efforts aiming to detect galaxy
clusters using IR data: the IRAC Shallow Cluster Survey (ISCS; Eisenhardt et al., 2008) and
the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS; Wilson et al., 2006). Both
surveys have discovered and spectroscopically confirmed candidate galaxy clusters out to redshift
z . 1.5 (e.g., Stanford et al., 2005; Brodwin et al., 2006; Eisenhardt et al., 2008; Muzzin et al., 2009;
Wilson et al., 2009; Demarco et al., 2010), with some recent detections reaching z . 2 (Stanford
et al., 2012; Zeimann et al., 2012). Additionally, some of these systems have also been detected in
X-rays and/or SZ (Brodwin et al., 2011; Andreon and Moretti, 2011; Brodwin et al., 2012). These
early results are encouraging and suggest that IR detection of high redshift clusters can play an
important role in the future of cluster cosmology.

While detections of the SZ effect in known galaxy clusters date back as early as 1976 (Gull
and Northover, 1976), it is only recently that instrumentation advances have made large scale SZ
searches feasible. The first three successful cluster SZ surveys — using the South Pole Telescope
(SPT), the Atacama Cosmology Telescope (ACT), and the Planck satellite — are all currently
ongoing. All three projects have released SZ-selected cluster samples (Vanderlinde et al., 2010;
Marriage et al., 2011; Planck Collaboration et al., 2011a; Williamson et al., 2011; Reichardt et al.,
2013). These samples tend to be of very massive clusters (see Figure 27) and, in the case of ACT
and SPT, extend to z ≈ 2, with the upper limit set by the lack of massive galaxy clusters above
this redshift. For ACT and SPT, this redshift coverage is limited only by the abundance of such
massive objects at high redshift. Planck is limited in part by its relatively large beam, but it has the
important benefit of being an all sky survey, which results in a larger cluster yield overall. Based
on the sensitivity estimates shown in Figure 27 below, we anticipate ∼ 700 clusters in 2500 deg2

for SPT and ∼ 11, 000 over the full sky for Planck. We emphasize, however, that these numbers
can easily shift by factors of ∼ 2 − 3 depending on the signal-to-noise cut adopted for cluster
identification. In contrast to optical and X-ray techniques, there is not likely to be a major leap
forward in SZ capabilities in the next few years, so the SPT, ACT, and Planck samples will probably
remain the largest SZ cluster samples available for the next decade. That said, the limiting masses
of SZ cluster samples will go down as these and other facilities conduct deeper surveys focused on
CMB polarization (e.g., ACTPol and SPTPol).

Existing cluster cosmology constraints have come primarily from X-ray data (see, e.g., Henry,
2000; Reiprich and Böhringer, 2002; Schuecker et al., 2003; Allen et al., 2003; Pierpaoli et al., 2003),
reflecting the fact that X-ray observables can be related to mass via simulations and/or analytic
approximations and by hydrostatic modeling for well observed clusters. All three of the most re-
cent X-ray analyses yielded tight, consistent cosmological constraints, which can be summarized
as σ8(Ωm/0.25)

0.45 = 0.80 ± 0.03 (Henry et al., 2009; Vikhlinin et al., 2009; Mantz et al., 2010).
Cosmological analyses from optical samples have typically been less constraining because of un-
certain mass calibration (see, e.g., Bahcall et al., 2003; Gladders et al., 2007; Wen et al., 2010).
However, recent work that uses stacked weak lensing analysis for mass calibration (Johnston et al.,
2007; Mandelbaum et al., 2008; Sheldon et al., 2009) has allowed optical samples to achieve the
same level of precision as X-ray samples (Rozo et al., 2010), with comparable levels of systematic
error. Constraints from SZ selected samples are emerging (Vanderlinde et al., 2010; Sehgal et al.,
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Figure 22 Comparison of the 68% confidence regions derived from galaxy cluster abundances and
WMAP CMB data by various groups. The first three error ellipses — using quoted uncertainties
from Mantz et al. (2010), Henry et al. (2009), and Vikhlinin et al. (2009) — all come from X-ray
selected cluster samples. The Rozo et al. (2010) ellipse comes from an optically selected cluster
sample with stacked weak lensing mass calibration. The Tinker et al. (2012) constraint uses the
same optical clusters and mass calibration, but relies on galaxy clustering and mass-to-number
ratios to derive cosmological constraints, making it essentially an independent cross-check. The
Benson et al. (2011) ellipse comes from the SPT selected cluster sample.

2011; Reichardt et al., 2013), and while they are currently weak because of the relatively large
uncertainty in the SZ-mass scaling relation, the extensive follow-up campaigns that are currently
underway will reduce this scaling uncertainty and bring these constraints to a level comparable to
those from optical and X-ray cluster catalogs (e.g. High et al., 2012; Hoekstra et al., 2012; Planck
Collaboration, 2012; Rozo et al., 2012d).

Regardless of the wavelength of choice, current cluster abundance constraints are limited not
by the number of clusters but by uncertainty in mass calibration. Figure 22 shows the cluster
abundance constraints from several recent analyses. Because the current X-ray and optical mass
calibrations are fundamentally different (hydrostatic vs. weak lensing), the excellent agreement
illustrated in Figure 22 provides a strong test of systematic uncertainties. However, the results
from the Planck Collaboration et al. (2011b) have sounded a cautionary note, as the optical mass
estimates used to derive cosmological parameters in Rozo et al. (2010) appear to be inconsistent with
SZ data (see also Draper et al., 2012). Biesiadzinski et al. (2012) have attributed this inconsistency
to miscentering, while Angulo et al. (2012) point out the importance of systematics covariance.
Rozo et al. (2012c,b,a) argue that the optical, X-ray, and SZ data can be reconciled by considering,
in addition to these effects, the systematics of X-ray temperature measurements indicated by the
offsets among estimates from different groups, and departures from hydrostatic equilibrium at the
level predicted by hydrodynamic cosmological simulations (e.g., Nagai et al. 2007). Regardless of
how this issue is ultimately resolved, it is clear that further tightening cosmological constraints will
require a significant improvement in our ability to estimate cluster masses.
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On this last count, we note that Figure 22 also includes cosmological constraints from an analysis
by Tinker et al. (2012) that does not rely on cluster abundances. Tinker et al. (2012) use a halo
occupation model (see §2.3) fit to SDSS galaxy clustering, which yields a prediction for the mass-
to-number ratio of clusters66 as a function of σ8 and Ωm. While this analysis uses the same weak
lensing mass calibration as Rozo et al. (2010), the method is less sensitive to the mass scale and
is entirely independent of abundance uncertainties, making it a largely independent measurement
and a powerful systematics cross-check. The same approach can be adapted to future, deeper
photometric surveys. We also note that stacked weak lensing measurements for clusters can be
extended far beyond the virial radius (Sheldon et al., 2009), into the regime where they measure
the large scale cluster-mass cross-correlation function, and that these large scale measurements can
also be used to constrain cosmological parameters (Zu et al., 2012).

6.3. Observational Considerations

6.3.1. Expected Numbers and Cosmological Sensitivity

Figure 23a shows the expected cluster counts in our fiducial cosmological model for a variety of
limiting masses, as a function of the limiting redshift z of a 104 deg2 survey. (Note that these are
lower limits on mass but upper limits on redshift.) Panel (b) shows number counts in redshift bins
of width ±0.05; e.g., at z = 0.15, we show the halo counts in the redshift bin [0.1, 0.2]. We maintain
this redshift binning convention throughout. Together, these two figures give a broad-brush sense
for the typical sample sizes and redshift distribution of galaxy clusters as a function of limiting
mass and redshift.

Assuming halo masses can be adequately measured, the statistical error in cluster abundances
is the sum in quadrature of Poisson noise and sample variance (Hu and Kravtsov, 2003),

(∆N)2 = N + b̄2N2σ2(V ). (140)

Here, N is the mean number of halos in the volume of interest, b̄ is the mean bias of the halos,
and σ2(V ) is the variance of the matter density field over the survey volume.67 Figure 23c shows
the fractional error ∆N/N for the fiducial model, again for redshift bins z = zc ± 0.05 where zc
is the central redshift of the bin. Sample variance becomes larger than Poisson variance below a
transition mass ∼ 4× 1014 M⊙ at z = 0.1 and ∼ 1014 M⊙ at z = 1. However, the statistical error
is never more than a factor ∼ 2 above the N−1/2 Poisson expectation (see Figure 26 below), and
total statistical errors should scale with survey area roughly as (A/104 deg2)−1/2. For any mass
threshold the statistical error first decreases with redshift, as the number of clusters grows with the
increasing comoving volume per ∆z. This trend flattens when the clusters become exponentially
rare, at which point further increase in redshift leads to a precipitous drop in the number of clusters
and a corresponding rise in Poisson errors. These competing effects lead to the characteristic U-
shape of the curves in Figure 23c.

Figure 23d converts these statistical abundance errors to equivalent errors in mass by dividing
∆N/N by the logarithmic slope of the cumulative halo mass function, α = −d lnN/d lnM , which
ranges between 2 and 5 depending on redshift and mass. While observational samples are not
thresholded exactly in mass, the sensitivity of cluster abundances to an overall shift in the mean
mass at fixed observable is well captured by this heuristic argument. In order for clusters to saturate

66Analogous to mass-to-light ratio, but with galaxy number instead of integrated luminosity.
67For example, in our fiducial cosmology at z = 0.6, the matter variance in a volume of ∆z = 0.1 and area 10,000

deg2 is σ(V ) ≈ 0.2%, and the mean halo bias is ≈ 3.0 and ≈ 5.7 for mass thresholds of 1014M⊙ and 4 × 1014M⊙,
respectively.
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Figure 23 (a) Cumulative halo number counts above the indicated mass thresholds M as a function
of the limiting survey redshift. We assume the fiducial cosmological model from Table 1, and survey
area of 104 deg2. (b) Counts above the mass threshold in redshift bins z = zc±0.05. (c) Statistical
error in the number of clusters above the mass threshold from equation (140), again in redshift bins
z = zc ± 0.05. (d) The mass accuracy required to ensure that cosmological constraints are limited
by the statistical precision in the number of galaxy clusters rather than by uncertainties in mass
estimation.

the statistical limit in the abundances, the uncertainty in mass calibration must be smaller than
this ∆M/M . For a 104 deg2 survey and M ≥ 8×1014 M⊙, a mass accuracy of 3%−10% (depending
on z) suffices. By M ≈ 2 × 1014 M⊙, however, the accuracy requirement has sharpened to . 1%.
(This last number agrees well with the more detailed analysis of Cunha and Evrard [2010] for a
mass threshold of 1014.2 M⊙; see in particular the top panels in their Figure 2.) Achieving such
accuracy is a tall order, and current studies are clearly limited by the systematic uncertainty in
cluster masses rather than abundance statistics. Note that the required accuracy scales roughly as
(A/104 deg2)−1/2, and it applies to the overall mass scale (i.e., the mean of the mass–observable
relation) rather than the mass of any individual system.

Figure 24 translates the errors on cluster abundance from Figure 23 to errors on the matter
power spectrum amplitude σ11,abs(z), again for a 104 deg2 survey with z = zc ± 0.05 bins. For
simplicity, we assume that Ωm, the comoving volume element dVc(z), and the power spectrum shape
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Figure 24 (a) Statistical error on σ11,abs(z) as a function of redshift, in redshift bins z = zc ± 0.05,
for different mass thresholds as labeled. We assume a 104 deg2 survey area, and the fiducial
cosmological model. We also assume that Ωm, the shape of the matter power spectrum, and the
comoving volume element dVC are perfectly known from independent data (CMB+SN+BAO+WL).
Panels (b)-(d) refer to specific mass thresholds as labeled. In each panel the solid curves show
the effect of different mass calibration uncertainties as labeled while the dotted curve assume the
perfect mass calibration values (i.e., number statistics limited) from panel (a). For reference, the
uncertainty in σ11,abs(z) that we forecast for a fiducial CMB+SN+BAO+WL program is ∼ 1% for
Stage IV data sets and ∼ 2 − 3% for Stage III data sets (see §6.6 and §8.4).

are perfectly known from independent data (CMB+SN+BAO+WL), so that σ11,abs(z) is the single
cosmological parameter controlling the cluster abundance. As discussed in §6.1, if the uncertainty
in Ωm is non-negligible, then it is the combination σ8(z)Ω

q
m that is constrained instead. Panel

(a) shows the case where mass calibration errors are negligible. The errors on σ11,abs(z) roughly
track the abundance errors ∆N/N in Figure 23, but because the sensitivity of the abundance to
σ11,abs(z) at fixed mass increases with increasing redshift, the best constraint on σ11,abs(z) comes
at a higher redshift than the one at which ∆N/N is minimized. The remaining panels show the
impact of 1%, 2%, 4%, and 8% mass calibration errors for three different threshold masses.

The basic features in Figure 24 are simple to understand at a quantitative level, starting from
the knowledge that cluster abundances constrain the combination σ11,abs(z)Ω

q
m with q ≈ 0.4. Since
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Figure 25 The degeneracy exponent q as a function of redshift for a series of threshold masses. The
parameter q is the exponent in σ11,abs(z)Ω

q
m that holds the abundance of galaxy clusters above the

quoted threshold mass at the appropriate redshift bin fixed for small, oppositely directed changes
in σ11,abs(z) and Ωm.

the mass of a collapsed volume scales linearly with Ωm, a shift of the mass scale by a constant
factor is nearly degenerate with a change of Ωm by the same factor. Together these scalings imply
σ11,abs(z) ∝ M q, where M is the mass scale at fixed abundance, making ∆ lnσ11,abs(z) ≈ q∆ lnM
for a survey limited by mass calibration uncertainty ∆ lnM . For a survey limited by halo statistics,
the corresponding effective mass error is (∆ lnM)eff = α−1∆ lnN where α = −d lnN/d lnM ≈ 2−5
is the slope of the cumulative halo mass function, so in this case ∆ lnσ11,abs(z) ≈ qα−1∆ lnN .
Combining the two limits we arrive at

∆ lnσ11,abs(z) ≈ q × max
[
∆ lnM,α−1∆ lnN

]
. (141)

The above expression fits the data in Figure 24 with better than 30% accuracy (typically . 15%).
Figure 25 plots the value of the degeneracy exponent q as a function of limiting mass and

redshift. In the Press-Schechter (1974) theory of the halo mass function, the cumulative abundance
is set by the probability that a point in a Gaussian field of variance σ2(M) exceeds the critical
threshold δc ≈ 1.69 for spherical collapse (see §2.3), so that N ∝

[
1 − erf(δc/

√
2σ(M))

]
. Putting

in the σ(M,z) relation for a ΛCDM power spectrum yields a logarithmic derivative d lnN/d ln σ ≡
ασ ≈ 5− 9 depending on mass and redshift. Because cluster abundances are degenerate in Ωm/M ,
the logarithmic derivative of cluster abundances relative to Ωm is the same as the slope α of the
mass function (but with opposite sign), so locally the cumulative mass function scales as

N(m) ∝ [σ11,abs(z)]
ασ Ω−α

m =
[
σ11,abs(z)Ω

−α/ασ
m

]ασ

. (142)

We see that halo abundances are degenerate in σ11,abs(z)Ω
q
m with q = −α/ασ ≈ 3/7 ≈ 0.4. We

plot the ratio α/ασ — computed using the Tinker et al. (2008) mass function rather than the
Press-Schechter mass function — in Figure 25.

A cluster abundance analysis becomes limited by mass scale uncertainty rather than halo abun-
dance statistics when ∆ lnM > α−1∆ lnN . If we approximate the error as Poisson, ∆ lnN =
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Figure 26 Left: Logarithmic derivative α = −d lnN/d lnM of the cumulative halo counts, as a
function of redshift, for five mass thresholds as labeled. Right: The ratio of the total (Poisson +
sample variance) error in the halo counts ∆ lnN to the Poisson error N−1/2. Solid lines assume a
survey area of 10,000 deg2, while dashed lines correspond to 100 deg2. In conjunction with Fig. 25
and equation (141), these figures allow one to quickly estimate how well σ11,abs(z) can be constrained
at each redshift by a galaxy cluster sample with N clusters.

N−1/2, then an experiment is limited by mass uncertainty if the sample size is N ≥ (α∆ lnM)−2.
Current systematic uncertainties in mass calibration are ≈ 10%, which for α ≈ 3 corresponds to
N ≈ 10. Thus, cluster abundance studies are limited by uncertainty in the overall mass scale even
for samples with as few as ≈ 10 − 20 galaxy clusters. For cluster samples with N ≈ 103 (104),
the accuracy required in mass estimation for an experiment to be dominated by halo statistics is
≈ 1% (0.3%). So that one may apply the rule-of-thumb estimates derived in this section, Figure
26 plots the mass-function slope α and the ratio of the total error ∆ lnN to the Poisson uncer-
tainty N−1/2. Note that abundance errors including sample variance almost never exceed twice the
Poisson error and are often much closer. Using Figures 25 and 26 along with equation (141), one
can quickly estimate how well an experiment with given number of galaxy clusters N can constrain
σ11,abs(z).

If Ωm and dVc(z) are not perfectly known, then cluster abundances will constrain a combination
of cosmological parameters rather than the matter fluctuation amplitude alone. Predicted abun-
dances are proportional to dVc(z), so for an experiment dominated by uncertainty in the mass scale,
uncertainty in the volume element will affect the interpretation if ∆ ln dVc & α∆ lnM , the effective
abundance uncertainty. SN and BAO surveys should typically yield uncertainties below this limit,
so we expect regarding dVc(z) as known to be an adequate approximation for our purposes, though
it may fail for sufficiently powerful cluster surveys. Since a pure shift in Ωm is equivalent to a shift in
mass scale, uncertainties in Ωm are relevant if ∆ ln Ωm & ∆ lnM , where we have again assumed the
experiment in question is dominated by the mass error ∆ lnM . If the uncertainty in Ωm is larger
than this critical scale, then clusters will effectively constrain σ11,abs(z)Ω

q
m rather than σ11,abs(z)

alone. Equation (141) will still hold, but one must replace ∆ lnσ11,abs(z) by ∆ ln [σ11,abs(z)Ω
q
m].

Current fractional uncertainties in Ωm from CMB and other observables are ∼ 10%, comparable
to mass calibration systematics. Future studies will reduce Ωm uncertainties, but they may remain
significant compared to improved mass calibration errors in cluster surveys.

We have focused our discussion here on cumulative cluster abundances — i.e., space densities
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of clusters above a mass threshold — while observational analyses usually examine the differential
distribution as a function of observable mass-proxies. Differential distributions are useful for break-
ing degeneracies (e.g., among σ11,abs, Ωm, and dVc), and for constraining “nuisance parameters”
such as the scatter of the observable-mass relation. However, for single-parameter constraints on
σ11,abs(z), we expect that our analysis of the cumulative abundance uncertainties provides an ac-
curate guide, as it makes use of the single number best determined by the data for any given mass
threshold and redshift range. We anticipate that observational analyses will continue to concentrate
mainly on differential distributions, but cumulative distributions are more amenable to the kind
of rule-of-thumb estimates that we try to develop throughout this section, so they provide a more
intuitive way of understanding the cosmological information content of cluster surveys.

6.3.2. Cluster Finding

Each of the three main methods for finding galaxy clusters — optical, X-ray, and SZ — has
its own virtues and deficiencies. The principal advantage of optical surveys is sheer statistics,
reflecting the low mass threshold for optical detection; clusters with masses as low as 5× 1013 M⊙

are capable of hosting significant galaxy overdensities. Near-future surveys (RCS-2, DES, HSC,
Pan-STARRS) should find ≈ 105 systems in areas of 103 − 104 deg2 out to z ≈ 1. On a longer time
scale (≈ 10 years), surveys with LSST should increase the available cluster samples by another
factor of 5− 10, due both to larger area (≈20,000 deg2) and to deeper imaging, which should allow
cluster detection out to z ≈ 1.5. Finally, cluster searches in the IR are capable of finding galaxy
clusters out to z ≈ 2, but large survey areas to this depth will only be achievable with the advent
of Euclid and/or WFIRST. With the stacked weak lensing mass calibration that we advocate in
§6.3.3, the calibration accuracy scales with cluster number as N−1/2, so enormous samples are
statistically advantageous even if mass uncertainties dominate the error budget.

The main drawback for optical cluster detection is projection effects, i.e., chance alignments of
multiple low mass halos along the line of sight that are misidentified as a single massive galaxy
cluster. While this systematic has been drastically suppressed in modern surveys with multi-band
photometry and photometric redshift estimators, one still expects 5% − 20% of photometrically
selected clusters to suffer from serious projection effects (Cohn et al., 2007; Rozo et al., 2011a).
The importance of projection effects increases with decreasing mass, so we expect it is projection
effects rather than survey depths that will ultimately set the detection mass threshold for optical
cluster finding in future surveys.

Unlike optical studies, X-ray cluster searches are nearly free from projection effects. This
robustness to the presence of structures along the line of sight reflects the fact that X-ray emission
scales as density-squared, which enhances the relative contrast of a cluster in the sky, and it is
the principal reason that X-rays are considered the cleanest method for selecting galaxy clusters.
The main difficulty for X-ray selection is a technological one, specifically, the need for space-based
observatories. A dramatic leap forward in capabilities will happen with the launch of eROSITA,
which should detect ≈ 105 galaxy clusters over the full sky out to z = 1 and beyond, ensuring that
X-rays will continue to play a critical role in the development of cosmologically relevant cluster
samples over the coming decade. On a longer time scale, further improvements would require
X-ray observatories that reach lower flux limits with higher angular resolution, both of which are
needed to detect large numbers of systems at z & 1.

The primary advantage of SZ searches is that they do not suffer from cosmological dimming. The
SZ signature arises from up-scattering of CMB photons by the hot intra-cluster plasma, and because
the number of up-scattered photons does not depend on the distance to the cluster the signal is
roughly redshift independent. In practice, the SZ signal is not exactly redshift independent because
of residual sensitivity to the relative size of the cluster and the beam of the telescope. Unfortunately,
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achieving sufficient sensitivity to detect low mass clusters in SZ is technologically very challenging.
For instance, the current SPT, ACT, and Planck surveys are expected to be complete at all redshifts
above mass thresholds of 7× 1014 M⊙, 1015 M⊙, and 2× 1015 M⊙ respectively (Vanderlinde et al.,
2010; Marriage et al., 2011; Planck Collaboration et al., 2011a); while these limits will go down, they
will not reach thresholds comparable to those of X-ray or optical cluster selection. Consequently,
while these experiments are currently the best avenue to probe the z ≈ 1 massive cluster population,
on a 3− 5 year time scale the focus of cluster detection is likely to shift towards optical and X-ray.
To our knowledge, there are no current plans to develop a new generation of SZ survey instruments
that would dramatically improve upon the capabilities of current experiments for cluster detection,
at least compared to the differences in optical (e.g., DES vs. SDSS) and X-ray (eROSITA vs
ROSAT). However, both SPTpol and ACTpol should lead to significantly lower mass thresholds
for SZ cluster detection than the current SPT and ACT cluster samples.

Figure 27 showcases the difference of the cluster populations from the various selection methods,
where we have limited ourselves to wide surveys (1000 deg2 or higher) and have shown only a
handful of representative selection functions. The top row shows the selection functions for existing
or ongoing surveys, while the bottom-row shows the selection for future surveys. The left panels
shows the limiting mass as a function of redshift for each of the surveys considered, while the right
panels shows the number above the limiting mass in a redshift bin of width ∆z = 0.1, accounting for
survey area. We emphasize that in practice cluster samples never have a sharp mass threshold; the
curves shown in Figure 27 are only roughly indicative of the mass and redshift ranges probed. The
number of clusters detected depends in detail on the selection cuts applied, and small changes in
threshold translate to larger changes in abundance, so factor-of-two deviations from the projections
in Figure 27 would not be particularly surprising.

For the optical detection threshold we have assumed that projection effects limit useful cluster
catalogs to a minimum richness λ = 15 in the algorithm of Rykoff et al. (2012), which counts
galaxies of luminosity L ≥ 0.2L∗. To account for mass-richness scatter, we choose an effective
mass threshold that yields approximately the same space density as this richness threshold. The
sharp upturn occurs when 0.2L∗ matches the magnitude limit of the survey. In SZ, we see that the
SPT mass threshold (kindly provided by the SPT collaboration, and normalized to a total cluster
yield of ≈ 700 clusters at full depth) is only mildly sensitive to redshift. The gentle decrease in
limiting mass with increasing z reflects the fact more distant clusters subtend smaller angles that
better match the SPT beam size, and that clusters are hotter at fixed mass with increasing redshift.
For Planck, conversely, the decreasing angular size of clusters reduces sensitivity at higher redshift
because the beam itself is large. The curve shown is a rough estimate of the Planck Early SZ
sample (Planck Collaboration et al., 2011a), though the final selection will go considerably lower
in mass, because of both deeper data and lower S/N cuts. The SPTpol curve is similar to SPT,
but it reaches lower masses over a smaller area, while the ACTpol curve reaches similar noise levels
to SPT (≈ 20µK, Niemack et al., 2010) over a larger area. (ACTpol also plans a separate survey,
deeper and narrower than SPTpol.) Turning to X-rays, the REFLEX, XXL, and eROSITA curves
all show the increase of mass threshold with redshift characteristic of flux-limited surveys. The
XXL selection is that of Valageas et al. (2011) scaled to match the observed density of C1 clusters
in the XMM–LSS field (Pacaud et al., 2007), while the eROSITA threshold represents a flux limit
≈ 4 × 10−14 erg s−1, corresponding to ≈ 50 photon counts (Pillepich et al., 2012). The mass limit
is higher by a factor of ≈ 3 for clusters reaching 300 photon counts.

Current wide X-ray samples are largely limited to massive systems at moderate redshifts, but
narrow/deep samples reaching z ≈ 1 and above do exist. By comparison, the SDSS reaches lower
mass over large areas of the sky, but it only extends to z ≈ 0.5. RCS-2 reaches z ≈ 1, but over
a smaller (though still quite significant) area. The Planck SZ survey is largely limited to massive,
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Figure 27 Selection function for several representative cluster samples, as labelled. The top panels
show surveys that are completed or currently ongoing. The bottom panels show future surveys.
Left panels show the limiting mass as a function of redshift, while right panels show the number
of galaxy clusters above the limiting mass in redshift bins of width ∆z = 0.1. The yellow region in
the left panels corresponds to the area in parameter space where one expects fewer than one galaxy
cluster above the mass and redshift under consideration. For the abundance plot, we consider the
appropriate area for each of the surveys: 30,000 deg2 for the eROSITA and Planck cluster samples,
10,000 deg2 for the REFLEX sample, 20,000 deg2 for LSST, 10,000 deg2 for SDSS, 5,000 deg2 for
DES, 1,000 deg2 for RCS-2, 2500 deg2 for SPT, 600 deg2 for SPTpol, and 4000 deg2 for ACTPol.
The current ACT survey (not plotted) is similar to SPT, with a somewhat higher mass threshold
and a 1000 deg2 survey area. Different line types are used only to aid visual discrimination.
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moderate redshift systems, while the SPT SZ survey has the best current sensitivity to high redshift
clusters. In the near future, DES will extend the range of optical identification to z ≈ 1 over a
large area, but eROSITA should ultimately produce a larger sample. While DES has a lower mass
threshold over the range 0.3 < z < 1, the larger (all-sky) area of eROSITA leads to a larger cluster
total, and eROSITA should continue to detect clusters at z > 1 where the DES sensitivity declines
rapidly. On a longer time scale, LSST will push the optical selection limit to z ≈ 1.5, increasing
the number of z > 1 galaxy clusters by one to two orders of magnitude.

Another proposed method for detecting galaxy clusters is to search for peaks in the weak
lensing shear field. However, while massive halos produce local shear peaks, shear peak statistics
are known to suffer from severe projection effects: many peaks arise from the superposition of
multiple halos along the line of sight. Consequently, shear peak selection is not a particularly
effective method for selecting clusters of galaxies. That said, the shear peak abundance is an
observable that can be predicted from numerical simulations in much the same way as the halo mass
function, and this approach may well yield useful cosmological constraints (e.g., Marian et al., 2009;
Dietrich and Hartlap, 2010). For the remainder of this review, however, we focus on abundances of
clusters identified by optical, X-ray, or SZ methods. We emphasize that stacked weak lensing mass
calibration of clusters identified by other methods is not equivalent to shear peak statistics, since
cluster methods use the additional information afforded by baryonic density peaks to drastically
reduce the impact of projection effects on cluster selection.

6.3.3. Calibrating the Observable–Mass Relation

The biggest challenge for cluster cosmology is characterizing the observable–mass relation
P (X|M,z), where X is a cluster observable that is correlated with mass (e.g., richness, YSZ ,
LX) and P (X|M,z) is the probability that a halo of mass M at redshift z is detected as a cluster
with observable X. This relation is usually described by parameters that specify the mean rela-
tion, the rms scatter, and perhaps a measure of skewness or kurtosis, all of which can evolve with
redshift. There are three general approaches to determining these parameters: simulations, direct
calibration, and statistical calibration.

In the simulation approach, one relies on numerical simulations to calibrate the observable–mass
relation (e.g. Vanderlinde et al., 2010; Sehgal et al., 2011). The main difficulty that simulation
methods face is our incomplete understanding of baryonic physics, particularly galaxy formation
feedback processes. These difficulties can be minimized by defining new X-ray observables that
are expected to be robust to these details, and through careful exploration of the sensitivity of
the observable–mass relation to the physics that goes into the simulations (e.g., Nagai et al., 2007;
Rudd and Nagai, 2009; Stanek et al., 2010; Fabjan et al., 2011; Battaglia et al., 2012). The simu-
lations themselves are steadily improving thanks to increased computer power, more sophisticated
algorithms, and the availability of better data to test the input physics. Despite these trends, we
think it unlikely that simulations will achieve the ∼ 0.5 − 2% level of accuracy required for cluster
abundance experiments to become statistics dominated in the next ten years.

The second approach to calibrating the observable–mass relation is the direct method, in which
a small subset of galaxy clusters have X-ray hydrostatic mass estimates and/or weak lensing mass
estimates that are taken to represent “true” masses. The observable–mass relation is directly
calibrated on this small subset of galaxy clusters, then applied to the general cluster population
(Vikhlinin et al., 2009; Mantz et al., 2010). Unfortunately, hydrostatic mass estimates are them-
selves problematic because non-thermal pressure support (bulk motions, magnetic fields, cosmic
rays) is expected to bias them at the ≈ 10%− 20% level (Lau et al., 2009; Meneghetti et al., 2010),
and it is not clear that these biases can be predicted at the required level of accuracy. We therefore
suspect that hydrostatic estimates will play a steadily decreasing role in future cluster abundance
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experiments. Weak lensing mass estimates of individual clusters can in principle be unbiased in the
mean, but they are typically available only for the most massive galaxy clusters in a given sample
because of limited signal-to-noise ratio. In addition, even if the WL shape noise is small, halo
orientation and large scale structure introduce irreducible noise in the mass estimates of individual
clusters at the 20% − 30% level (Becker and Kravtsov, 2011). Nonetheless, ambitious efforts to
achieve accurate weak lensing masses for substantial samples (≈ 50) of X-ray or SZ-selected clus-
ters are likely to play a key role in improving cluster cosmological constraints over the next few
years (Hoekstra et al., 2012; von der Linden et al., 2012).

The final approach to calibrating the observable–mass relation is statistical: instead of relying on
precise mass estimates of a subsample of galaxy clusters, the relation is calibrated using additional
observables for the full sample that correlate with mass. One such statistical method uses the
spatial clustering of the clusters themselves, as characterized by the variance of counts-in-cells (Lima
and Hu, 2004) or by the cluster correlation function or power spectrum (Schuecker et al., 2003;
Majumdar and Mohr, 2004; Hütsi and Lahav, 2008). Because the bias of halo clustering depends
on mass (Figure 1), the amplitude and scale-dependence of clustering provides information about
the mass-observable relation. Operationally, one parameterizes this relation, then uses standard
likelihood methods to jointly fit for both cosmology and the P (X|M,z) parameters (Hu and Cohn,
2006; Holder, 2006). These types of analyses are often referred to as “self-calibration” because they
do not require “direct” mass calibration data. However, we think the descriptor “statistical mass
calibration” is more accurate.

The other statistical method we consider is stacked weak lensing, wherein one measures the
mean tangential shear of background galaxies around galaxy clusters in a bin of fixed observable.
In other words, the stacked weak lensing signal is the cluster–shear correlation function, which
can be inverted to yield the mean 3-d mass profile of clusters in the bin (Johnston et al., 2007).
Because this measurement allows one to stack many clusters, one can easily obtain high signal-to-
noise measurements even for low mass clusters and large angular distances (Mandelbaum et al.,
2008; Sheldon et al., 2009). Since the underlying halo population is randomly oriented relative to
the line of sight, stacked weak lensing mass calibration does not suffer from orientation biases so
long as the cluster identification itself does not preferentially select halos oriented along a particular
direction or aligned with line-of-sight structure. However, orientation biases in the cluster selection
method will probably exist to some degree, and they must be calibrated carefully on simulations.
Finally, because this method relies on stacking all galaxy clusters, it only provides information
about the mean of the mass–richness relation, so additional data are required to provide tight
constraints on the scatter.68

Figure 28 shows the error in mass calibration that can be achieved using stacked weak lensing
for both “Stage III” (left panel) and “Stage IV” (right panel) observations, calculated via the
methodology described by Rozo et al. (2011b). Briefly, we assume a source redshift distribution
appropriate for DES-like survey depth, and we sum over all annuli within the radius 2R200, which
is a rough approximation for the location of the one-to-two halo transition of the matter correlation
function using the Hayashi and White (2008) model. (Other studies, e.g. Tavio et al. [2008], also find
that one-halo regime of the mass profile extends well beyond R200.) For our Stage III estimates we

68The distinction between statistical calibration via stacked weak lensing and direct calibration using weak lensing
mass measurements is not a sharp one, and both methods share the virtue that the relation between mass and weak
lensing signal is governed by well understood gravitational physics. By “stacked weak lensing” we mean to emphasize
the case where (a) the WL measurements come from a large area imaging survey that overlaps the cluster catalog
(and may have been used to create it) rather than from cluster-by-cluster follow-up observations, and (b) the S/N of
the mass measurement for any individual cluster may be ≤ 1, though the S/N for the ensemble is high.
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assume an intrinsic shape noise σe = 0.4 and source galaxy surface density n̄g = 10arcmin−2, while
for Stage IV we assume σe = 0.3 and n̄g = 30arcmin−2. Note that the corresponding tangential
shear error is σγ ≈ σe/

√
2. These values correspond roughly to expectations for DES data and

Euclid/WFIRST data, respectively; the lower σe for the latter reflects higher image quality, though
the partition of this improvement between σe and n̄g is somewhat arbitrary. LSST falls between
these two cases but closer to Stage IV. We assume that clusters have NFW mass profiles (Navarro
et al. 1996), and we include the decrease in background source density with increasing cluster
redshift. In all cases, the redshift distribution is set to

F (z) ∝ z2 exp
[
−(z/z∗)

2
]

(143)

with z∗ = 0.5. This is appropriate for DES and underestimates the redshift depth for LSST,
which will result in a slight overestimate of the statistical uncertainties for Stage IV experiments,
particularly at the highest redshift bins.

In each panel of Figure 28, dashed red curves show the error from shape noise alone, while solid
curves include the intrinsic scatter between noiseless WL mass estimates and true three-dimensional
halo masses, a consequence of non-spherical mass distributions, which we add in quadrature to the
shape noise assuming an intrinsic scatter per cluster of σwl = 0.3 (Becker and Kravtsov, 2011). The
two curves separate when the number of sources is high enough to measure individual clusters with
S/N∼ 3. We assume the stacked weak lensing signal uses all halos within a redshift bin z = zc±0.05
and above a given mass threshold as labeled. The forecast mass errors are marginalized over
concentration. The improvement in precision with decreasing mass is driven by the rapid increase
in the number of halos as the mass threshold decreases. For mass thresholds 1 − 2 × 1014 M⊙,
calibration at the 1-2% level is achievable in principle with Stage III data and at the sub-percent
level with Stage IV data. These are errors per ∆z = ±0.05 bin, so if one assumes a smooth,
parameterized evolution of P (X|M,z) it may be possible to constrain the overall normalization
more tightly. Conversely, some forms of WL systematics (e.g., uncertainty in the shear calibration
or source redshift distribution) could introduce mass calibration errors correlated across redshift
bins. The results in Figure 28 are broadly consistent with those from the more detailed treatment
by Oguri and Takada (2011).

Comparing Figures 23d and 28, we see that Stage IV weak lensing data can in principle calibrate
the mean relation well enough that a 104 deg2 cluster survey would be limited by the statistical
uncertainty in abundance for z . 0.5, though mass calibration error would dominate at higher
redshift. (The abundance error and weak lensing calibration error both scale with area as A−1/2.)
The statistics limit for M = 1014M⊙ from Figure 23d is shown in Figure 28 as the blue dotted
line. Stage III weak lensing data fall short of this goal by a factor ∼ 3, but they can still achieve
powerful constraints on σ11,abs(z) (see Figure 30 below).

The general trends in Figure 28 can be understood using simple arguments. For a singular
isothermal sphere (SIS) of velocity dispersion σV ∝ M1/3, the tangential shear is γ(θ) = θE/2θ,
where θ is the angular distance to the cluster center, and θE is the Einstein radius. The Einstein
radius is related to the velocity dispersion via (Fort and Mellier, 1994)

θE = 4π
(σv

c

)2 Dls

Ds
≈ 0.07 arcmin

( σV

550 km s−1

)2
(
Dls/Ds

0.5

)
, (144)

where Ds is the distance to the source, Dls is the distance to the source as seen from the lens,
and we have scaled to a typical value of their ratio. We have also scaled equation (144) to the
(1-dimensional) velocity dispersion of a 2 × 1014M⊙ cluster at z = 0.5. Each source galaxy gives a
low S/N estimate of γ and hence of θE = 2θγ. The variance of this estimate is Var(θ̂E) = 2θ2σ2

e ,
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Figure 28 Mass uncertainty from stacked weak lensing calibration as a function of redshift, assuming
only WL shape noise (dashed red curves) and including sample variance due to intrinsic scatter
between WL mass and halo mass (solid curves). For Stage III data (left) we assume σe = 0.4
and n̄g = 10 galaxies/arcmin2, while for Stage IV (right) we assume σe = 0.3 and n̄g = 30
galaxies/arcmin2. For both cases we assume a 104 deg2 survey, and the redshift bin width is
z = zc ± 0.05. Each curve corresponds to a different mass threshold as labeled. The blue dotted
line shows the mass error corresponding to a statistics-limited cluster survey with a threshold mass
of 1014 M⊙, as per Figure 23. The intersection between the blue dotted line and the lowest solid
black line marks the redshift at which a cluster abundance experiment with a threshold mass of
1014 M⊙ transitions from being dominated by the statistical error in cluster abundance (at low
redshift) to the error in the weak lensing mass calibration (at high redshift).

where σe =
√

2σγ is the WL shape noise. The number of source galaxies in a logarithmic angular
interval dln θ is 2πn̄gθ

2d ln θ, so each such interval contributes equally to the S/N on θE, from θmin

where the weak lensing approximation fails to θmax, the angular extent of the cluster. The variance
of the estimate for an individual cluster is thus

Var(θ̂E) =
2θ2σ2

e

2πn̄gθ2 ln (θmax/θmin)
, (145)

and the variance for N clusters is smaller by N . As representative values we take θE = 0.07 arcmin,
θmin = 5θE = 0.35 arcmin (so γmax = 0.1), and θmax = 6.5 arcmin, the angle subtended by a radius
R = 2R200 at z = 0.5 (for M = 2 × 1014M⊙), yielding ln(θmax/θmin) ≈ 3. Since θE ∝ σ2

V ∝ M2/3,

∆ lnM = 1.5∆ ln θE , with ∆ ln θE = θ−1
E [Var(θ̂E)]1/2. Putting these results together yields a total

shape noise error at z = 0.5 of

∆ lnM ≈ 1.5N−1/2

[
σ2

e

πn̄gθ2
E ln(θmax/θmin)

]1/2

(146)

≈ 6 × 10−3

(
N

4000

)−1/2 ( σe

0.3

)( M

2 × 1014 M⊙

)−2/3( n̄g

30 arcmin−2

)−1/2(Dls/Ds

0.5

)−1

.(147)

This error estimate is 25% smaller than the value plotted in Figure 28 (which shows ∆ lnM ≈ 0.008
at z = 0.5 from shape noise alone), in part because the surface density of sources behind the clusters
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is lower than n̄g, and in part because marginalizing over the NFW concentration parameter further
increases the mass error. Including the dependence of N on mass threshold, equation (146) implies

∆ lnMshape ∝ θ−1
E N−1/2 ∝M−2/3+α/2 , (148)

where α is the mass function slope shown in Figure 26. For α ≥ 4/3, which is always satisfied for
M ≥ 1014 M⊙, the increase in abundance at lower masses outweighs the lower S/N per cluster,
yielding higher precision at lower mass threshold as seen in Figure 28. To obtain the total noise,
one simply adds the intrinsic weak-lensing noise σwlN

−1/2 in quadrature to the shape noise.
Multi-wavelength studies of galaxy clusters also allow for statistical mass calibration from cross-

correlation studies. Just as the clustering of clusters is a mass-dependent observable, so too are
the abundance functions of different observables. Consequently, overlapping surveys allow for
the possibility of measuring the abundance of galaxy clusters as a function of two observables
X1 and X2. While an overall shift in the normalization of the multi-variate observable–mass
relation P (X1,X2|M) is still degenerate with cosmology, the addition of the clustering signal —
which depends on cluster masses directly — allows one to jointly calibrate P (X1,X2|M) while still
improving the cosmological constraints relative to those derived from a single observable (Cunha,
2009). The improvement is driven by the fact that using two cluster observables simultaneously
allows one to better constrain the scatter of the observable–mass relation (see also Stanek et al.,
2010). Given the large overlap between many of the currently ongoing or near future cluster
surveys (e.g., DES fully overlaps with SPT), we expect this type of analysis to become increasingly
important in the coming decade.

It remains to be seen whether statistical calibration of the mean observable-mass relation via
clustering can compete with stacked weak lensing calibration, but we suspect that the answer
is no based on the following approximate argument. If the cluster bias factor is measured with
uncertainty ∆ ln b, then the corresponding mass scale uncertainty is ∆ lnM ≈ η−1∆ ln b, where
η ≡ d ln b/d lnM ≈ 0.4 − 0.5 is the logarithmic slope of the bias-mass relation for cluster mass
halos. We have computed ∆ ln b for an optimally weighted measurement of cluster pairs in a wide
radial bin, 20Mpc < R < 100Mpc (comoving), considering only Poisson pair count errors, not
sample variance errors. For our usual ∆z = 0.1 redshift bin over 104 deg2, centered at z = 0.5,
we find that the corresponding ∆ lnM rises from 6% for a 1014M⊙ threshold to ∼ 50% for a
4 × 1014M⊙ threshold, much worse than our estimated errors for Stage III stacked weak lensing
calibration shown in Figure 28. Cross-correlation with a much denser galaxy sample might evade
this argument by allowing higher precision bias measurements, but sample variance will set a floor
to these errors, and the bias of the cross-correlation sample must also be known. Our expectation
is that clustering may well help constrain the scatter given mass constraints from weak lensing, but
that it will prove insufficiently powerful to pin down the mass scale of clusters on its own.

In practice, the distinction between simulation, direct, and statistical mass calibration is some-
what artificial. One can use simulation and direct mass calibration to place priors on the observable–
mass relations, then use statistical methods to arrive at the final constraint. High quality observa-
tions of individual clusters can provide important information about the scatter of the observable–
mass relation, a quantity that is only indirectly constrained via statistical calibration methods.
Conversely, we expect that only statistical methods, and particularly stacked weak lensing, are
likely to achieve the ≈ 1% mass scale accuracy demanded by Stage IV experiments. To the extent
that this is true, optical imaging of galaxy clusters will be a necessary component of all future
cluster surveys, not just for redshifts, but also for cluster mass calibration. Conversely, imaging
surveys conducted for WL studies of cosmic acceleration will automatically enable cluster studies.

With spectroscopic follow-up data or an overlapping galaxy redshift survey, one can also try
to calibrate cluster observable-mass relations using virial mass estimators (Heisler et al., 1985),
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“hydrostatic” estimators for the galaxy population (Carlberg et al., 1997), or “velocity caustics”
that mark the boundary between galaxies bound to the cluster potential and galaxies above the
escape velocity (Regös and Geller, 1989; Diaferio, 1999; Rines et al., 2003). The key systematic
issue for this approach is the possible influence of galaxy formation physics on the velocity field
and velocity dispersion profile, though Diaferio (1999) argues that these effects should be small for
velocity caustics. These approaches can again be applied in either a “direct” mode for individual
clusters or a “statistical” mode using velocity distributions measured for large samples. Studies
to date have not established the robustness of these methods at the few-percent level needed for
future progress, but with the large spectroscopic surveys underway or planned for dark energy
measurements the approach merits further investigation (e.g., White et al., 2010; Saro et al., 2012).
Zu and Weinberg (2012) show that the mean radial infall profile for clusters can be extracted from
measurements of the redshift-space cluster-galaxy cross-correlation function, which may provide a
practical route to implementation. Even if the calibration precision from redshift-space distortions
is lower than that from stacked weak lensing, comparison of the two enables tests of modified
gravity models that predict differences between the potentials affecting lensing and non-relativistic
motions (see §7.7).

6.4. Systematic Uncertainties and Strategies for Amelioration

If X is a cluster observable correlated with mass, and P (X|M,z) the mass-observable relation
discussed in §6.3.3, then the expected number of clusters in a volume V at redshift z above a
threshold Xmin is

N(Xmin, z) =

∫ ∞

Xmin

dX
dN

dX
=

∫ ∞

Xmin

dX

∫ ∞

0
dM V (z)

dn(z)

dM
P (X|M,z), (149)

where dn(z)/dM is the halo mass function at redshift z. From equation (149) we can identify
several sources of potential systematic uncertainties: errors in cluster redshifts, incompleteness and
contamination that produce extended non-Gaussian tails of P (X|M,z), the form and calibration of
the “core” of P (X|M,z), and the theoretical prediction of dn/dM itself. We discuss each of these
categories in turn.

6.4.1. Redshift Uncertainties

Equation (149) implicitly assumes that all clusters are assigned the correct redshifts. As cluster
samples grow to the tens and even hundreds of thousands, obtaining spectroscopic redshifts for all
systems becomes impractical, and photometric redshifts are essential. Fortunately, clusters contain
many galaxies with uniform (red-sequence) colors, allowing precise and accurate photo-z’s. Lima
and Hu (2007) estimated the level at which the bias and scatter of photometric redshift errors must
be controlled in a Stage III dark energy experiment so as to not degrade cosmological information,
finding that the rms scatter must be held to σz ≤ 0.03 and that any bias in the mean photo-z
must be held below ∆z = 0.003. Current cluster photometric redshift estimates have a dispersion
of ≈ 0.01 (e.g. Koester et al., 2007), so controlling the scatter at the 0.03 level is not particularly
problematic. The bias on the mean is more challenging, but current catalogs do achieve close
to the necessary accuracy. For instance, the bias of the SDSS maxBCG catalog, measured by
comparing cluster photo-z’s to spectroscopic redshifts, is ≈ 0.004 (Koester et al., 2007). We expect
these successes will still hold as we push to higher redshifts, so cluster photometric redshift errors
are unlikely to be a significant source of systematic uncertainty in abundance studies, at least for
samples below z ≈ 1. Above this redshift, the 4000Å break feature in the spectrum of early-type
galaxies red-shifts into the IR, and the photometric redshift accuracy will become more difficult
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to control at the required level unless near IR data are available. X-ray and SZ cluster samples
require deep multi-band optical imaging and/or spectroscopic follow-up to achieve these errors.
In particular, while the use of iron lines in X-ray spectroscopy has proven to a reliable indicator
of cluster redshift (e.g. Yu et al., 2011), the accuracy achieved by these methods is only of order
≈ 0.03, with a not-insignificant outlier fraction, and even then this requires a significant number
of photon counts. Nevertheless, for high redshift systems without IR data this information is often
the only indicator of a cluster’s redshift, and it can therefore play a critical role.

6.4.2. Contamination and Incompleteness: The Tails of P (X|M,z)

Equation (149) assumes a one-to-one match between halos and observable clusters. In practice,
any observed cluster catalog suffers some degree of contamination, the presence of systems whose
true halo mass is far below the value suggested by the observable X. Cluster catalogs are also
affected by incompleteness, halos whose corresponding observable X is anomalously low so that
they are assigned masses far below their true masses, or perhaps fail to make it into the catalog
at all. Thus, we can think of contamination and incompleteness as characterizing the extended
non-Gaussian tails of P (X|M,z).

Significant levels of contamination and incompleteness can be tolerated provided that they
are well calibrated. A contamination fraction C increases the estimated cluster abundance by a
factor (1 + C) relative to the true value, while an incompleteness fraction I reduces the estimated
abundance by a factor (1− I). To prevent them becoming the limiting factor in cluster abundance
measurements, the product (1+C)(1−I) must be determined to a fractional accuracy that is smaller
than the uncertainty in the cluster space density, roughly N−1/2 if limited by cluster statistics or
α∆ lnM if limited by mass calibration uncertainty.

Contamination can also impact mass calibration (Cohn et al., 2007; Erickson et al., 2011).
In the simplest case, if M̄ is the mean mass of a sample of clusters selected by some range of
observable and contaminating clusters have mass M ≪ M̄ , they dilute the sample and reduce
the mean mass inferred from calibration by a factor (1 + C). Incompleteness, on the other hand,
should not affect the estimated mean mass of a galaxy cluster sample, provided that the reason a
cluster of given X fails to be detected is not correlated with its halo mass. Keeping the impact
of contamination uncertainty sub-dominant requires that the contamination level be known to
∆C ≈ ∆ ln(1+C) ≤ ∆ lnM . This is a stiffer requirement than that on the product (1− I)(1+C),
by a factor of α ≈ 3, so it will be more difficult to achieve in practice.

Different cluster finding techniques are sensitive to different sources of contamination and in-
completeness. In X-rays, the principal contaminants are X-ray point sources (AGNs), which can be
effectively removed from cluster catalogs by demanding that galaxy clusters be detected as spatially
extended emission. With this cut, the fraction of galaxy clusters where AGNs have a significant
impact on the cluster emission is . 5% (Burenin et al., 2007; Mantz et al., 2010). The few percent
contamination level of today’s X-ray cluster surveys is not an important systematic relative to
mass calibration uncertainty. However, the demands will be stiffer for eROSITA, so whether AGN
contamination will continue to be a negligible systematic in the future remains to be seen. Incom-
pleteness (in the sense of clusters that reside in non-Gaussian tails) is a source of possible concern,
since eROSITA will probe significantly lower cluster masses than current X-ray surveys, and the
regularity of the intracluster medium could break down at lower halo masses because of greater
importance of radiative cooling or galaxy and AGN feedback. However, Chandra studies of group-
scale systems show that the scaling relations of galaxy clusters extend down to M ≈ 4 × 1013 M⊙

(Sun et al., 2009), so eROSITA should be able to use the vast majority of all X-ray selected groups
and clusters for cosmological investigations. As usual, the largest open question is accuracy of the
mass calibration.
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Because SZ clusters work in the low S/N limit, with typical detections being ≈ 5σ, SZ cluster
samples typically can contain a few false detections — sources that do not correspond to massive
galaxy clusters but rather reflect the stochastic nature of the CMB and/or instrumental noise.
However both of these sources of stochasticity can be very well characterized, so we do not expect
them to be a limiting systematic: their impact on P (X|M,z) is calculable. Radio emission by point
sources and/or dusty star forming galaxies can systematically reduce the SZ signal of clusters, but
these effects are expected to fall below the 10% level (e.g., Vanderlinde et al., 2010). Further
study of the ongoing SZ surveys will better illuminate the impact that such sources can have on
cosmological constraints from SZ cluster samples. Contamination by intrinsic CMB fluctuations
and point sources are both mitigated by multi-frequency observations, since the SZ effect has a
distinct spectral signature. While contamination and incompleteness of SZ samples remains an
area of active research, we think these effects are unlikely to compete with mass calibration as a
limiting uncertainty.

For optical cluster searches the primary source of contamination is projection effects — two
or more small halos lining up to produce the apparent galaxy overdensity of a larger halo. These
projections can arise from truly random superpositions or from galaxies or groups that lie in the
same filamentary structure but not within the virial radius of a common halo. Even with galaxy
spectroscopic redshifts, projection effects in the optical can produce contamination levels of 5%-20%
depending on the richness threshold (Cohn et al., 2007; Rozo et al., 2011a); in a direct comparison
of optical and X-ray catalogs, Andreon and Moretti (2011) conclude that the contamination of the
former is 10% or less. The principal reason that projection effects are more important in optical
catalogs than in X-ray or SZ catalogs is that optical catalogs tend to reach significantly lower
mass thresholds at high redshift, which results in higher surface densities of clusters and therefore
stronger projection effects. In fact, projection effects may well set the lower mass threshold at which
cosmological analyses with optical clusters are possible. We anticipate that incompleteness and
contamination can be adequately modeled through the use of realistic mock catalogs constructed
using numerical simulations, provided they are constructed to match the clustering data of the
survey under consideration. These mock catalogs can be analyzed using the same algorithms applied
to the observational data, allowing one to quantitatively characterize the impact of projection
effects. Many of the most recent optical analysis draw on such detailed mock catalogs, but greater
accuracy will be needed for next generation surveys.

The impact of contamination on weak lensing mass calibration is somewhat subtle, and probably
weaker than the naive expectation of depressing the estimated mass by (1 + C) through dilution.
When superposed galaxy groups masquerade as a single more massive cluster, their projected mass
distributions are also superposed, and the lensing signal from this blend may be close to the signal
that would come from a cluster of the combined richness. The net impact must again be evaluated
with detailed mock catalogs.

6.4.3. Calibrating the Core of P (X|M,z)

In addition to characterizing extended tails of the mass-observable relation, one must calibrate
the “core” of P (X|M,z), where scatter arises from physical variations in cluster properties at fixed
halo mass, from observational noise, and from low level contamination that produces small random
fluctuations in the observable. These effects are typically assumed to produce a log-normal form
of P (X|M,z), i.e., Gaussian scatter in lnX at fixed M . The calibration task is then to determine
the mean relation 〈lnX|M,z〉 and the variance Var(lnX|M,z), and to characterize any deviations
from log-normal form that are large enough to affect the predicted abundance. As the notation
indicates, the relation can evolve with redshift, and the scatter and non-Gaussianity may depend
on halo mass at fixed redshift.
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We consider each of the relevant terms in turn, starting with the mean observable–mass relation.
We have already expressed our view that statistical calibration methods, and stacked weak lensing
in particular, are the most promising route to meeting the stringent demands of next-generation
cluster surveys. Cunha et al. (2009) and Oguri and Hamana (2011) show that this approach allows
the mass and redshift dependence of 〈lnX|M,z〉 and Var(lnX|M,z) to be parameterized in an
extremely flexible way while retaining enough information to yield strong cosmological constraints.

If the mean mass-observable relation is calibrated using stacked weak lensing, then the sys-
tematic effects discussed for WL in §5.7 are also sources of uncertainty for cluster studies. In
particular, errors in the source galaxy redshift distribution and/or shear calibration will shift the
inferred cluster mass scale. For these systematics to be insignificant, the rule of thumb is that
the uncertainty in the mean inverse critical surface density

〈
Σ−1

crit

〉
of the source galaxies and the

error in the shear calibration must be smaller than the mass errors plotted in Figure 28, divided
by 1.5. The 1.5 factor comes in because an error in

〈
Σ−1

crit

〉
or shear calibration uniformly biases

the recovered cluster density profile and therefore biases the estimate of R200. A bias b in the mass
at a fixed aperture becomes roughly a bias b1.5 in the estimated virial mass. Typically, a system-
atic error ∆z̄ in the mean redshift of sources produces a corresponding error ∼ ∆z̄/2 in

〈
Σ−1

crit

〉
.

Recent work suggests that controlling photometric redshifts at the level required for weak lensing
mass calibration of galaxy clusters is possible (Sheldon et al., 2012). Importantly, because cluster
weak lensing depends on the mean tangential shear around cluster centers, some forms of cosmic
shear systematics are automatically averaged away and therefore not relevant for weak lensing mass
calibration of galaxy clusters. For instance, errors that are coherent on scales larger than cluster
diameters (typically a few arcmin) but incoherent on still larger scales will be averaged out in a
stacked lensing measurement. Moreover, because the weak lensing signal about galaxy clusters
is stronger than cosmic shear, uncertainties that appear for very low shear values (e.g., additive
biases) are less important. All in all, the demands on weak lensing systematics for stacked weak
lensing calibration of galaxy clusters are likely to be lower than those for cosmic shear.

There are some systematics specific to stacked cluster lensing, the most significant of which
is cluster mis-centering. If the observationally determined center of a cluster does not match the
location of the center of the dark matter halo that one would select in simulations, then the observed
mean tangential shear about the assigned center will differ from the theoretical expectation. Cluster
mis-centering should not be problematic in X-ray experiments with high angular resolution, as gas
in hydrostatic equilibrium traces the underlying gravitational potential. While a few exceptions
will arise, such as the famed Bullet Cluster (Clowe et al., 2006), the frequency of these systems
is low. For similar reasons, centroiding of SZ systems is expected to be fairly robust. The mis-
centering problem is most difficult in the optical, where the center is typically chosen to be a specific
galaxy but the choice of galaxy is not necessarily obvious; X-ray studies of SDSS maxBCG clusters
suggest that the mis-centered fraction is about 30% (Andreon and Moretti, 2011). Mis-centering
is currently one of the dominant systematics in stacked cluster lensing, introducing uncertainties
at the ≈ 5% − 10% level (Johnston et al., 2007). There are ongoing efforts aimed at improving
cluster centering (George et al., 2012, Rykoff et al. in preparation). Oguri and Takada (2011) find
that marginalizing over parameters that describe mis-centering does not significantly dilute the
cosmological power of cluster abundance studies, so it may be that future analyses will simply treat
mis-centering via an additional set of nuisance parameters. Alternative weak lensing estimators
can be constructed to avoid mis-centering biases in the inner regions of clusters (Mandelbaum
et al., 2010). Other potential biases that affect stacked cluster lensing are modulation of the source
population by lensing magnification, non-linear shear corrections, and source density modulation
due to obscuration by cluster members (see Rozo et al. 2011b; Hartlap et al. 2011). These effects
can also have impact on cosmic shear experiments.
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Turning to scatter, we can show that the magnitude of the variance Var(lnX|M,z) is degenerate
with the mass scale through a simple argument. Suppose the observable of interest is a mass
estimator X = Mobs, where the subscript indicates the observationally estimated cluster mass.
The observed abundance is

dn

d lnMobs
=

∫
d lnM

dn

d lnM
P (Mobs|M,z). (150)

For a power-law mass function dn/d lnM = AM−α = A exp(−α lnM) and log-normal scatter of
variance σ2 = 〈(lnMobs − lnM)2〉, one can readily compute the observed abundance by completing
the square, finding

dn

d lnMobs
= A exp

(
−α lnMobs −

1

2
α2σ2

)
. (151)

From equation (151) it is evident that a shift in mass ∆ lnM is degenerate with a shift in the
variance ∆σ2 = 2α−1∆ lnM . (For a more rigorous argument that arrives at the same conclusion,
see Lima and Hu 2005.) Thus, if the mass scale is controlled with an accuracy ∆ lnM , then the
scatter must be controlled with an accuracy ∆σ2 = 2α−1∆ lnM . If we further set ∆σ2 = 2σ∆σ,
we arrive at ∆σ = α−1σ−1∆ lnM . The fractional accuracy with which σ must be known to avoid
competing with ∆ lnM scales as σ−2, so the requirement is much less demanding if the scatter is
smaller to begin with. As an illustrative example, we set α = 3 and σ = 0.2, which is roughly
appropriate for SZ and likely slightly optimistic for optical. We find that the uncertainty due to
errors in the scatter becomes comparable to that from errors in the mass when ∆σ ≈ 1.7∆ lnM .
For Stage III experiments with weak lensing calibration, yielding ∆ lnM ≈ 2%, the scatter needs
to be known at the ∆σ ≈ 0.04 level, a value in agreement with the more rigorous estimate by Rozo
et al. (2011b) and likely to be achievable in the near future (see, e.g., Rykoff et al., 2012). If Stage
IV experiments reach 0.5% precision, the corresponding uncertainty in the scatter must be below
0.01 (absolute, not fractional), which is difficult to achieve from an ab initio calculation but may
be possible with statistical calibration methods.

Finally, we must consider the possibility that, in addition to extended tails reflecting contam-
ination and incompleteness, the core of P (X|M,z) deviates from log-normal form. This problem
was considered by Shaw et al. (2008), whose discussion we paraphrase here. An observable-mass
relation can be approximated by

P (lnX|M) = G(x) − γ

6

d3G

dx3
+

κ

24

d4G

dx4
+ ... (152)

known as the Edgeworth expansion. Here G is a Gaussian of zero mean and unit standard deviation,
x = (lnX−〈lnX〉)/[Var(lnX|M,z)]1/2, γ is the skewness of the distribution, and κ is the kurtosis.
For a power-law mass function dn/d lnM ∝M−α, it is straightforward to check that the resulting
cluster abundance is

dn

dX
=

∫
dM

dn

dM
P (X|M) =

(
dn

dX

)

0

[
1 +

α3σ3

6
γ +

α4σ4

24
κ+ ...

]
, (153)

where (dn/dX)0 is the abundance for a purely log-normal distribution. (Note that this α is also
the logarithmic slope of the cumulative halo mass function d lnN/d lnM that appears in our earlier
discussion.)

Setting α = 3 and assuming 10% scatter for X-ray masses, a 3% correction to the abundance —
equivalent to a 1% correction in the mass — requires extreme non-Gaussianity with γ ≈ 7 or κ ≈ 90.
Numerical simulations, on the other hand, predict distributions of X-ray observables that are close
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Figure 29 Relative change in cluster abundances at z = 0.6 as a function of mass due to a 2%
bias in the mass (∆ lnM = 0.02), raising the log-normal scatter σ from 0.2 to 0.25, or introducing
skewness γ = 1 in P (X|M,z) (solid, dashed, and dot-dashed curves, respectively). The statistical
error in number counts for A = 104 deg2 is shown by the dotted line. The sensitivity of ∆ lnN
to systematic errors in the mass, scatter, or skewness can be estimated using the rule-of-thumb
approximations in equations (154)-(156).

to log-normal (see, e.g., Stanek et al. 2010, Fig. 8; Fabjan et al. 2011, Fig. 3). We therefore
do not expect X-ray studies to be sensitive to departures from a log-normal P (X|M,z). For
[Var(lnX|M,z)]1/2 = 0.2, typical for SZ and perhaps achievable for optical, a 3% abundance change
arises from γ ≈ 0.8 or κ ≈ 6, still quite large deviations from Gaussianity. For [Var(lnX|M,z)]1/2 =
0.4 these numbers drop to 0.1 and 0.35, respectively, so with this level of scatter a moderate
degree of non-Gaussianity can have noticeable impact on the predicted abundances. For example,
a Poisson distribution for a cluster with 〈N〉 = 10 galaxies corresponds to a skewness γ ≈ 0.3. This
discussion demonstrates the value of finding improved optical richness estimators that have lower
scatter relative to mass (Rozo et al., 2009; Rykoff et al., 2012).

Figure 29 shows the impact that various elements of P (X|M,z) can have on the recovered
cluster counts. For illustrative purposes, we assume that X is an observed mass and show the
change in the observed mass function due to changes in P (Mobs|M,z). For our reference model,
we assume Mobs is unbiased and has log-normal scatter σ = 0.2, and we compute the cumulative
cluster counts above Mobs for our fiducial cosmology at z = 0.6 in a redshift bin of width ∆z = 0.1.
Results at other redshifts are qualitatively similar.

Solid, dashed, and dot-dashed curves show the change in the cumulative number counts ∆ lnN
if Mobs is biased by 2% (∆ lnM = 0.02), if the scatter is increased from σ = 0.2 to σ = 0.25, or
if the skewness is increased from γ = 0 to γ = 1 using the Edgeworth expansion. For reference,
we also show the statistical error on the cluster counts for A = 104 deg2 as a dotted line. The
details of P (X|M,z) affect the recovered cluster counts, and the impact is larger at higher masses
than at lower masses. Moreover, the relative impact of skewness to scatter and of scatter to bias is
mass dependent, with lower masses being more robust to uncertainties in the scatter and skewness.
This is as expected: the shallower the slope of the mass function, the less important the details
of P (X|M,z). The systematic offsets in Figure 29 are well approximated (to ≈ 10% and 30%
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for scatter and skewness respectively) by the rule-of-thumb calculations we have described above,
specifically

∆ lnNpredicted = α∆ lnM , (154)

∆ lnNpredicted = α2σ∆σ , (155)

∆ lnNpredicted =
1

6
α3σ3∆γ . (156)

Given the values of ∆ lnN and α expected for a survey (Fig. 26; typical values ∆ lnN ≈ N−1/2 and
α ≈ 3), one can use equations (154)-(156) to infer the uncertainties ∆ lnM , ∆σ, and ∆γ required
to keep a cosmological analysis limited by abundance statistics.

6.4.4. Theoretical Systematics

Predicting observed cluster counts via equation (149) requires knowledge of the halo mass
function dn/dM for any cosmological model under consideration. If the fractional uncertainty
in dn/dM exceeds the observational error in cluster counts ∆ lnN , or if the equivalent mass scale
uncertainty exceeds the mass calibration error ∆ lnM , then cosmological constraints will be limited
by theoretical uncertainty rather than by observational errors. The study of Tinker et al. (2008)
finds agreement in dn/dM at the . 5% level among multiple simulations by different groups for a
ΛCDM cosmological model with WMAP3 parameters. This is roughly the level required for large
area surveys of M > 4 × 1014M⊙ clusters in ∆z = 0.1 bins, though higher accuracy is needed
for lower mass thresholds (for detailed discussion see Cunha and Evrard 2010; Wu et al. 2010).
The formula (39) describes Tinker et al.’s z = 0 results accurately, but at redshifts z = 0.5 − 2.5
they find deviations of ∼ 10 − 30% from this “universal” prescription. While these deviations are
themselves numerically calibrated, their existence suggests that the mass function may depend on
the dark energy model even when expressed in terms of the σ(M) relation as in equation (39).
In addition, consistency in halo definitions is clearly critical. For instance, Bhattacharya et al.
(2011) find that mass functions in their suite of wCDM simulations — which are calculated using
friends-of-friends halo finders — deviate by up to 10% from a fitting formula calibrated on their
ΛCDM simulation suite. It seems likely that Stage III and certainly Stage IV experiments will need
to move to emulator based methods with comprehensive N-body libraries (e.g., Lawrence et al.,
2010) rather than simple fitting formulae.

While further N-body work is needed to interpret future surveys, dark matter evolution is
straightforward in principle, and the problem should yield to sufficient applications of computational
force. Baryonic evolution is potentially a thornier issue. Some X-ray studies suggest a depletion
of baryonic mass (stars + hot gas) relative to the universal Ωb/Ωm ratio by 20 − 30% within the
∆ = 500ρc radius, with systematically larger depletion in less massive clusters (e.g., Giodini et al.,
2009). For Ωb/Ωm = 0.17, a 20% deviation in baryonic mass is a 3.4% deviation in total mass, and
thus comparable to or larger than the statistical mass calibration errors achievable with stacked
weak lensing (Figure 28), as well as the precision required to achieve the statistical limits of large
cluster surveys (Figure 23d). Hydrodynamic simulations can explain baryon depletions comparable
to those observed (Young et al., 2011), but the magnitude and even the sign of the baryonic effects
depend on the star formation and feedback physics (e.g., Stanek et al. 2009; Cui et al. 2012).
Furthermore, because the baryons influence the dark matter profile, they can have substantial
impact (∼ 15%) on the total mass within a high overdensity threshold (e.g., the ∆ = 500ρcrit

threshold frequently adopted in X-ray analyses; see Stanek et al. 2009). In all of these simulations
the corrections are smaller at larger radii, so defining halo boundaries at lower overdensity (such
as the ∆ = 200ρ̄ convention used here) is beneficial in this respect.
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It may be possible to calibrate baryonic effects well enough with simulations and detailed
observations of selected systems to remove them as a source of systematic uncertainty, but this
problem will require concerted effort, particularly when Stage IV experiments get underway. By
the same token, if stacked weak lensing is the primary mass calibration tool, then one must also
develop robust theoretical models for predicting the weak gravitational lensing signal, which in
turn requires that the halo–mass correlation function be characterized at the same level as ∆ lnM .
Current analytical models are accurate only at the ≈ 10%− 20% level (Hayashi and White, 2008),
so this is another area that requires further theoretical study.

A final caveat related to the halo mass function is that primordial non-Gaussianity could alter
its form (e.g., Weinberg and Cole, 1992; Dalal et al., 2008; Grossi et al., 2009; LoVerde and Smith,
2011; D’Amico et al., 2011) and thereby change the cluster abundances predicted for a given dark
energy model (e.g., Cunha et al., 2010; Pillepich et al., 2012). Of course, evidence for non-Gaussian
initial conditions would be exciting in its own right, with important implications for early-universe
physics. However, it appears that the levels of non-Gaussianity that would have significant impact
on cluster abundances are already ruled out by other constraints, unless one allows the magnitude
of the non-Gaussianity to be scale-dependent (e.g., Hoyle et al., 2011; Paranjape et al., 2011). Given
the strong theoretical prior for Gaussian initial conditions and the multiple observational probes
that could detect and characterize primordial non-Gaussianity if it exists, we think it unlikely that
non-Gaussianity will limit the power of cluster abundances as a probe of dark energy and modified
gravity.

6.5. Space vs. Ground

As discussed in §6.2, X-ray observations, possible only from space, have played a central role in
nearly all cluster cosmological studies to date. The ROSAT All-Sky Survey has been the basis for
many of the cluster samples used in these studies (Table 4). Pointed observations with a variety of
telescopes, especially XMM-Newton and Chandra, have been the basis of mass calibration for X-ray
observables and the source of most empirical knowledge about the physics of the intracluster gas.
Ongoing XMM-Newton surveys will expand the dynamic range and size of X-ray catalogs over the
next few years. The most important advance will come with the eROSITA mission (Merloni et al.,
2012), which should produce the definitive all-sky survey of massive (M & 4×1014M⊙) clusters out
to z ≈ 1, with an extended tail of higher redshift clusters reaching z ≈ 2. Follow-up X-ray studies
at higher angular resolution will help better assess point-source contamination and will improve
the mass calibration of the eROSITA catalog. For comparable numbers of clusters, X-ray catalogs
offer significant advantages over SZ or optical catalogs because of the low scatter expected between
X-ray observables and halo mass, which reduces sensitivity to uncertainties in the width and form
of the observable-mass relation (§6.4.3).

For SZ searches, ground-based telescopes have higher sensitivity than space observatories be-
cause of their larger collecting area and higher angular resolution. The larger beam size of the
Planck observatory (≈ 5 arcmin) relative to SPT and ACT (≈ 1 arcmin) reduces its ability to
detect high redshift systems. Nonetheless, the all-sky nature of Planck observations is an impor-
tant asset, and the Planck catalog of high mass clusters will be useful both for direct cosmological
constraints and for cross-correlation studies with clusters identified at other wavelengths. Thus, we
view the Planck, SPT, and ACT surveys as highly complementary. Any future CMB space mission
designed to probe inflation physics and primordial gravity waves would also produce a much more
sensitive all-sky SZ cluster catalog, provided it achieved high angular resolution.

Turning to optical searches, space observatories provide little advantage for cluster detection at
z . 1, since cluster detection does not gain much from the improved image resolution achievable
from space. However, as discussed in §6.3.2, space-based near-IR imaging is highly desirable for
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extending (rest-frame) optical cluster catalogs to z ≈ 2. In the near future, such searches will rely
on Spitzer data, as in the case of ISCS (Eisenhardt et al., 2008), SpARCS (Wilson et al., 2006),
and the recently approved 100 deg2 Spitzer–SPT Deep Field. Additional IR data is or will soon
be available from surveys like VHS, UKIDSS, and WISE, which may allow for high redshift cluster
finding (Gettings et al., 2012). The VIKING survey, covering ≈ 1500 deg2, should be sufficiently
deep to allow for robust cluster detection at z > 1. In the longer term, IR imaging from Euclid

and/or WFIRST could make a key contribution to high redshift cluster surveys. High redshift
cluster detection should also be feasible with extremely deep optical imaging from the ground, like
that planned for LSST, which should reach z ≈ 1.5.

In the long run, however, the most important contribution of space observations to cluster
cosmology will come via weak lensing mass calibration rather than cluster finding. The statistical

error of WL mass calibration scales as n̄
−1/2
g , where n̄g is the source surface density. As can be

seen from Figure 28, a surface density n̄g ≈ 30 arcmin−2 is required to reduce mass calibration
error below the statistical abundance error, and even then only for z . 0.5. This source density is
expected for an optical space mission like Euclid, but it is probably higher than can be achieved by
ground-based observations, even with the depth and image quality of LSST. The cluster counting
error and mass calibration error both scale with survey area as A−1/2, so the area effect cancels
out if the cluster and WL surveys overlap completely. If the cluster survey covers a larger area
(e.g., the all-sky eROSITA catalog), then the WL source density required to saturate the halo
statistics limit is even higher. Reaching the calibration accuracy allowed by the source galaxy
statistics also requires excellent control of shape measurement systematics, generally expected to
be lower from a space-based platform, and photo-z systematics, which probably require space-based
IR imaging to achieve the stringent demands implied by Figure 28. More generally, if the error in
WL mass calibration sets the ultimate limit of cluster measurements of fluctuation growth, as we

have speculated it will, then the achievable error on σ11,abs(z) scales as n̄
−1/2
g , or as (∆γ)−1

sys if the
WL measurements are themselves limited by a shear measurement systematic (∆γ)sys.

6.6. Prospects

We expect cluster abundance studies to undergo substantial and steady improvements over the
next decade and beyond. In the near term (. 3 years), we anticipate advances in X-ray, SZ, and
optical cluster studies. The XMM Cluster Survey (XCS) and XMM XXL Survey will yield much
larger X-ray cluster samples at z & 0.3. Planck will produce the definitive all-sky SZ catalog of
massive clusters out to z . 0.7, while SPT and ACT will probe z & 0.7 cluster populations over
thousands of square degrees for the first time. In the optical, continuing studies with the SDSS
will lead to improved cluster finders and richness estimators, as well as improved weak lensing
calibration thanks to better centering and better source photometric redshifts. On a comparable
time scale, the RCS-2 survey will obtain g, r, and z imaging to a nominal depth of r ≈ 24.8 (roughly
2 magnitudes deeper than SDSS) over 1000 deg2, yielding the first large area optical cluster catalog
extending to z ≈ 1. Relative to the results shown in Figure 22, these X-ray, SZ, and optical studies
will improve the low redshift σ8–Ωm constraint and extend it, at somewhat lower precision, to
z ≈ 0.5 − 1. At the same time, improved calibration and cross-checks among surveys will test for
and reduce remaining sources of systematic error.

In the medium term (≈ 3 − 8 years), several new optical surveys will cover thousands of
deg2 with greater depth than SDSS and larger area and/or more photometric bands than RCS-
2. These include the Kilo-Degree Survey (KIDS, 1500 deg2 in ugriz), DES (5000 deg2 in grizY ),
PS1 (15,000 deg2 in grizY ), and the Hyper-Suprime Camera survey (HSC, 1500 deg2 in grizY ).
These surveys should significantly improve the cosmological constraints relative to RCS-2, thanks
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to higher cluster numbers, lower statistical errors in weak lensing mass calibration, and better
control of photometric redshift uncertainties. The VIKING survey will cover 1500 deg2 at near-IR
wavelengths (ZY JHKs) at sufficient depth to allow cluster identification and accurate photometric
redshifts at z = 1 − 2. In addition, all of these surveys will overlap with Planck, and often with
either the ACT or SPT surveys, which can further enhance the utility of both sets of catalogs. DES
in particular is designed to cover the entire footprint of the SPT SZ survey.

With launch expected 2013-2014, eROSITA will produce the ultimate all-sky catalog of massive
clusters (see §6.5). The optical imaging surveys will allow weak lensing calibration of the eROSITA

mass-observable relations, with multiple independent surveys affording larger overlap area and
thus more precise calibration. This combination of X-ray selection and optical WL calibration
offers bright prospects for the coming decade of cluster cosmology. Optical surveys will further
extend this leverage by probing cluster abundances to masses below those probed by eROSITA.

On a longer timescale, LSST plans to image 20,000 deg2 of high-latitude sky in six bands
(ugrizY ), with each single pass comparable in depth to the medium-term surveys described above
and co-added data reaching 2.5− 3 magnitudes deeper. The increased depth of LSST should allow
one to cleanly select galaxy clusters out to z ≈ 1.5. While the greater dynamic range of the cluster
catalogs will be an asset in itself, LSST’s most important contribution to cluster cosmology will
be in the form of improved WL mass calibration, both for eROSITA and for LSST’s own clusters.
Euclid could provide even better WL calibration over a similar sky area, while WFIRST should
achieve a high WL source density but over a smaller survey area. The IR sensitivity of Euclid

and/or WFIRST should also enable cluster searches at z ≈ 2 and beyond.
We have argued throughout this section that mass calibration will be the likely limiting factor in

cluster studies of cosmic acceleration, and that stacked weak lensing is the most promising avenue
to achieve accurate mass calibration. Figure 30 combines information from Figures 24 and 28,
showing the fractional error on σ11,abs(z) in ∆z = 0.1 bins that can be achieved with a 104 deg2

cluster survey, using the WL mass calibration errors we have forecast for Stage III (left panel) or
Stage IV (right panel) source densities. With Stage III lensing calibration, errors on σ11,abs(z) are
below 1% at z ≈ 0.5 for cluster mass thresholds of 1−2×1014M⊙, and ∼ 1.5% for a mass threshold
of 4 × 1014M⊙. With Stage IV lensing calibration, the peak sensitivity is better than 0.5% for the
lower mass thresholds and better than 1% for the 4 × 1014M⊙ threshold.

The additional red and blue curves in Figure 30 show the forecast constraints on σ11,abs(z) for
a fiducial Stage III (blue) or Stage IV (red) program combining SN, BAO, WL, and CMB data as
discussed in §8. These forecasts assume a w0 − wa dark energy model and allow departures from
GR-predicted growth described by an overall multiplicative offset G9 and a growth index deviation
∆γ (see §2.2). The fiducial programs are defined in §8.1. If WL systematics are controlled at the
level assumed in these fiducial programs then they should be negligible for cluster mass calibration
relative to statistical errors, so we have not included them in computing ∆ lnM .

From Figure 30 we see that a 104 deg2 cluster survey with Stage III WL calibration data can
easily exceed the σ11,abs(z) precision expected from the Stage III CMB+SN+BAO+WL program, by
as much as a factor of ≈ 3 for a threshold of 1014M⊙. Similarly, cluster constraints with Stage IV WL
calibration improve on the fiducial Stage IV σ11,abs(z) precision without clusters by a factor of ≈ 2.
The visual impression that clusters can outperform the fiducial program only at z ≈ 0.4 − 0.8 but
perform worse at high and low redshifts is artificial, since the CMB+SN+BAO+WL curves assume
a smooth growth model while the cluster constraints in Figure 30 are those that can be achieved
from galaxy clusters within each individual redshift bin. For Figure 30 we have assumed that
errors on Ωm and dVc(z) are negligible. While the assumption for dVc(z) should prove reasonably
accurate, the forecast CMB+SN+BAO+WL errors on Ωm (4% and 1% for Stage III and Stage IV,
respectively) are larger than our assumed WL mass calibration errors for M . 2 × 1014M⊙ (see
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Figure 30 Error on σ11,abs(z) achievable by measuring cluster abundances in a redshift bin z =
zc ± 0.05 in a 104 deg2, assuming mass calibration via stacked weak lensing with Stage III or Stage
IV source densities. We assume that all geometric cosmological parameters — most significantly the
comoving volume element and the matter density parameter Ωm — are held fixed, being effectively
constrained by a joint CMB+SN+BAO+WL experiment. Also shown for comparison are the
forecast constraints on σ11,abs(z) derived from such a joint analysis using our fiducial Stage III and
Stage IV surveys, assuming a w0–wa parameterization of dark energy and allowing deviations from
GR parameterized by G9 and ∆γ (see §8.4 for details).

Figure 28). In practice, therefore, the fractional errors in Figure 30 would apply not to σ11,abs(z)
but to the parameter combination σ11,abs(z)Ω

q
m, with q ≈ 0.4. We return to these points in §8.4

below, where we discuss the improvements in constraints on the dark energy equation of state and
on G9 and ∆γ achievable with clusters.

If some alternative mass calibration method proves better than stacked weak lensing, then
the situation could be even better than Figure 30 suggests. This would be especially true for
Stage III, where the WL source density is the clear limiting factor on the overall error. For our
assumed Stage IV source density, the uncertainty from WL mass calibration is already close to
the statistical uncertainty in cluster counts at z . 0.6. Conversely, the situation would be worse
than Figure 30 suggests if some other systematic uncertainty — e.g., contamination, miscentering,
theory, or WL photo-z calibration — makes it impossible to achieve the statistical limits of the WL
mass calibration.

In summary, our analysis indicates that cluster abundances with masses calibrated by stacked
weak lensing could provide strong tests of cosmic acceleration models, beyond those afforded by
the 2-point WL statistics described in §5. However, achieving this potential requires that mass
calibration uncertainties be controlled at the 1 − 3% level for Stage III and at the 0.5 − 1.5% level
for Stage IV. We see no obvious show stoppers, but the challenge is a demanding one.
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7. Alternative Methods

In §§3-6, we have reviewed in detail the four observational methods that have been most widely
discussed, and applied, as probes for the origin of cosmic acceleration. We now review more briefly
some of the other techniques for testing cosmic acceleration models. In some cases, surveys con-
ducted for SN, BAO, or WL studies will automatically provide the data needed for these alternative
methods. For example, redshift-space distortions (§7.2) and the Alcock-Paczynksi effect (§7.3) can
be measured in galaxy redshift surveys designed for BAO measurements, and synoptic surveys de-
signed for Type Ia supernovae will discover other transients that might provide alternative distance
indicators (§7.4). Just as cluster investigations will increase the cosmological return from WL sur-
veys, these methods will increase the return from BAO or SN surveys. The potential gains are large,
but they are uncertain because the level of theoretical or observational systematics for these meth-
ods has not yet been comprehensively explored. In §8.5 we will examine how precisely our fiducial
Stage III or Stage IV CMB+SN+BAO+WL programs predict the observables of these methods,
setting targets for the precision and accuracy they should achieve to make major contributions to
cosmic acceleration studies.

Some of the other methods described below require completely different types of observations or
experiments, falling outside of the “survey mode” that characterizes the methods we have discussed
so far. Compared to the combined SN+BAO+WL+CL approach, these methods may yield more
limited information or be sensitive only to certain classes of acceleration models, but they can
provide high-precision tests of the standard ΛCDM model, and they could yield surprising results
that would give strong guidance to the physical origin of acceleration.

7.1. Measurement of the Hubble Constant at z ≈ 0

As emphasized by Hu (2005), a precise measurement of the Hubble constant, when combined
with CMB data, allows a powerful test of dark energy models and tightened constraints on cos-
mological parameters. In effect, the CMB and H0 provide the longest achievable lever arm for
measuring the evolution of the cosmic energy density, from z ≈ 1100 to z = 0. The sensitivity
of H0 to dark energy is illustrated in Figure 2, which shows that a change ∆w = ±0.1 alters
the predicted value of H0 by 5% in Ωk = 0 models that are normalized to produce the same
CMB anisotropies. More generally, a low redshift determination of the Hubble constant combined
with Planck-level CMB data constrains w with an uncertainty that is twice the fractional uncer-
tainty in H0, assuming constant w and flatness. The challenge for future H0 studies is to achieve
the percent-level statistical and systematic uncertainties needed to remain competitive with other
cosmic acceleration methods. Freedman and Madore (2010) review recent progress in H0 determi-
nations and prospects for future improvements; the past five years have seen substantial advances
in both statistical precision and reduction of systematic uncertainties.

One of the defining goals of the Hubble Space Telescope was to measure H0 to an accuracy of
10%. The H0 Key Project achieved this goal, with a final estimate H0 = 72 ± 8 km s−1 Mpc−1

(Freedman et al., 2001), where the error bar was intended to encompass both statistical and system-
atic contributions. This estimate used Cepheid-based distances to relatively nearby (D < 25Mpc)
galaxies observed with WFPC2 to calibrate a variety of secondary distance indicators — Type
Ia supernovae, Type II supernovae, the Tully-Fisher relation of disk galaxies, and the fundamen-
tal plane and surface-brightness fluctuations of early-type galaxies. These secondary indicators
were in turn applied to galaxies “in the Hubble flow,” meaning galaxies at large enough distance
(D ≈ 40 − 400Mpc) that their peculiar velocities vpec did not contribute significant uncertainty
when computing H0 = v/d. The Cepheid period-luminosity (P − L) relation was calibrated to
an adopted distance modulus of 18.50 ± 0.10 mag for the Large Magellanic Cloud (LMC). The
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uncertainty in adjusting the LMC optical P −L relation to the higher characteristic metallicities of
calibrator galaxies was an important contributor to the final error budget; Freedman et al. (2001)
adopted a ±0.2 mag/dex uncertainty in the metallicity dependence, implying a ∼ 0.07 mag sys-
tematic uncertainty in the correction (3.5% in distance). Another important systematic was the
uncertainty in differential measurements of Cepheid fluxes and colors over a wide dynamic range
along the distance ladder. The uncertainty of the LMC distance itself was also a significant fraction
of the error budget.

A number of subsequent developments have allowed substantial improvements in the measure-
ment of H0 (see Riess et al. 2009, 2011; Freedman and Madore 2010; Freedman et al. 2012). The
recent determination of H0 = 73.8±2.4 km s−1 Mpc−1 by Riess et al. (2011) yields a 1σ uncertainty
of only 3.3%, including all identified sources of systematic uncertainty and calibration error. One
important change in this analysis is a shift to Cepheid calibration based on the maser distances to
NGC 4258 (Herrnstein et al., 1999; Humphreys et al., 2008, 2013) and on parallaxes to Galactic
Cepheids measured with Hipparcos (van Leeuwen et al., 2007) and with the HST fine-guidance
sensors (Benedict et al., 2007). These calibrations circumvent the statistical and systematic uncer-
tainties in the LMC distance, and they directly calibrate the P −L relation in the metallicity range
typical of calibrator galaxies, albeit with a sample of only ∼ 10 stars reaching an error-on-the-mean
of 2.8% in the case of Milky Way parallaxes. A second improvement is more than doubling the
sample of “ideal” Type Ia SNe — with modern photometry, low-reddening, typical properties, and
caught before maximum — from the two available to Freedman et al. (2001) to eight. Of all sec-
ondary distance indicators, Type Ia supernovae have the smallest statistical errors, and probably
the smallest systematic errors, and they can be tied to large samples of supernovae observed at
distances that are clearly in the Hubble flow. Riess et al. (2009, 2011) use Type Ia supernovae
exclusively in their H0 estimates. Third, Cepheid observations at near-IR wavelengths (1.6µm)
have reduced uncertainties associated with extinction and the dependence of Cepheid luminosity
on metallicity (Riess et al., 2012). Finally, relative calibration uncertainties of Cepheid photometry
obtained with different instruments and photometric systems along the distance ladder have been
mitigated by the use of a single instrument, HST’s WFC3, for a large fraction of the data.

Extending the trend towards longer wavelength calibration, Freedman et al. (2011) and Scowcroft
et al. (2011) argue that 3.6µm measurements — possible with Spitzer and eventually with JWST

— minimize systematic uncertainties in the Cepheid distance scale because of low reddening and
weak metallicity dependence. Monson et al. (2012) calibrate the 3.6µm P − L zero-point against
Galactic Cepheid samples, including the Benedict et al. (2007) parallax sample, and thereby infer
the distance modulus to the LMC as a test of the optical Cepheid P −L relation and its metallicity
correction. Freedman et al. (2012) use these Milky Way parallaxes to calibrate the optical Cepheid
P − L relation and then recalibrate the Key Project data set to infer H0; this determination still
relies on optical, WFPC2 Cepheid data (and the associated metallicity corrections and flux and
color zero-point uncertainties), and the Key Project SN Ia calibrator sample includes several SNe
with photographic photometry or high extinction. Sorce et al. (2012) use the Tully-Fisher (1977)
relation in the Spitzer 3.6µm band, normalized to the Monson et al. (2012) LMC distance, to re-
calibrate the SN Ia absolute magnitude scale and thereby infer H0. Suyu et al. (2012a) infer H0

from gravitational lens time delays for two well constrained systems, an approach that sidesteps the
traditional distance ladder entirely (see §7.10 for further discussion). These four recent H0 deter-
minations (Riess et al. 2011; Freedman et al. 2012; Sorce et al. 2012; Suyu et al. 2012a) agree with
each other to better than 2%. While the data used for the first three are only partly independent,
this level of consistency is nonetheless an encouraging indicator of the maturity of the field. With
the precision of H0 measurements already at a level that allows critical tests of dark energy models
in combination with CMB, BAO, and SN data (see, e.g., Anderson et al. 2012), a key challenge
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for the field is convergence on error budgets that neither underrepresent the power of the data nor
understate systematic uncertainties.

Over the next decade, it should be possible to reduce the uncertainty in direct measurement of
H0 to approach the one-percent level. One crucial step will be the 1% to 5% parallax calibration
of hundreds of long-period Galactic Cepheids within 5 kpc by the Gaia mission, setting the fun-
damental calibration of the multi-wavelength P − L relation and, to some degree, its metallicity
dependence on a solid geometrical base with distance precision easily better than 1%. New Milky
Way parallax measurements using the spatial scanning capability of HST may achieve this preci-
sion even sooner. Discovery of additional galaxies with maser distances (like NGC 4258) may also
improve the Cepheid calibration or, if they are in the Hubble flow, may provide a direct determi-
nation of the Hubble constant (see Reid et al. 2012a for a recent measurement of UGC 3789 and
Greenhill et al. 2009 for additional candidates). The other key step will be the Cepheid calibration
of more Type Ia supernovae, which occur at a rate of one per 2− 3 years in the range D < 35Mpc
accessible to HST with WFC3. JWST could increase this range to D < 60Mpc, quadrupling the
rate of usable supernovae. Ultimately a sample of 20 to 30 calibrations of the SN Ia luminosity is
needed to reduce the sample size contribution to uncertainty in H0 below 1%. With firmer P − L
calibration and a larger Type Ia sample, the remaining uncertainty in H0 is likely to be dominated
by systematic uncertainty in the linearity of the photometric systems observing nearby and dis-
tant Cepheids. This may be minimized by the careful construction of “flux ladders,” analogous to
distance ladders but used to compare the measurements of disparate flux levels. Additional contri-
butions to the determination of H0 with few percent precision could come from “golden” lensing
systems, infrared Tully-Fisher distances, surface brightness fluctuation measurements further into
the Hubble flow, Sunyaev-Zel’dovich effect measurements, and local volume measurements of BAO.

We discuss the potential contribution of H0 measurements to dark energy constraints in §§8.3
and 8.5 below. Already, the combination of the 3% measurement of Riess et al. (2011) with CMB
data alone yields w = −1.08 ± 0.10, assuming a flat universe with constant w. The limitation
of H0 is, of course, that it is a single number at a single redshift, so while it can test any well
specified dark energy model, it provides little guidance on how to interpret deviations from model
predictions. However, precision H0 measurements can significantly increase the constraining power
of other measurements: for our fiducial Stage IV program described in §8, assuming a w0 − wa

model for dark energy, a 1% H0 measurement would raise the DETF Figure of Merit by 40%. A
direct measurement of H0 also has the potential to reveal departures from the smooth evolution of
dark energy enforced by the w0−wa parameterization. In essence, the dark energy model transfers
the absolute distance calibration from moderate redshift BAO measurements down to z = 0, but
unusual low redshift evolution of dark energy can break this link, shiftingH0 away from its expected
value. A precise determination of H0, coupled to a w(z) parameterization that allows low-redshift
variation, could reveal recent evolution of dark energy and definitively answer the basic question,
“Is the universe still accelerating?”

7.2. Redshift-Space Distortions

As discussed in §2.3, peculiar velocities make large scale galaxy clustering anisotropic in redshift
space (Kaiser, 1987). In linear theory, the relation between the real-space matter power spectrum
P (k) and the redshift-space galaxy power spectrum Pg(k, µ) at redshift z follows equation (43):
Pg(k, µ) = [bg(z) + µ2f(z)]2P (k), where bg(z) is the galaxy bias factor, f(z) is the logarithmic
growth rate of fluctuations, and µ is the cosine of the angle between the wavevector k and the
line of sight. The strength of the anisotropy is governed by distortion parameter β = f(z)/bg(z),
which has been measured for a variety of galaxy redshift samples (e.g., Cole et al. 1995; Peacock
et al. 2001; Hawkins et al. 2003; Okumura et al. 2008). By modeling the full redshift-space galaxy
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power spectrum one can extract the parameter combination f(z)σ8(z), the product of the matter
clustering amplitude and the growth rate (see Percival and White 2009, who provide a clear review
of the physics of redshift-space distortions and recent theoretical developments). Like any galaxy
clustering measurement, statistical errors for redshift-space distortion (RSD) come from the com-
bination of sample variance — determined by the finite number of structures present in the survey
volume — and shot noise in the measurement of these structures (see §4.4.1). Optimal weighting
of galaxies based on their host halo masses can reduce the effects of shot noise below the naive
expectation from Poisson statistics (Seljak et al., 2009; Cai and Bernstein, 2012; Hamaus et al.,
2012). However, sample variance has a large impact on RSD measurements because filaments and
walls extend for many tens of Mpc with specific orientations, so even in real space one would find
isotropic clustering only after averaging over many such structures. McDonald and Seljak (2009)
show that one can partly beat the limits imposed by sample variance by analyzing multiple galaxy
populations with distinct bias factors in the same volume, which allows one to extract information
from the bg-dependence of the amplitude δg(k, µ) of each individual mode, rather than just the
variance of the modes. Bernstein and Cai (2011) provide a nicely pedagogical discussion of this
idea.

Anisotropy of clustering in galaxy redshift surveys thus offers an alternative to weak lensing
and cluster abundances as a tool for measuring the growth of structure. While WL and clusters
constrain the amplitude of matter clustering and yield growth rate constraints from measurements at
multiple redshifts, redshift-space distortions directly measure the rate at which structure is growing
at the redshift of observation; the coherent flows responsible for RSD are the same flows that are
driving the growth of fluctuations (eq. 42). Recent observational analyses include the measurement
of Guzzo et al. (2008) from the VIMOS-VLT Deep Survey (VVDS), f(z) = 0.91 ± 0.36 at z ≈ 0.8,
the measurement of Samushia et al. (2012) from SDSS DR7, obtaining ∼ 10% constraints on
f(z)σ8(z) at z = 0.25 and z = 0.37, the measurement of Blake et al. (2011a) from the WiggleZ
survey, obtaining ∼ 10% constraints in each of four redshift bins from z = 0.1 to z = 0.9, the
measurement of Reid et al. (2012) from BOSS, obtaining a ∼ 8% constraint at z = 0.57, and
the local measurement of Beutler et al. (2012) from the 6dFGS, obtaining a ∼ 13% constraint at
z = 0.067. All of these measurements assume ΛCDM geometry when inferring f(z)σ8(z), and their
derived growth parameters are consistent with ΛCDM predictions.

Redshift-space distortions can be measured with much higher precision from future redshift
surveys designed for BAO studies. These measurements can improve constraints on dark energy
models assuming GR to be correct, and they can be used to constrain (or reveal) departures from GR
by testing consistency of the growth and expansion histories. The key challenge in modeling RSD is
accounting for non-linear effects, including non-linear or scale-dependent bias between galaxies and
matter, at the level of accuracy demanded by the measurement precision. The linear theory formula
(43) is an inadequate approximation even on scales of 50h−1 Mpc or more (Cole et al., 1994; Hatton
and Cole, 1998; Scoccimarro, 2004) because of a variety of non-linear effects, including the “finger-
of-God” (FoG) distortions in collapsing and virialized regions, which are opposite in sign from the
linear theory distortions. Their effects are commonly modeled by adding an incoherent small scale
velocity dispersion to the linear theory distortions, but this model is physically incomplete, and it
typically leaves 5 − 10% systematic errors in β estimates (Hatton and Cole, 1998). Higher order
perturbation theory can be used to refine the large scale predictions (Scoccimarro, 2004), but this
does not capture the small scale dispersion effects, which are themselves significantly different for
galaxies vs. dark matter. Tinker et al. (2006) and Tinker (2007) advocate an approach based
on halo occupation modeling, which has the virtue of adopting an explicit, self-consistent physical
description that can encompass linear, quasi-linear, and fully non-linear scales. However, the model
is complicated, and it is presently implemented using numerically calibrated fitting formulas that
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may not generalize to all cosmologies. Following similar lines, Reid and White (2011) present a
simpler and more fully analytic scheme for computing redshift-space clustering of halos, which may
prove sufficiently accurate for the large scales probed by future surveys. Hikage et al. (2011) suggest
using galaxy-galaxy lensing to estimate the radial distribution of tracer galaxies in their dark matter
halos and combining with the virial theorem to predict the FoG profile. Other recent discussions
of analytic or numerically calibrated models of non-linear RSD, from different perspectives, include
Taruya et al. (2010), Jennings et al. (2011), Seljak and McDonald (2011), Jennings (2012), and
Okumura et al. (2012); this is a highly active area of current research.

Linear theory RSD depends only on the growth parameters f(z)σ8(z), but testing non-GR
models such as f(R) gravity with RSD may require full numerical simulations to capture non-
linear effects in these models (e.g., Jennings et al. 2012a; Li et al. 2013). While analytic models
are convenient when fitting data to extract parameter values and errors, there is no problem of
principle in using brute-force numerics to compute RSD predictions, for either GR or modified
gravity models. The fundamental question is the limit on the accuracy of predictions that will be
imposed by uncertainties in galaxy formation physics, such as the relative velocity dispersions of
galaxies and dark matter within halos. These limits are poorly understood at present.

Since the number of Fourier modes in a 3-dimensional volume increases as k3, the precision of
clustering measurement is generally higher on smaller scales, at least until one hits the shot noise
limits of the tracer population. Forecasts of cosmological constraints from RSD remain uncertain
because it is not clear how small a scale and how high a precision one can go to before being limited
by theoretical modeling systematics. The impact of theoretical systematics is often characterized
implicitly in terms of a maximum wavenumber kmax used in the modeling. As one goes to larger
kmax the non-linear effects are larger, and the demands on modeling them accurately become more
stringent because the statistical precision is higher. One can think of kmax as representing the
crossover scale where theoretical uncertainties become comparable to the statistical uncertainty, a
scale that depends on the survey volume as well as the modeling accuracy itself. Most forecasts
(including ours below) assume that modeling is perfect up to kmax but uses no information from
higher k. In practice, analyses may continue to high k but marginalize over systematic uncertainties,
leading to an “effective” value of kmax that determines the strength of the RSD constraints.

Plausible assumptions suggest promising prospects for future RSD experiments. For example,
assuming a maximum k equal to 0.075h Mpc−1 at z = 0 and tracking the non-linear scale knl at
higher redshifts, White et al. (2009) predict 1σ errors on f(z)σ8(z) of a few percent per ∆z = 0.1
redshift bin out to z = 0.6 from the SDSS-III BOSS survey, and for a space-based survey that
achieves a high galaxy density69 out to z = 2 they predict errors per ∆z = 0.1 that drop from
∼ 1% at z = 0.8 to ∼ 0.2% at z = 1.9. These forecasts incorporate the McDonald and Seljak
(2009) method for beating sample variance. Reid and White (2011) examine BOSS RSD forecasts
in more detail, considering the impact of modeling uncertainties. They forecast a 1σ error on
f(z)σ8(z) at z = 0.55 of 1.5% using correlation function measurements down to a comoving scale
smin = 10h−1 Mpc, rising to 3% if the minimum scale is smin = 30h−1 Mpc. (The corresponding
wavenumber scale is kmax ≈ 1.15π/smin.) These forecasts assume marginalization over a nuisance
parameter σv characterizing the small scale velocity dispersion. They improve by a factor of ∼ 1.5 if
σv is assumed to be known perfectly, demonstrating the potential gains from a method (like that of
Tinker 2007) that can use smaller scale measurements to pin down the impact of velocity dispersions.

69We caution that the space densities assumed by White et al. (2009) are much higher than those that Euclid or
WFIRST is likely to achieve, so these RSD precision forecasts may prove overoptimistic. Recent forecasts in the
specific context of Euclid and WFIRST appear in Majerotto et al. (2012) and Green et al. (2012), respectively.
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More generally, small scale clustering may be useful to pin down the nuisance parameters of large
scale RSD models and therefore improve the precision of the cosmological parameter measurements
(Tinker et al., 2006).

At the percent level there is another potential systematic error in RSD if the selection function
has an orientation dependence (e.g., due to fiber aperture or self-extinction by dust in the target
galaxy) and galaxies are aligned by the large-scale tidal field. This exactly mimics RSD, even in the
linear regime (Hirata, 2009), but fortunately the effect seems to be negligible for present surveys.
Orientation-dependent selection is predicted to be a larger effect for high-z Lyα emitters (Zheng
et al., 2011), since there the radiation can resonantly scatter in the IGM and must make its way
out through the large-scale velocity flows surrounding the galaxy; at very high redshift (z = 5.7)
simulations predict an order unity effect. The implications for Lyα emitters at more modest redshift
will become clear with the HETDEX survey.

In §8.5.3 we show that our fiducial Stage IV program (CMB+SN+BAO+WL) constrains σ8(z)f(z)
to a 1σ precision of 2% at z = 0.5 and 1% at z & 1 if we assume a w0 −wa dark energy model with
G9 and ∆γ as parameters to describe departures from GR. Thus, RSD measurements with this level
of precision or better can significantly improve the figure-of-merit for dark energy constraints and
sharpen tests of GR, even in a combined program that includes powerful weak lensing constraints.
Much weaker RSD measurements could still make a significant contribution to Stage III constraints.
Forecasts of the contribution of redshift-space distortions to constraints from specific Stage IV ex-
periments (a BigBOSS-like ground-based survey and a Euclid- or WFIRST-like space-based survey)
are presented by Stril et al. (2010), Wang et al. (2010), and Wang et al. (2012b).

To provide guidance for our forecast discussions in §8, we have used the publicly available
code of White et al. (2009) to predict errors on f(z)σ8(z) for different assumptions about survey
parameters and modeling limitations. The solid curves in Figure 31 show predicted fractional errors
per ∆z = 0.1 redshift bin assuming a survey with fsky = 0.25 and a sampling density that yields
nP (k = 0.2h Mpc−1) = 2, the same assumptions that we make for our fiducial Stage IV BAO
program (see §8.1). In contrast to BAO forecasts, which depend only on the combination nP ,
RSD forecasts also depend separately on the bias evolution bg(z) because more strongly biased
tracers exhibit weaker anisotropy (lower β) and therefore provide less leverage on f(z)σ8(z). Here
we have assumed strongly biased tracers (such as luminous red galaxies) at z < 0.9 and weaker
bias (appropriate to emission line galaxies) at z > 0.9; specifically, we adopt bg(z)σ8(z) = 1.3
at z < 0.9 (motivated by Reid et al. 2012) and bg(z)σ8(z) = 0.6 at z > 0.9, corresponding to
bg = 1.5 at z = 1.5 (see Orsi et al. 2010 and Geach et al. 2012). This change in assumed bias factor
produces the sharp drop in the forecast error at z = 0.9. Maintaining nP = 2 would, of course,
require a corresponding jump in galaxy density for z > 0.9. Upper and lower curves correspond
to kmax = 0.1h Mpc−1 and 0.2h Mpc−1, respectively. In either case, the forecast error drops with
increasing redshift out to z = 0.9 because of the larger comoving volume per ∆z = 0.1 bin, then
stays roughly constant from z = 0.9 − 2.

For kmax = 0.2h Mpc−1 and nP = 2, the error per bin is about 0.8% from z = 0.9 − 2.
Lowering the sampling density from nP = 2 to nP = 1 degrades the fractional error by about
12.5%, equivalent to a 25% reduction in fsky. The dot-dashed curve shows the case in which we
assume nP = 2 for z < 1.2 and nP = 0.5 for z > 1.2, where emission line galaxy redshifts become
increasingly difficult to obtain from the ground and the dominant samples may eventually come
from slitless spectroscopic surveys with Euclid and WFIRST. In this case, the high redshift error
increases by ∼ 40%. Reducing nP has less impact for kmax = 0.1h Mpc−1 because structure at this
larger scale is more fully sampled, leaving sample variance as the dominant source of measurement
uncertainty.

Figure 31 highlights the critical role of modeling uncertainty in determining the ultimate
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Figure 31 Forecast errors on f(z)σ8(z) per ∆z = 0.1 redshift bin from an RSD survey with
fsky = 0.25, computed with the code of White et al. (2009). For simplicity, we assume linear theory
up to kmax = 0.1h Mpc−1 (upper, red curves) or kmax = 0.2h Mpc−1 (lower, blue curves) and
no information from smaller scales. Solid and dashed curves show sampling densities nP = 2 and
nP = 1, respectively, and dot-dashed curves show a case where nP drops from 2 to 0.5 at z = 1.2.
The sharp drop at z = 0.9 reflects an assumed change in bias factors from a high value (appropriate
to absorption-line galaxies) at low z to a lower value (appropriate to emission-line galaxies) at high
z.
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cosmological return from RSD measurements. If we assume kmax = 0.1h Mpc−1 instead of
kmax = 0.2h Mpc−1, then the errors for nP = 2 are larger by a factor ∼ 2.5, only slightly
less than the factor (0.2/0.1)3/2 = 2.83 suggested by a pure mode counting argument. In both
cases we have assumed that kmax is constant with redshift in comoving coordinates, in contrast to
White et al. (2009) who assume that it scales with knl, and this difference largely accounts for the
substantially larger errors that we forecast at high redshift. It is not clear which assumption is more
appropriate, since it is not clear whether the scale at which modeling uncertainties dominate will
be set by non-linearity in the matter clustering, which tracks knl, or by non-linearity in the biased
galaxy clustering, which stays roughly constant in comoving coordinates because of compensation
between bg(z) and σ8(z). While our kmax = 0.2h Mpc−1, nP = 2 case yields 0.8% errors per bin at
z > 0.9, the actual demand on modeling accuracy is tighter by

√
Nbin ∼ 3.3 because a systematic

modeling error would be likely to affect all bins coherently.
Our forecasts here include only P (k) modeling, not the additional gains that are potentially

available by applying the McDonald and Seljak (2009) method to tracer populations with different
bias factors in the same volume. High redshift surveys may not yield galaxy samples with a wide
range of bias, but at z < 1 this approach could reduce errors significantly relative to those presented
here.

For the calculations in Figure 31, we have set the small scale velocity dispersion σv = 0, i.e.,
we have assumed pure linear theory up to k = kmax. Setting σv = 300 km s−1 produces only mild
degradation of the errors, much smaller than the difference between nP = 1 and nP = 2. However,
marginalizing over σv, or more generally over parameters that describe non-linear effects, could
degrade precision significantly unless smaller scale data can be used to constrain these parameters.
Conversely, modeling to higher kmax can yield substantially tigher errors. In experiments with σv

fixed to 300 km s−1, we find that the k
3/2
max scaling holds at the factor-of-two level up to kmax ∼

1h Mpc−1, so the potential gains are large. This analysis thus confirms the key point of this section:
RSD analyses of the same redshift surveys conducted for BAO could provide powerful constraints
on dark energy and stringent tests of GR growth predictions, but exploiting this potential will
require development of theoretical modeling methods that are accurate at the sub-percent level in
the moderately non-linear regime.

7.3. The Alcock-Paczynski Test

The translation from angular and redshift separations to comoving separations depends on
DA(z) and H(z), respectively. Therefore, even if peculiar velocities are negligible, clustering in
redshift space will appear anisotropic if one adopts an incorrect cosmological model — specifically,
one with an incorrect value of the product H(z)DA(z). Alcock & Paczynski (1979; hereafter AP)
proposed an idealized cosmological test using this idea, based on a hypothetical population of
intrinsically spherical galaxy clusters. The AP test can be implemented in practice by using the
amplitude of quasar or galaxy clustering to identify equivalent scales in the angular and redshift
dimensions (Ballinger et al., 1996; Matsubara and Suto, 1996; Popowski et al., 1998; Matsubara
and Szalay, 2001) or by using anisotropy of clustering in the Lyα forest (Hui et al., 1999; McDonald
and Miralda-Escudé, 1999). AP measurements provide a cosmological test in their own right, and
they allow high-redshift distance measurements to be translated into constraints on H(z), which
is a more direct measure of energy density. Recently Blake et al. (2011c) have measured the AP
parameter H(z)DA(z) from galaxy clustering in the WiggleZ survey, obtaining 10− 15% precision
in each of four redshift bins out to z = 0.8, and Reid et al. (2012) have obtained ∼ 6% precision at
z = 0.55 from BOSS galaxies, improving to ∼ 3.5% if they assume that the growth rate (and hence
the peculiar velocity distortion) has the value predicted by ΛCDM. Both results are consistent with
flat-Λ geometry for WMAP7 values of Ωm.
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Figure 32 Evolution of the parameter combination H(z)DA(z) constrained by the Alcock-Paczynski
test, for the same suite of CMB-normalized models shown in Figure 2.

Figure 32 shows the evolution of c−1H(z)DA(z) for the same set of CMB-normalized models
shown earlier in Figures 2-4. At low redshift, the model dependence resembles that of H(z)/ch
(lower left panel of Figure 2), but deviations are reduced in amplitude because of partial cancellation
between H(z) and DA(z) ∝

∫ z
0 dz

′H−1(z′). At high redshift Ωk = ±0.01 has a larger impact than
1 +w = ±0.1. Note that negative space curvature (positive Ωk) tends to increase DA, but because
the CMB normalization lowers Ωm (see Table 1) and thus H(z)/H0, the net effect is to decrease
H(z)DA(z). In §8.5.2 we show that our fiducial Stage IV program predicts H(z)DA(z) with an
accuracy of ∼ 0.15− 0.3%, assuming a w0 −wa dark energy model. AP measurements at this level
could significantly improve dark energy constraints. For Stage III, the predictions are considerably
weaker, ∼ 0.5 − 0.9%.

Like redshift-space distortion measurements, the AP test is automatically enabled by redshift
surveys conducted for BAO. In practice the two effects must be modeled together (see, e.g., Mat-
subara 2004), and the principal systematic uncertainty for AP measurements is the uncertainty
in modeling non-linear redshift-space distortions. At present, it is difficult to forecast the likely
precision of future AP measurements because there have been no rigorous tests of the accuracy
of redshift-space distortion corrections at the level of precision reachable by such surveys. If one
assumes that redshift-space distortions can be modeled adequately up to k ∼ knl then the potential
gain from AP measurements is impressively large. For example, Wang et al. (2010) find that using
the full galaxy power spectrum in a space-based emission-line redshift survey increases the forecast
value of the DETF FoM by a factor of ∼ 3 relative to the BAO measurement alone; this gain is not
broken down into separate contributions, but we suspect that a large portion comes from AP.70

In the context of HETDEX, Shoji et al. (2009) show that the AP test substantially improves the
expected cosmological constraints relative to BAO analysis alone, even after marginalizing over

70Since RSD and AP both depend on modeling the broadband P (k, µ), it is difficult even in principle to separate
the two types of constraints in an observational analysis.
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linear RSD and a small-scale velocity dispersion parameter. The appendix to that paper presents
analytic formalism for incorporating AP and RSD constraints into Fisher matrix analyses.

Halo occupation methods (see §2.3) provide a useful way of approaching peculiar velocity un-
certainties in AP measurements. Observations and theory imply that galaxies reside in halos, and
on average the velocity of galaxies in a halo should equal the halo’s center-of-mass velocity because
galaxies and dark matter feel the same large scale acceleration. However, the dispersion of satellite
galaxy velocities in a halo could differ from the dispersion of dark matter particle velocities by a
factor of order unity, and central galaxies could have a dispersion of velocities relative to the halo
center-of-mass (van den Bosch et al., 2005; Tinker et al., 2006). To be convincing, an AP measure-
ment must show that it is robust (relative to its statistical errors) to plausible variations in the halo
occupation distribution and to plausible variations in the velocity dispersion of satellite and central
galaxies. Alternatively, the AP errors can be marginalized over uncertainties in these multiple
galaxy bias parameters, drawing on constraints from the observed redshift-space clustering.

BAO measurements from spectroscopic surveys in some sense already encompass the AP effect,
since they use the location of the BAO scale as a function of angular and redshift separations
to separately constrain DA(z) and H(z). The presence of a feature at a particular scale makes
the separation of the AP effect from peculiar velocity RSD much more straightforward (see fig. 6
of Reid et al. 2012). However, the addition of a high-precision AP measurement from smaller
scales could significantly improve the BAO cosmology constraints. BAO measurements typically
constrain DA(z) better than H(z) because there are two angular dimensions and only one line-of-
sight dimension. However, at high redshift H(z) is more sensitive to dark energy than DA(z), since
H(z) responds directly to uφ(z) through the Friedmann equation (3) while DA(z) is an integral of
H0/H(z′) over all z′ < z. An AP measurement would allow the BAO measurement of DA(z) to be
“transferred” to H(z), thus yielding a better measure of the dark energy contribution. Blake et al.
(2011c) have recently implemented a similar idea by using their AP measurements in the WiggleZ
survey to convert SN luminosity distances into H(z) determinations.

The AP test can be implemented with measures other than the power spectrum or correlation
function. One option is to use the angular distribution of small scale pairs of quasars or galaxies
(Phillipps, 1994; Marinoni and Buzzi, 2010), though peculiar velocities still affect this measure, in
a redshift- and cosmology-dependent way (Jennings et al., 2012b). A promising recent suggestion
is to use the average shape of voids in the galaxy distribution; individual voids are ellipsoidal,
but in the absence of peculiar velocities the mean shape should be spherical (Ryden, 1995; Lavaux
and Wandelt, 2010). Typical voids are of moderate scale (R ∼ 10h−1 Mpc) and have a large
filling factor f , so the achievable precision in a large redshift survey is high if the sampling den-
sity is sufficient to allow accurate void definition. A naive estimate for the error on the mean
ellipticity of voids with rms ellipticity ǫrms in a survey volume V is σǭ ∼ ǫrms(fV/

4
3πR

3)−1/2 ≈
6×10−4(ǫrms/0.3)(fV/1h

−3 Gpc3)−1/2(R/10h−1 Mpc)−3/2, if the galaxy density is high enough to
make the shot noise contribution to the ellipticity scatter negligible on scale R. Peculiar velocities
have a small, though not negligible, impact on void sizes and shapes (Little et al., 1991; Ryden and
Melott, 1996; Lavaux and Wandelt, 2012), so one can hope that the uncertainty in this impact will
be small, but this hope has yet to be tested. Assuming statistical errors only, Lavaux and Wandelt
(2012) estimate that a void-based AP constraint from a Euclid-like redshift survey would provide
several times better dark energy constraints than the BAO measurement from the same data set,
mainly because the scale of voids is so much smaller than the BAO scale. Sutter et al. (2012) have
recently applied the AP test to a void catalog constructed from the SDSS DR7 redshift surveys,
though with this sample the statistical errors are too large to yield a significant detection of the
predicted effect.
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7.4. Alternative Distance Indicators

In §§3 and 4 we have discussed the two most well established methods for measuring the cos-
mological distance scale beyond the local Hubble flow: Type Ia supernovae and BAO. These two
methods set a high bar for any alternative distance indicators. Type Ia supernovae are highly
luminous, making them relatively easy to discover and measure at large distances. Once corrected
for light curve duration, local Type Ia’s have a dispersion of 0.1 − 0.15 mag in peak luminosity
despite sampling stellar populations with a wide range of age and metallicity, and extreme outliers
are apparently rare (Li et al., 2011). Thus far, surveys are roughly succeeding in achieving the

√
N

error reduction from large samples, though progress on systematic uncertainties will be required to
continue these gains. The BAO standard ruler is based on well understood physics, and it yields
distances in absolute units. “Evolutionary” corrections (from non-linear clustering and galaxy bias)
are small and calculable from theory.

Core collapse supernovae exhibit much greater diversity than Type Ia supernovae, which is
not surprising given the greater diversity of their progenitors. However, Type IIP supernovae,
characterized by a long “plateau” in the light curve after peak, show a correlation between expansion
velocity (measured via spectral lines) and the bolometric luminosity of the plateau phase, making
them potentially useful as standardized candles with ∼ 0.2 mag luminosity scatter (Hamuy and
Pinto 2002; see Maguire et al. 2010 for a recent discussion). Unfortunately, as distance indicators
Type IIP supernovae appear to be at least slightly inferior to Type Ia supernovae on every score:
they are less luminous, the scatter is larger, the fraction of outliers may be larger, and they arise
in star-forming environments that are prone to dust extinction. With the existence of cosmic
acceleration now well established by multiple methods, we are skeptical that Type IIP supernovae
can make a significant contribution to refinement of dark energy constraints.

The door for alternative distance indicators is more open beyond z = 1, the effective limit of
most current SN and BAO surveys. Gamma-ray bursts (GRBs) are highly luminous, so they can be
detected to much higher redshifts than optical supernovae; the current record holder is at z ≈ 8.2
(Tanvir et al., 2009; Salvaterra et al., 2009). GRBs are extremely diverse and highly beamed, but
they exhibit correlations (Amati, 2006; Ghirlanda et al., 2006) between equivalent isotropic energy
and spectral properties (such as the energy of peak intensity) or variability. These correlations
can be used to construct distance-redshift diagrams for those systems with redshift measured via
spectroscopy of afterglow emission or of host galaxies (e.g., Schaefer 2007; see Demianski and
Piedipalumbo 2011 for a recent review and discussion). While GRBs reach to otherwise inaccessible
redshifts, we are again skeptical that they can contribute to our understanding of dark energy
because of statistical limitations and susceptibility to systematics. It has taken detailed observations
of many hundreds of Type Ia supernovae, local and distant, to understand their systematics and
statistics. The number of GRBs with spectroscopic redshifts is ∼ 100, and the spectroscopic sample
may be a biased subset of the full GRB population because of the requirement of a bright optical
afterglow or identified host galaxy.

Quasars are another tool for reaching high redshifts, drawing on empirical correlations between
line equivalent widths and luminosity (Baldwin, 1977) or between luminosity and the broad line
region radius RBLR (Bentz et al., 2009). For example, Watson et al. (2011) have recently proposed
reverberation mapping (which measures RBLR) of large quasar samples to constrain dark energy
models. The high redshift quasar population is systematically different (in black hole mass and host
galaxy environment) from lower redshift calibrators. Quasar spectral properties appear remarkably
stable over a wide span of redshift (Steffen et al., 2006), and the dependence of RBLR on luminosity
is driven primarily by photoionization physics. However, in the event of a “surprising” result from
quasar distance indicators, one would have to be prepared to argue that subtle (e.g., 10% or smaller)
changes with redshift were a consequence of cosmology rather than evolution. Of course, quasar
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distance indicators also face the same challenges of photometric calibration, k-corrections, and dust
extinction that affect supernova studies.

Radio galaxies have been employed as a standard (or at least standardizable) ruler for distance-
redshift studies, drawing on empirically tested theoretical models that connect the source size to its
radio properties (Daly, 1994; Daly and Guerra, 2002). Analysis of 30 radio galaxies out to z = 1.8
gives results consistent with those from Type Ia supernovae (Daly et al., 2009). The number of
radio galaxies to which this technique can be applied is limited, and the model assumptions used
to translate observables into distance estimates are fairly complex (see Daly et al. 2009, §2.1). We
therefore expect that both statistical and systematic limitations will prevent this method from
becoming competitive with supernovae and BAO.

In §8.5.4 we show forecast distance errors for our fiducial Stage III and Stage IV experimental
programs, presenting a target for alternative methods. If one assumes a w0 − wa model then the
constraints are very tight, with errors below ∼ 0.25% at Stage IV and ∼ 0.5% at Stage III. However,
with a general w(z) model the constraints become much weaker outside the redshift range directly
measured by Type Ia SNe or BAO. In particular, our Stage IV forecasts presume large BAO surveys
at z > 1, and if these do not come to fruition there is much more room for alternative indicators
at high redshift.

7.5. Standard Sirens

Gravitational wave astronomy opens an entirely different route to distance measurement, with
an indicator that is grounded in fundamental physics (Schutz, 1986). The basic concept is illustrated
by considering a nearly Newtonian binary system of two black holes with total mass M and reduced
mass µ, in a nearly circular orbit at separation a. The gravitational wave luminosity of such a source
is

LGW =
32G4µ2M3

5c5a5
. (157)

If one can measure the angular velocty of the orbit71 ω =
√
GM/a3, its rate of change due to

inspiral as the binary loses energy ω̇/ω = 96G3µM2/5c5a4, and the orbital velocity v =
√
GM/a

(using relativistic corrections to the emitted waveform), one has enough information to solve for a,
M , and µ. One can therefore calculate LGW from the measured observables and compare to the
measured energy flux to infer distance. In practice, one would need to solve for other dimensionless
parameters such as the eccentricity and the orientation of the orbit, black hole spins, and source
position on the sky. The solution is not trivial (!), but gravitational waveforms from relativistic
binaries encode this information in higher harmonics and modulation of the signal due to precession
(Arun et al., 2007). Because of the analogy between gravitational wave observations and acoustic
wave detection, this approach is often referred to as the “standard siren” method.

There are several practical obstacles to gravitational wave cosmology. First, of course, grav-
itational waves from an extragalactic source must be detected. The most promising near-term
possibility is nearby (z ≪ 1) neutron star binaries, which should be detected by the ground-based
Advanced LIGO detector (to start observations in ∼ 2014) and upgraded VIRGO detector, and
which could be used to measure H0. The space-based gravitational wave detector LISA (possible
launch in the 2020 decade) is designed to allow high S/N measurements of the mergers of massive
black holes at the centers of galaxies at z ∼ O(1), which would enable a full Hubble diagram
DL(z) to be constructed. A second complication is that gravitational wave observations yield a

71The observed frequency of the gravitational wave is 2ω because the source is a quadrupole, producing two crests
and two troughs per orbit.
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distance but do not give an independent source redshift. One thus needs an identification of the
host galaxy, and given the angular positioning accuracy of gravitational wave observations this will
generally require identification of an electromagnetic transient that accompanies the gravitational
wave burst. Possibilities include GRBs resulting from neutron star mergers (Dalal et al., 2006)
and the optical, X-ray, or radio signatures of the response of an accretion disk to a massive black
hole merger (Milosavljevic and Phinney, 2005; Lippai et al., 2008). However, both the event rates
and the characteristics of the electromagnetic signatures are poorly understood at present. One
can also make identifications statistically using large scale structure (MacLeod and Hogan, 2008).
A third complication, important for the high S/N observations expected from LISA, is that weak
lensing magnification becomes a dominant source of noise at z & 1, inducing a scatter in distance of
several percent per observed source (Markovic, 1993; Holz and Linder, 2005; Jonsson et al., 2007).
By taking advantage of the non-Gaussian shape of the lensing scatter, one can reduce the error on
the mean by a factor ∼ 2 − 3 below the naive σ/

√
N expectation (Hirata et al., 2010; Shang and

Haiman, 2011), so samples of a few dozen well observed sources could yield sub-percent distance
scale errors.

Nissanke et al. (2010) forecast constraints on H0 from next-generation ground-based gravi-
tational wave detectors, including Monte Carlo simulations of parameter recovery from neutron
star-neutron star and neutron star-black hole mergers. They find that H0 can be constrained to
5% for 15 NS-NS mergers with GRB counterparts and a network of three gravitational wave detec-
tors. While the event rate is highly uncertain, tens of events per year are quite possible and could
lead to percent-level constraints on H0 a decade or so from now. Taylor and Gair (2012) discuss
the prospects for a network of “third generation” ground-based interferometers, which could detect
∼ 105 double neutron star binaries.

It remains to be seen whether standard sirens can compete with other distance indicators in
the LIGO/VIRGO and LISA era. Looking further ahead, Cutler and Holz (2009) show that an
interferometer mission designed to search for gravitational waves from the inflation epoch in the
0.03−3Hz range, such as the Big Bang Observer (BBO, Phinney et al. 2004) or the Japanese Decigo

mission (Kawamura et al., 2008), would detect hundreds of thousands of compact star binaries out
to z ∼ 5. The arc-second level resolution would be sufficient to identify the host galaxies for most
binaries even at high z, enabling redshift determinations through follow-up observations. With the
S/N expected for BBO, the error in luminosity distance for most of these standard sirens would
be dominated by weak lensing magnification, and the

√
N available for beating down this scatter

would be enormous. Indeed, Cutler and Holz (2009) argue that the dispersion of distance estimates
as a function of separation could itself be used to probe structure growth via the strength of the WL
effect. For the BBO case, Cutler and Holz (2009) forecast errors of ∼ 0.1%, 0.01, and 0.1 on H0, w0,
and wa when combining with a Planck CMB prior, assuming a flat universe. Because the distance
indicator is rooted in fundamental physics, there are no obvious systematic limitations to this
method provided the calibration of the gravitational wave measurements themselves is adequate.

7.6. The Lyα Forest as a Probe of Structure Growth

The Lyα forest is an efficient tool for mapping structure at z ≈ 2 − 4 because each quasar
spectrum provides many independent samples of the density field along its line of sight. (At lower
redshifts Lyα absorption moves to UV wavelengths unobservable from the ground, and at higher
redshifts the forest becomes too opaque to trace structure effectively.) The relation between Lyα
absorption and matter density is non-linear and to some degree stochastic. However, the physics
of this relation is straightforward and fairly well understood, in contrast to the more complicated
processes that govern galaxy formation. We have previously discussed the Lyα forest as a method
of measuring BAO at z > 2, which requires only that the forest provide a linearly biased tracer of
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the matter distribution on ∼ 150Mpc scales. However, by drawing on a more detailed theoretical
description of the forest, one can use Lyα flux statistics to infer the amplitude of matter fluctuations
and thus measure structure growth at redshifts inaccessible to weak lensing or clusters.

The Lyα forest is described to surprisingly good accuracy by the Fluctuating Gunn-Peterson
Approximation (FGPA, Weinberg et al. 1998; see also Gunn and Peterson 1965; Rauch et al. 1997;
Croft et al. 1998), which relates the transmitted flux F = exp(−τLyα) to the dark matter overdensity
ρ/ρ̄, with the latter smoothed on approximately the Jeans scale of the diffuse intergalactic medium
(IGM) where gas pressure supports the gas against gravity (Schaye, 2001). Most gas in the low
density IGM follows a power-law relation between temperature and density, T = T0(ρ/ρ̄)

α with
α . 0.6, which arises from the competition between photo-ionization heating and adiabatic cooling
(Katz et al., 1996; Hui and Gnedin, 1997). The Lyα optical depth is proportional to the hydrogen
recombination rate, which scales as ρ2T−0.7 in the relevant temperature range near 104 K. This
line of argument leads to the relation

F = exp(−τLyα) ≈ exp
[
−A(ρ/ρ̄)2−0.7α

]
. (158)

The constant A depends on a combination of parameters that are individually uncertain (see Croft
et al. 1998; Peeples et al. 2010), and the value of α depends on the IGM reionization history, so
in practice these parameters must be inferred empirically from the Lyα forest observables. How-
ever, even after marginalizing over these parameters there is enough information in the clustering
statistics of the flux F to constrain the shape and amplitude of the matter power spectrum (e.g.,
Croft et al. 2002; Viel et al. 2004; McDonald et al. 2006). Lyα forest surveys conducted for BAO
allow high precision measurements of flux correlations on smaller scales, so they have the statistical
power to achieve tight constraints on matter clustering.

There are numerous physical complications not captured by equation (158). On small scales,
absorption is smoothed along the line of sight by thermal motions of atoms. Peculiar velocities
add scatter to the relation between flux and density, though this effect is mitigated if one uses the
redshift-space ρ/ρ̄ in equation (158). Gas does not perfectly trace dark matter, so (ρ/ρ̄)gas is not
identical to (ρ/ρ̄)DM. Shock heating and radiative cooling push some gas off of the temperature-
density relation. All of these effects can be calibrated using hydrodynamic cosmological simulations,
and since the physical conditions are not highly non-linear and the effects are moderate to begin
with, uncertainties in the effects are not a major source of concern.

A more serious obstacle to accurate predictions is the possibility that inhomogeneous IGM
heating — especially heating associated with helium reionization, which is thought to occur at
z ≈ 3 — produces spatially coherent fluctuations in the temperature-density relation that appear
as extra power in Lyα forest clustering, or makes the relation more complicated than the power
law that is usually assumed (McQuinn et al., 2011; Meiksin and Tittley, 2012). Fluctuations in
the ionizing background radiation can also produce extra structure in the forest, though this effect
should be small on comoving scales below ∼ 100Mpc (McQuinn et al., 2011). On the observational
side, the primary complication is the need to estimate the unabsorbed continuum of the quasar,
relative to which the absorption is measured. (In our notation, F is the ratio of the observed flux to
that of the unabsorbed continuum.) For statistical analysis of a large sample, the continuum does
not have to be accurate on a quasar-by-quasar basis, and there are strategies (such as measuring
fluctuations relative to a running mean) for mitigating any bias caused by continuum errors (see,
e.g., Slosar et al. 2011). Nonetheless, residual uncerainties from continuum determination can be
significant compared to the precision of measurements.

A discrepancy between clustering growth inferred from the Lyα forest and cosmological models
favored by other data would face a stiff burden of proof, to demonstrate that the Lyα forest results
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were not biased by the theoretical and observational systematics discussed above. However, com-
plementary clustering statistics and different physical scales have distinct responses to systematics
and to changes in the matter clustering amplitude, so it may be possible to build a convincing
case. For example, the bispectrum (Mandelbaum et al., 2003; Viel et al., 2004) and flux probability
distribution (e.g., Lidz et al. 2006) provide alternative ways to break the degeneracy between mean
absorption and power spectrum amplitude and to test whether a given model of IGM physics is
really an adequate description of the forest. Lyα forest tests will assume special importance if other
measures indicate discrepancies at lower redshifts with the growth predicted by GR combined with
simple dark energy models. Growth measurements at z ∼ 3 from the Lyα forest could then play a
critical role in distinguishing between modified gravity explanations and models with unusual dark
energy history. Because it probes high redshifts and moderate overdensities, the Lyα forest can also
constrain the primordial power spectrum on small scales that are inaccessible to other methods.
The resulting lever arm may be powerful for detecting or constraining the scale-dependent growth
expected in some modified gravity models, as discussed further in the next section.

7.7. Other Tests of Modified Gravity

We have concentrated our discussion of modified gravity on tests for consistency between mea-
sured matter fluctuation amplitudes and growth rates — from weak lensing, clusters, and redshift-
space distortions — with the predictions of dark energy models that assume GR. However, “not
General Relativity” is a broad category, and there are many other potentially observable signatures
of modified gravity models. For an extensive review of modified gravity theories and observational
tests, we refer the reader to Jain and Khoury (2010). We follow their notation and discussion in
our brief summary here.

In Newtonian gauge, the spacetime metric with scalar perturbations can be written in the form

ds2 = −(1 + 2Ψ)dt2 + (1 − 2Φ)a2(t)dl2, (159)

which is general to any metric theory of gravity. If the dominant components of the stress-energy
tensor have negligible anisotropic stress, then the Einstein equation of GR predicts that Ψ = Φ, i.e.,
the same gravitational potential governs the time-time and space-space components of the metric.
We have made this assumption implicitly in the WL discussion of §5. Anisotropic stress should
be negligible in the matter-dominated era, and most proposed forms of dark energy (e.g., scalar
fields) also have negligible anisotropic stress. Therefore, one generic form of modified gravity test
is to check for the GR-predicted consistency between Ψ and Φ. For example, if the Ricci curvature
scalar R in the GR spacetime action S ∝

∫
d4x

√−gR is replaced by a function f(R), then Ψ
and Φ are generically unequal. In the forecasts of §8 we focus on GR-deviations described by
the G9 and ∆γ parameters that characterize structure growth (§2.2), but an alternative approach
parametrizes the ratios of Ψ and Φ to their GR-predicted values (see Koivisto and Mota 2006;
Bean and Tangmatitham 2010; Daniel and Linder 2010, and references therein). The G9 and ∆γ
formulation is well matched to observables that can be measured by large surveys, but the potentials
formulation is arguably closer to the physics of modified gravity.

The main approach to testing the consistency of Ψ and Φ exploits the fact that the gravitational
accelerations of non-relativistic particles are determined entirely by Ψ but the paths of photons
depend on Ψ + Φ. Thus, an inequality of Ψ and Φ should show up observationally as a mismatch
between mass distributions estimated from stellar or gas dynamics and mass distributions estimated
from gravitational lensing. (In typical modified gravity scenarios, it is then the lensing measurement
that characterizes the true mass distribution.) The approximate agreement between X-ray and
weak lensing cluster masses already rules out large disagreements between Ψ and Φ. A systematic
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statistical approach to this test, employing the techniques discussed in §6, could probably sharpen
it to the few percent level, limited by the theoretical uncertainty in converting X-ray observations
to absolute masses. To reach high precision on cosmological scales, the most promising route is to
test for consistency between growth measurements from redshift-space distortions, which respond
to the non-relativistic potential Ψ, and growth measurements from weak lensing. Implementing an
approach suggested by Zhang et al. (2007), Reyes et al. (2010) present a form of this test that draws
on redshift-space distortion measurements of SDSS luminous red galaxies by Tegmark et al. (2006)
and galaxy-galaxy lensing measurements of the same population. The precision of the test in Reyes
et al. (2010) is only ∼ 30%, limited mainly by the redshift-space distortion measurement, but this
is already enough to rule out some otherwise viable models. In the long term, this approach could
well be pushed to the sub-percent level, with the limiting factors being the modeling uncertainty
in redshift-space distortions and systematics in weak lensing calibration. Similar tests on the ∼kpc
scales of elliptical galaxies have been carried out by Bolton et al. (2006) and Schwab et al. (2010).

Some modified gravity models allow Ψ and Φ to depend on scale and/or time, yielding an
“effective” gravitational constant GNewton −→ GNewton(k, t) (where k denotes Fourier wavenumber).
Scale-dependent gravitational growth will alter the shape of the matter power spectrum relative
to that predicted by GR for the same matter and radiation content. Precise measurements of the
galaxy power spectrum shape can constrain or detect such scale-dependent growth. Uncertainties
in the scale-dependence of galaxy bias may be the limiting factor in this test, though departures
from expectations could also arise from non-standard radiation or matter content or an unusual
inflationary power spectrum, and these effects may be difficult to disentangle from scale-dependent
growth. The lever arm for determining the power spectrum shape can be extended by using the
Lyα forest or, in the long term, redshifted 21cm maps to make small-scale measurements. Time-
dependent GNewton would alter the history of structure growth, leading to non-GR values of G9 or
∆γ, but it could also be revealed by quite different classes of tests. For example, the consistency
of big bang nucleosynthesis with the baryon density inferred from the CMB requires GNewton at
t ≈ 1 sec to equal the present day value to within ∼ 10% (Yang et al., 1979; Steigman, 2010).
Variation of GNewton over the last 12 Gyr would also influence stellar evolution, and it is therefore
constrained by the Hertszprung-Russell diagram of star clusters (degl’Innocenti et al., 1996) and
by helioseismology (Guenther et al., 1998).

Departures from GR are very tightly constrained by high-precision tests in the solar system,
and many modified gravity models require a screening mechanism that forces them towards GR in
the solar system and Milky Way environment.72 Screening may be triggered by a deep gravitational
potential, in which case the strength of gravity could be significantly different in other cosmological
environments. For a generic class of theories, the value of GNewton would be higher by 4/3 in
unscreened environments, allowing order unity effects (see, for example, the discussion of f(R)
gravity by Chiba 2003 and DGP gravity by Lue 2006). Chang and Hui (2011) suggest tests with
evolved stars, which could be screened in the dense core and unscreened in the diffuse envelope; the
stars should be located in isolated dwarf galaxies so that the gravitational potential of the galaxy,
group, or supercluster environment does not trigger screening on its own. Hui et al. (2009) and
Jain and VanderPlas (2011) propose testing for differential acceleration of screened and unscreened
objects in low density environments (e.g., stars vs. gas, or dwarf galaxies vs. giant galaxies), in
effect looking for macroscopic and order unity violations of the equivalence principle. Jain (2011)

72To give one example, the Shapiro delay of radio waves passing near the Sun, measured to agree with GR to five
decimal places (Bertotti et al., 2003), is reduced in theories of gravity that contain scalar fields, but the effect could
be suppressed by scalar self-interaction in dense environments.

169



provides a systematic, high-level review of these ideas and their implications for survey experiments,
emphasizing the value of including dwarf galaxies at low redshifts within large survey programs.

Evidence for modified gravity could emerge from some very different direction, such as high
precision laboratory or solar system tests, tests in binary pulsar systems, or gravity wave exper-
iments. In many of these areas, technological advances allow potentially dramatic improvements
of measurement precision — for example, the proposed STEP satellite could sharpen the test of
the equivalence principle by five orders-of-magnitude (Overduin et al., 2009). Modified gravity or
a dark energy field that couples to non-gravitational forces could also lead to time-variation of fun-
damental “constants” such as the fine-structure constant α. Unfortunately, there are no “generic”
predictions for the level of deviations in these tests, so searches of this sort necessarily remain fishing
expeditions. However, the existence of cosmic acceleration suggests that there may be interesting
fish to catch.

7.8. The Integrated Sachs-Wolfe Effect

On large angular scales, a major contribution to CMB anisotropies comes from gravitational
redshifts and blueshifts of photon energies (Sachs and Wolfe, 1967). In a universe with Ωtot = Ωm =
1, potential fluctuations δΦ ∼ GδM/R stay constant because (in linear perturbation theory) δM
and R both grow in proportion to a(t). In this case, a photon’s gravitational energy shift depends
only on the difference between the potential at its location in the last scattering surface and its
potential at earth. However, once curvature or dark energy becomes important, δM grows slower
than a(t), potential wells decay, and photon energies gain a contribution from an integral of the
potential time derivative (Ψ̇+Φ̇ in the notation of §7.7) known as the Integrated Sachs-Wolfe (ISW)
effect. In more detail, one should distinguish the early ISW effect, associated with the transition
from radiation to matter domination, from the late ISW effect, associated with the transition to
dark energy domination. The ISW effect depends on the history of dark energy, which determines
the rate at which potential wells decay. It can also test whether anisotropy is consistent with the
GR prediction — in particular whether the Ψ and Φ potentials are equal as expected.

As an observational probe, the ISW effect has two major shortcomings. First, it is significant
only on large angular scales, where cosmic variance severely and unavoidably limits measurement
precision. (On scales much smaller than the horizon, potential wells do not decay significantly in
the time it takes a photon to cross them.) Second, even on these large scales the ISW contribution
is small compared to primary CMB anisotropies. The second shortcoming can be partly addressed
by measuring the cross-correlation between the CMB and tracers of the foreground matter distri-
bution, which separates the ISW effect from anisotropies present at the last scattering surface. The
initial searches, yielding upper limits on ΩΛ, were carried out by cross-correlating COBE CMB
maps with the X-ray background (mostly from AGN, which trace the distribution of their host
galaxies) as measured by HEAO (Boughn et al., 1998; Boughn and Crittenden, 2004). The WMAP

era, combined with the availability of large optical galaxy samples with well-characterized redshift
distributions, led to renewed interest in ISW and to the first marginal-significance detections (Fos-
alba et al., 2003; Scranton et al., 2003; Afshordi et al., 2004; Boughn and Crittenden, 2004; Fosalba
and Gaztañaga, 2004; Nolta et al., 2004)

Realizing the cosmological potential of the ISW effect requires cross-correlating the CMB with
large scale structure tracers over a range of redshifts at the largest achievable scales, and properly
treating the covariance arising from the redshift range and sky coverage of each data set. Ho et al.
(2008) used 2MASS objects (z < 0.2), photometrically selected SDSS LRGs (0.2 < z < 0.6) and
quasars (0.6 < z < 2.0), and NVSS radio galaxies, finding an overall detection significance of 3.7σ.
Giannantonio et al. (2008) used a similar sample (but with a different SDSS galaxy and quasar
selection, and with the inclusion of the HEAO X-ray background maps) and found a 4.5σ detection
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of ISW. Both of these measurements are consistent with the “standard” ΛCDM cosmology.73 Zhao
et al. (2010) utilize the Giannantonio et al. (2008) measurement in combination with other data to
test for late-time transitions in the potentials Φ and Ψ, finding consistency with GR.

Giannantonio et al. (2008) estimate that a cosmic variance limited experiment could achieve
a 7 − 10σ ISW detection. Because of the low S/N ratio, the ISW effect does not add usefully
to the precision of parameter determinations within standard dark energy models, but it could
reveal signatures of non-standard models. Early dark energy — dynamically significant at the
redshift of matter-radiation equality — can produce observable CMB changes via the early ISW
effect (Doran et al. 2007; de Putter et al. 2009 discuss the related problem of constraining early
dark energy via CMB lensing). Perhaps the most interesting application of ISW measurements
is to constrain, or possibly reveal, inhomogeneities in the dark energy density (see §2.2), which
produce CMB anisotropies via ISW and are confined to large scales in any case (see de Putter
et al. 2010). However, it is not clear whether even exotic models can produce an ISW effect
that is distinguishable from the ΛCDM prediction at high significance. Measuring the ISW cross-
correlation requires careful attention to angular selection effects in the foreground catalogs, but
these effects should be controllable, and independent tracers allow cross-checks of results. Since the
prediction of conventional dark energy models is robust compared to expected statistical errors, a
clear deviation from that prediction would be a surprise with important implications.

7.9. Cross-Correlation of Weak Lensing and Spectroscopic Surveys

Our forecasts in §7.2 incorporate an ambitious Stage IV weak lensing program, and in §8.5.3
we consider the impact of adding an independent measurement of f(z)σ8(z) from redshift-space
distortions in a spectroscopic galaxy survey, finding that a 1 − 2% measurement can significantly
improve constraints on the growth-rate parameter ∆γ relative to our fiducial program. However,
some recent papers (Bernstein and Cai, 2011; Gaztañaga et al., 2012; Cai and Bernstein, 2012)
suggest that a combined analysis of overlapping weak lensing and galaxy redshift surveys can
yield much stronger dark energy and growth constraints than an after-the-fact combination of
independent WL and RSD measurements.

The analysis envisioned in these papers involves measurement of all cross-correlations among
the WL shear fields (and perhaps magnification fields) in tomographic bins, the angular clustering
of galaxies in photo-z bins of the imaging survey, and the redshift-space clustering of galaxies in
redshift bins of the spectroscopic survey, as well as auto-correlations of these fields. While the
forecast gains emerge from detailed Fisher-matrix calculations, the essential physics (Bernstein and
Cai, 2011; Gaztañaga et al., 2012) appears to be absolute calibration of the bias factor of the
spectroscopic galaxies via their weak lensing of the photometric galaxies (galaxy-galaxy lensing,
§5.2.6). This calibration breaks degeneracy in the modeling of RSD, and it effectively translates
the spectroscopic measurement of the galaxy power spectrum into a normalized measurement of
the matter power spectrum. While the second technique can also be applied to galaxy clustering
in the photometric survey, using photo-z’s, the clustering measurement in a spectroscopic survey
is much more precise because there are more modes in 3-d than in 2-d. The cross-correlation
approach is more powerful if the spectroscopic survey includes galaxies with a wide range of bias
factors (McDonald and Seljak, 2009), e.g., a mix of massive absorption-line galaxies and lower mass
emission-line galaxies.

These studies are still in an early phase, and it remains to be seen what gains can be realized
in practice. The largest synergistic impact arises when the WL and RSD surveys are compara-

73The Ho et al. (2008) measurement is almost 2σ above ΛCDM, but we attribute no special significance to this!
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bly powerful in their individual measurements of growth parameters (Cai and Bernstein, 2012).
Stochasticity in the relation between the galaxy and mass density fields depresses cross-correlations
relative to auto-correlations, a potentially important theoretical systematic, though stochasticity is
expected to be small at large scales, and corrections can be computed with halo-based models that
are constrained by small and intermediate-scale clustering. Conversely, it may be possible to realize
these gains even when the weak lensing and spectroscopic surveys do not overlap, by calibrating
the bias of a photometric sample that has the same target selection criteria as the spectroscopic
sample. Gaztañaga et al. (2012) also investigate the possibility of implementing these techniques
in a narrow-band imaging survey with large numbers of filters, which is effectively a low-resolution
spectroscopic survey. They find that most of the gains of a spectroscopic survey are achieved if the
rms photo-z uncertainty is ∆z/(1 + z) . 0.0035, while larger uncertainties degrade the results.

7.10. Strong Gravitational Lenses

Strong gravitational lenses can be employed to measure expansion history in a variety of ways.
One is to simply count the number of lenses as a function of angular separation and (when available)
redshift — the predicted counts depend on dark energy because the probability of lensing goes up
when path lengths are larger (Kochanek, 1996). This approach requires a large sample of lenses with
well understood statistical characteristics and selection biases. Observationally it is a stiff challenge,
but the more fundamental difficulty is that the predicted counts also depend on the evolution of the
mass distribution, in particular that of the early-type galaxies that dominate the lensing statistics.
For example, Oguri et al. (2012) derive constraints from a sample of 19 strong lenses found from
50,000+ source quasars in the SDSS, and while the analysis yields a robust detection of dark energy,
the cosmological parameter values are significantly degenerate with uncertainties in the evolution
of the galaxy velocity function. The latter can be addressed to some degree with measurements
of galaxy velocity dispersions, but even then one is left with uncertainty in the exact relation
between the observable stellar velocity dispersion and the potential well depth that is important
for lensing. With a sufficiently large sample of lenses one can “self-calibrate” by using the full
distribution as a function of angular separation and redshift, though one still relies on direct galaxy
counts for an overall normalization. While future imaging surveys will yield much larger samples
of lens candidates (which can then be confirmed spectroscopically), we suspect that the systematic
uncertainties in interpreting lens counts will be too large for this method to be competitive as a
dark energy probe — rather, it will probe the dynamical history of galaxy assembly. The number
of giant cluster arcs as a function of curvature radius and redshift offers an alternative form of
the “lens counting” test that depends on both geometry and structure growth (e.g., Horesh et al.
2011), but one must again understand the detailed mass assembly history of the central regions of
massive halos to derive dark energy constraints (Killedar et al., 2012).

A second approach is to use angular positions of multiple sources with different (known) redshifts
to obtain distance ratios, a strong-lensing version of the cosmography test discussed in §5.2.7.
Clusters of galaxies are the best targets for this approach, as they sometimes have large numbers
of lensed sources (see Soucail et al. 2004 and Jullo et al. 2010 for representative observational
applications). The difficulty is that the sources with different redshifts also probe different locations
in the lens potential, so to derive cosmological results one needs strong constraints on substructure in
the lens cluster and in the foreground and background mass distributions. Meneghetti et al. (2005)
and D’Aloisio and Natarajan (2011) discuss some of the theoretical issues in this approach and their
implications for data requirements. Obtaining strong cosmological constraints from cosmographic
analysis of cluster lenses will be observationally demanding, and mass modeling uncertainties may
be a limiting systematic.
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The most promising of the strong-lensing approaches uses time delay measurements, which
attach an absolute scale to the angular separations and redshifts measured for a gravitational lens.
Predicted time delays scale as H−1

0 , and more generally with the angular diameter distance relation
DA(z). The critical systematic is again the uncertainty in the total mass and mass distribution
of the lens, which enters predictions of the angular positions and time delays. Given the observed
positions, a time-delay measurement determines a degenerate combination of the distance scale
(H−1

0 ) and the surface mass density of the lens within the Einstein radius (Kochanek et al., 2003), so
a dynamical measurement, usually the stellar velocity dispersion, is required to break the degeneracy
and isolate the cosmological information. When the sources are resolved (i.e., galaxies rather than
AGN in the optical, or jets mapped with VLBI), or when the multiplicity of images is unusually high,
then reproducing the data places more stringent constraints on the mass distributions (e.g., Suyu
et al. 2012b). In the best cases, distance scale constraints at the ∼ 5% level, after marginalizing
over uncertainties in the mass distribution, are achievable for an individual lens (e.g., Suyu et al.
2010, 2012a). Careful measurements and modeling of a number of well constrained lenses could
lead to high aggregate precision, adding significant power to tests of dark energy models (Coe and
Moustakas, 2009; Linder, 2011). The critical question from the point of view of dark energy is
whether the mass modeling uncertainties are independent from system to system, so that the net
uncertainty drops as 1/

√
N , or whether global uncertainties in the approach to mass modeling

impose a systematic floor. The answer to this question should become clearer as the current
generation of cosmological time-delay analyses proceeds.

7.11. Galaxy Ages

In principle the age of the universe is an observable that can probe cosmic expansion history.
The integral that determines age,

t(z) =

∫ ∞

z

dz′

1 + z′
H−1(z′) , (160)

is similar to the integral for comoving distance (eq. 7), except that it extends from z to ∞ instead
of 0 to z. The conflict between the ages of globular clusters and the value of t0 in a decelerating
universe was one of the significant early arguments for cosmic acceleration, and a number of authors
have employed ages of high-redshift galaxies or clusters of galaxies as a constraint on dark energy
models (e.g., Lima and Alcaniz 2000; Jimenez et al. 2003; Capozziello et al. 2004).

Jimenez and Loeb (2002) proposed using differential ages of galaxies at different redshifts to
measure, in effect, H(z). Observational studies thus far have concentrated on the massive ellipticals,
as these have the fewest complications (dust, ongoing star formation). This differential approach
removes some of the uncertainties in the population synthesis models, but it relies on identifying a
population of galaxies at one redshift that is just an aged version of a population at a higher redshift,
or accounting for the evolutionary corrections that arise from mergers, low-level star formation,
and movement of galaxies into or out of the passive population. The state-of-the art observational
study is the analysis of ∼ 11, 000 early-type galaxies from several large surveys by Moresco et al.
(2012). They report measurements of H(z) in eight bins out to z ≈ 1, with uncertainties of
∼ 5 − 15% per bin including estimated systematic errors. At low (z < 0.3) redshift, Moresco
et al. (2011) analyzed a sample of 14,000 early type galaxies from the SDSS, obtaining H0 =
72.6±2.9 (stat)±2.3 (syst) km s−1 Mpc−1, compatible with other estimates of H0 and competitive
in precision. These papers provide extensive discussions of systematic uncertainties and argue that
they can be well controlled. Nonetheless, the reliance on population synthesis and galaxy evolution
models means that this method will face a stiff burden of proof if it finds a discrepancy with
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simple dark energy models or other observational analyses, particularly if the differences are at the
sub-percent level that is the target of future dark energy experiments.

7.12. Redshift Drift

The redshift of a comoving source changes as the universe expands. Sandage (1962) was the
first to propose this “redshift drift” as a cosmological test, but he noted that it appeared far
beyond the capabilities of existing experimental techniques. Loeb (1998) repopularized the idea,
noting that high-resolution spectrographs on large telescopes could potentially measure the effect
in absorption-line spectra of high-redshift quasars. Quercellini et al. (2012) provide an extensive
review of the redshift-drift method and other forms of “real-time cosmology” experiments. The
expected change in redshift over a time interval ∆t, expressed as an apparent velocity shift, is

∆v ≡ c∆z

1 + z
= cH0∆t

[
1 − H(z)/H0

1 + z

]
, (161)

which vanishes for a coasting universe with H(z)/H0 = (1 + z)−1. For our fiducial cosmological
model, the predicted change over a ∆t = 10 year observational span is +1.32 cm s−1, −1.21 cm s−1,
and −3.66 cm s−1 for sources at z = 2, 3, and 4, respectively. Corasaniti et al. (2007) estimate that
observations of 240 quasars over a span of 30 years using the CODEX spectrograph proposed for the
European Extremely Large Telescope could measureH(z) over z = 2−5 with an aggregate precision
of ≈ 2% (see Liske and Codex Team 2006 and Balbi and Quercellini 2007 for similar discussions
and Liske et al. 2008 for detailed calculations of CODEX performance). The BAO component of
the fiducial Stage IV program that we present in §8.1 (which assumes 25% sky coverage and errors
that are 1.8 times those of linear theory sample variance) yields errors of 0.6−0.7% in H(z) per bin
of 0.07 in ln(1+z) at z = 2−3 (see Table 6). The fiducial BAO program would thus be much more
powerful than the redshift-drift approach, but it is not yet clear that high-redshift BAO surveys of
this volume will prove practical.

7.13. Alternative Methods: Summary

Of the methods described in this section, redshift-space distortion is the one that seems almost
guaranteed to have a broad-ranging impact in future studies of cosmic acceleration. Because of its
direct sensitivity to f(z) and its use of non-relativistic tracers, RSD is a valuable complement to
weak lensing and clusters as a probe of structure growth. The redshift surveys ongoing or planned
for BAO measurements will automatically enable RSD measurements with high statistical precision
over a significant range in redshift. The primary systematics for RSD are associated with theoretical
modeling uncertainties, and these are likely to diminish with time as more sophisticated techniques
are developed, numerical simulations become more powerful, and galaxy clustering measurements
provide more detailed tests of the models. The AP method may also amplify the return from BAO
redshift surveys, perhaps by a large factor, depending on the success of modeling non-linear velocity
distortions.

The z = 0 Hubble constant is only a single number, but it is an important one, as it determines
the current critical density and the current expansion rate, with the maximal leverage against the
CMB at z ≈ 1100. Ongoing technical developments seem to offer a realistic path to achieving
H0 measurements with 1-2% uncertainty, tight enough to make significant contributions to dark
energy constraints even in the era of Stage IV experiments. JWST and Gaia represent dramatic
improvements in technological capabilities for H0 studies, perhaps allowing progress to the sub-
percent level.

The impact of the other methods discussed here is more difficult to predict. In some cases,
interesting results at the few-percent level are already in hand but it is still too early to say
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whether the limiting systematics can be reduced to the percent or sub-percent level required for
long-term progress. In other cases, such as precision gravity tests, there are clear paths to radically
improved measurements, but these will provide useful clues or tests only for a limited class of cosmic
acceleration models.

The one method that looks like it could ultimately outperform even Stage IV experiments is that
of standard sirens applied to compact star binaries (§7.5), because of the opportunity to measure
hundreds of thousands of distances by a technique that has no obvious limiting systematics. This
approach requires extraordinary technological advances, which are unlikely to be achieved in the
next decade, and perhaps not in the next two decades. However, the most precise mapping of
the expansion history of the universe might ultimately come from spacetime ripples rather than
electromagnetic waves.
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8. A Balanced Program on Cosmic Acceleration

Having discussed many observational methods individually, we now turn to what we might hope
to learn from them in concert. To the extent that this report has an underlying editorial theme, it
is the value of a balanced observational program that pursues multiple techniques at comparable
levels of precision. In our view, there is much more to be gained by doing a good job on three or
four methods than by doing a maximal job on one at the expense of the others. This is not a “try
everything” philosophy — moving forward from where we are today, an observational method is
interesting only if it has reasonable prospects of achieving percent- or sub-percent-level errors, both
statistical and systematic, on observables such as H(z), D(z), and G(z). The successes of cosmic
acceleration studies to date have raised the field’s entry bar impressively high.

A balanced strategy is important both for cross-checking of systematics and for taking advantage
of complementary information. Regarding systematics, the next generation of cosmic acceleration
experiments seek much higher precision than those carried out to date, so the risk of being limited or
biased by systematic errors is much higher. Most methods allow internal checks for systematics —
e.g., comparing distinct populations of SNe, measuring angular dependence and tracer dependence
of BAO signals, testing for B-modes and redshift-scaling of WL — but conclusions about cosmic
acceleration will be far more convincing if they are reached independently by methods with different
systematic uncertainties. Two methods only provide a useful cross-check of systematics if they have
comparable statistical precision; otherwise a result found only in the more sensitive method cannot
be checked by the less sensitive method.

Regarding information content, we have already emphasized the complementarity of SN and
BAO as distance determination methods. SN have unbeatable statistical power at z . 0.6, while
BAO surveys that map a large fraction of the sky with adequate sampling can achieve higher preci-
sion at z & 0.8. Overlapping SN and BAO measurements provide independent physical information
because the former measure relative distances and the latter absolute distances (h−1 Mpc vs. Mpc),
and the value of h is itself a powerful dark energy diagnostic in the context of CMB constraints
(see §7.1 and §8.5.1). WL, clusters, and redshift-space distortions provide independent constraints
on expansion history, at levels that can be competitive with SN and BAO, and they provide sensi-
tivity to structure growth. Without structure probes, we would have little hope of clues that might
locate the origin of acceleration in the gravitational sector rather than the stress-energy sector, and
we would, more generally, reduce the odds of “surprises” that might push us beyond our current
theories of cosmic acceleration.

The primary purpose of this section is to present quantitative forecasts for a program of Stage IV
dark energy experiments and to investigate how the forecast constraints depend on the performance
of the individual components of such a program. Our forecasts are analogous to those of the DETF
(Albrecht et al., 2006), updated with a more focused idea of what a Stage IV program might
look like, and updated in light of subsequent work on parameterized models and figures of merit
for dark energy experiments, most directly that of the JDEM Figure-of-Merit Science Working
Group (FoMSWG; Albrecht et al. 2009). In §8.1 we summarize our assumptions about the fiducial
program. In §8.2 we describe the methodology of our forecasts, in particular the construction of
Fisher matrices for the fiducial program. In §8.3 we present results for the fiducial program and for
variants in which one or more components of this program are made significantly better or worse.
We also compare these results to forecasts of a “Stage III” program represented by experiments
now underway or nearing their first observations.

We have elected to focus on SN, BAO, and WL as the components of these forecasts, for two
reasons. First, it is more straightforward (though still not easy) to define the expected statistical
and systematic errors for these methods than for others. Second, the most promising alternative
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methods — clusters, redshift-space distortions, and the Alcock-Paczynksi effect — will be enabled
by the same data sets obtained for WL and BAO studies. It is therefore reasonable to view these
as auxiliary methods that may improve the return from these data sets (perhaps by substantial
factors) rather than as drivers for the observational programs themselves. In §§8.4 and 8.5 we
present forecasts for how well the fiducial CMB+SN+BAO+WL programs predict the observables
of these and other alternative methods, providing a target for how well they must perform to add
new information beyond that in our primary probes. In some cases we find that plausible levels of
performance could substantially improve tests of cosmic acceleration models. In §8.6 we focus on
the precision with which our fiducial program measures fundamental observables, and we discuss
aggregate precision as a useful, nearly model-independent way of characterizing the power of an
experiment and the level of systematics control required to realize it. Section 8.7 provides a high-
level summary, discussing the potential yield from programs that combine CMB, SN, BAO, and
WL measurements with additional constraints from clusters, redshift-space distortions, and direct
H0 determinations.

8.1. A Fiducial Program

As discussed in §1.3, Astro2010 and the European Astronet report have placed high priority on
ground- and space-based dark energy experiments. The Stage III experiments currently underway
will already allow much stronger tests of cosmic acceleration models, and Stage IV facilities built
over the next decade should advance the field much further still. Our Stage IV program corresponds
roughly to the goals recommended by the Cosmology and Fundamental Physics panel report of
Astro2010.

For SN studies, we anticipate that Stage IV efforts will be limited not by statistical errors but
by systematics associated with photometric calibration, dust extinction, and evolution of the SN
population. For our fiducial program, we assume that SN surveys will achieve net errors (statistical
+ systematic) of 0.01 mag for the mean distance modulus in each of three redshift bins of width
∆z = 0.2 extending from z = 0.2 to a maximum redshift zmax = 0.8 (see discussion in §3.4). We
also assume the existence of a local SN sample at z = 0.05 with the same 0.01 mag net error. High
quality observations could yield a smaller systematic error in the local sample, but we suspect that
the most challenging systematic for this local calibration will be transferring it to the more distant
bins. We treat the bin-to-bin errors as uncorrelated, though this is clearly an approximation to
systematic errors that are correlated at nearby redshifts and gradually decorrelate as one considers
differing redshift ranges and observed-frame wavelengths. Even with 0.15 mag errors per SN,
achieving this level of statistical error requires only 225 SNe per bin, and we expect that the error
per SN can be reduced by working at red/IR wavelengths and by selecting sub-populations based
on host galaxy type, spectral properties, and light curve shape. For purely ground-based efforts, we
consider our 0.01 mag floor for systematic errors to be somewhat optimistic, given the challenges
of dust extinction corrections and photometric calibration. However, a space-based program at
rest-frame near-IR wavelengths, enabled by WFIRST, could plausibly achieve better than 0.01
mag systematics. We suspect that it will be hard to push calibration and evolution systematics
below 0.005 mag even with WFIRST, and pushing statistical errors below this level begins to place
severe demands on spectroscopic capabilities, unless purely photometric information can be used to
identify populations with scatter below 0.1 mag per SN. We also consider the impact of increasing
zmax beyond 0.8, though we argue that this is beneficial mainly when one is hitting a systematics
floor at lower z and high-z observations have uncorrelated systematics.

For BAO, the primary metric of statistical constraining power is the total comoving volume
mapped spectroscopically with a sampling density high enough to keep shot-noise sub-dominant.
There are several projects in the planning stages that could map significant fractions of the comoving
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volume available out to z ≈ 3. These include the near-IR spectroscopic components of Euclid and
WFIRST, ground-based optical facilities such as BigBOSS, DEspec, and SuMIRe PFS, and radio
intensity-mapping experiments (see §4.7). For our fiducial program, we assume that these projects
will collectively map 25% of the comoving volume out to z = 3, with errors a factor of 1.8 larger
than the linear theory sample variance errors.74 We specifically assume full redshift coverage from
z = 0 − 3 with fsky = 25% sky fraction, but other combinations of redshift coverage and fsky that
have the same total comoving volume yield similar results. The factor 1.8 accounts for imperfect
sampling (hence non-negligible shot-noise) and for non-linear degradation of the BAO signal. It
approximates the effects of sampling with nP = 2 and using reconstruction (§4.3.3) to remove 50%
but not 100% of the non-linear Lagrangian displacement of tracers. We implicitly assume that
theoretical systematics associated with location of the BAO peak will remain below this level, an
assumption we consider reasonable but not incontrovertible based on the discussion in §4.5.

For WL, the primary metric of statistical constraining power is the total number of galaxies
that have well measured shapes and good enough photometric redshifts to allow accurate model
predictions and removal of intrinsic alignment systematics. For our fiducial case, we assume a
survey of 104 deg2 achieving an effective surface density of 23 galaxies per arcmin2 with zmed = 0.84,
corresponding to IAB < 25 and reff > 0.25′′. The effective galaxy number is 8.3×108. Euclid plans a
14,000 deg2 imaging survey and can likely achieve this surface density or slightly higher. LSST will
survey a still larger area, and it might or might not achieve this effective surface density, depending
on how low a value of reff/rPSF it can work to before shape measurements are systematics dominated.
The WFIRST design reference mission (Green et al. 2012; DRM1) would achieve neff ≈ 40 arcmin−2

but would only image 3400 deg2 in its 2.4-year high-latitude survey, thus measuring about 4.8×108

galaxy shapes. An extended WFIRST mission, or an implementation of WFIRST using one of the
NRO 2.4-m telescopes (Dressler et al., 2012), could potentially reach 104 deg2. Even individually,
therefore, any one of these projects may well exceed the number of shape measurements assumed
in our fiducial program, and collectively they will almost certainly do so. We compute constraints
from cosmic shear in 14 bins of photometric redshift and from the shear-ratio test described in
§5.2.7, but we do not incorporate higher order lensing statistics or galaxy-shear cross-correlations.
We include information up to multipole lmax = 3000, beyond which statistical power becomes
limited at this surface density and systematic uncertainties associated with non-linear evolution
and baryonic effects become significant.

Forecasting the systematic uncertainties in Stage IV WL experiments is very much a shot in
the dark. Systematic errors are already comparable to statistical errors in surveys of 100 deg2, so
lowering them to the level of statistical errors in a 104 deg2 survey that has higher galaxy surface
density requires more than an order of magnitude improvement. We therefore consider a “fiducial”
and an “optimistic” case for WL systematics. For the fiducial case, we incorporate (and marginalize
over) aggregate uncertainties of 2 × 10−3 in shear calibration and 2 × 10−3 in the mean photo-z,
with errors in each redshift bin larger by

√
14 but uncorrelated across bins. We also incorporate

intrinsic alignment uncertainty as described by Albrecht et al. (2009, §2h of Appendix A), which
includes marginalization over both GI and II components (see §5.6.1). For our “optimistic” case
we adopt no specific form of the systematic errors but simply assume that they will double the
statistical errors throughout. At an order of magnitude level, we can see that the optimistic case

corresponds to a global fractional error σ ∼ 2N
−1/2
mode ∼ 2f

−1/2
sky l−1

max = 1.3 × 10−3, significantly lower

than the fiducial case assumption of 2×10−3 errors for shear and photo-z calibration (which, roughly
speaking, combine in quadrature to make a 2.8 × 10−3 multiplicative uncertainty). However, at

74This is equivalent to assuming linear theory sample variance over a fractional volume 25%/1.82 = 7.7%.
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scales and redshifts where the statistical errors are large, multiplying them by two can be a larger
change than adding the shear-calibration and photo-z systematics. As a result, there will be some
measures (e.g., the error on Ωk) for which our “optimistic” program performs slightly worse than
our fiducial program. Of course, WL experiments that achieved the statistical limits of several
×109 source galaxies — possible in principle — would be several times more powerful than even
our optimistic scenario.

8.2. Forecasting Constraints

The fiducial program outlined above provides a baseline for evaluating improvement in the
determination of the cosmological parameters relative to current constraints. We use a Fisher
matrix analysis to quantify this improvement and to study the complementarity of the main probes
of cosmic acceleration. Since our knowledge of the exact design of future surveys and the systematic
errors they will face is inherently imperfect, we also consider the effect of varying the precision of
each technique in our forecasts, including both pessimistic and optimistic cases for SN, BAO, and
WL data.

Quantifying the impact of each probe on our understanding of cosmic acceleration requires
metrics for evaluating progress. The precision with which the dark energy equation of state (and
its possible time dependence) can be measured is a common choice; while not the only quantity
of interest, it is clearly a central piece of the puzzle. One of the main quantities we use below is
the DETF figure of merit defined in equation (26), FoM = [σ(wp)σ(wa)]

−1. The FoM indicates
how well an experiment determines the dark energy equation of state parameter and its derivative
dw/da at the pivot redshift zp, and it thereby indicates the ability to detect deviations from the
standard ΛCDM model with wp = −1 and wa = 0. When one considers experiments of increasing
power, σ(wp) and σ(wa) tend to shrink in concert, so the DETF FoM scales roughly as an inverse
variance and therefore increases linearly with data volume when statistical errors dominate. If the
error of every individual measurement (e.g., each DL or H(z) measurement) goes down by

√
2,

then the FoM doubles.
While the DETF FoM is relatively simple to evaluate for a particular experiment, it omits

much of the information that will be available from future experiments, including some potentially
important clues to the nature of cosmic acceleration. For example, the true dark energy dynamics
may be considerably more complicated than what the two-parameter linear model can accommo-
date, so that constraints on w0 and wa may yield incomplete or misleading results. Additionally,
the equation of state alone is insufficient to describe the full range of possible alternatives to the
standard cosmological model. For example, modified gravity theories can mimic the effect of any
particular equation of state evolution on the Hubble expansion rate and the distance-redshift re-
lation while altering the rate of growth of large-scale structure (e.g., Lue et al. 2004; Song et al.
2007). Including such possibilities requires extra parameters that describe changes in the growth
history that are independent of equation of state variations, as discussed in §2.2. Other standard
parameters of the cosmological model, such as the spatial curvature and the Hubble constant, are
important due to degeneracies with the effects of cosmic acceleration that can limit the precision
of constraints on the dark energy equation of state.

To include more general variations of the equation of state as well as altered growth of structure
from modifications to GR on large scales, we adopt the JDEM FoMSWG parameterization (Albrecht
et al., 2009). The equation of state in this parameterization is allowed to vary independently in
each of 36 bins of width ∆a = 0.025 extending from the present to a = 0.1 (z = 9). Specifically,
the equation of state has a constant value of wi at (1 − 0.025i) < a < [1 − 0.025(i − 1)], for
i = 1, . . . , 36. At earlier times, the equation of state is assumed to be w = −1, although the impact
of this assumption is typically quite small since dark energy accounts for a negligible fraction of the
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Table 5. Fiducial Model for Forecasts

w1 . . . w36 lnG9 ∆γ Ωmh
2 Ωbh

2 Ωkh
2 Ωφh

2 lnAs ns ∆M

−1 . . . −1 0 0 0.1326 0.0227 0 0.3844 −19.9628 0.963 0

total density at z > 9 in most models. Modifications to the linear growth function of GR GGR(z)
are included through the parameters G9 and ∆γ as defined in equations (44) and (45). These
parameters describe the change relative to GR in the normalization of the growth of structure at
z = 9 and in the growth rate at z < 9, respectively. Adding these to the binned wi values and the
standard ΛCDM parameters, the full set is

p = (w1, . . . , w36, lnG9,∆γ,Ωmh
2,Ωbh

2,Ωkh
2,Ωφh

2, lnAs, ns,∆M) , (162)

where the primordial amplitude As is defined at k = 0.05Mpc−1. ∆M is an overall offset in
the absolute magnitude scale of Type Ia supernovae. The Hubble constant is determined by these
parameters through h2 = Ωmh

2 +Ωkh
2 +Ωφh

2. We compute our forecasts at the fiducial parameter
values chosen by the FoMSWG to match CMB constraints from the 5-year release of WMAP data
(Komatsu et al., 2009); these are listed in Table 5. These parameters are similar but not identical
to those of the model used in §2 (Table 1), which is based on WMAP7. Note that spatially flat
ΛCDM and GR are assumed for the fiducial model.

We use a Fisher matrix analysis to estimate the constraints on these parameters from the fiducial
program defined in §8.1 and its variations. The Fisher matrix for each experiment consists of a
model of the covariance matrix for the observable quantities and derivatives of these quantities with
respect to the parameters. We compute the latter numerically with finite differences and confirm
the results using analytic expressions when possible.

We model SN data as measurements of the average SN magnitude in each of several redshift bins
and in a low-redshift calibration sample. While our fiducial case assumes that the net magnitude
error is uncorrelated from one bin to the next, we also consider the impact of including a correlated
component of the error by defining the SN covariance matrix as

CSN
αβ =

{
σ2

m,u δαβ , α = 1 or β = 1 ,

σ2
m,u

(
0.2
∆z

)
δαβ + σ2

m,c exp
(
− |zα−zβ |

∆zc

)
, α > 1 and β > 1 ,

(163)

where ∆z is the bin width, σm,u is the uncorrelated error in a bin of width ∆z = 0.2 (or in the local
sample at redshift z1), σm,c is the correlated error with correlation length ∆zc, and the net error in

each bin zα (α > 1) is σm =
√
σ2

m,u + σ2
m,c . In general these errors are redshift dependent, but here

we assume that they are constant for simplicity. We do not consider possible correlations between
the local SN sample and the high-redshift bins. For the fiducial forecasts we take σm,c = 0, so the
covariance matrix is diagonal. The SN Fisher matrix is then computed as a sum over redshift bins

F SN
ij =

∑

α,β

∂m(zα)

∂pi
(CSN

αβ )−1 ∂m(zβ)

∂pj
, (164)

where m(zα) = 5 log[H0〈DL(zα)〉] +M is the average magnitude in the bin and the derivatives are
taken with respect to the parameters of equation (162).
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Table 6. BAO Errors for the Fiducial Program

zmin zmax V [(Gpc/h)3] σln(D/rs) [%] σln(Hrs) [%]

0.000 0.072 0.010 13.386 21.881
0.072 0.149 0.075 4.895 8.002
0.149 0.231 0.217 2.873 4.697
0.231 0.320 0.449 1.997 3.265
0.320 0.414 0.781 1.515 2.476
0.414 0.516 1.218 1.213 1.983
0.516 0.625 1.761 1.009 1.649
0.625 0.741 2.407 0.863 1.410
0.741 0.866 3.148 0.754 1.233
0.866 1.000 3.970 0.672 1.098
1.000 1.144 4.860 0.607 0.992
1.144 1.297 5.799 0.556 0.909
1.297 1.462 6.770 0.514 0.841
1.462 1.639 7.758 0.481 0.785
1.639 1.828 8.745 0.453 0.740
1.828 2.031 9.718 0.429 0.702
2.031 2.249 10.664 0.410 0.670
2.249 2.482 11.576 0.393 0.643
2.482 2.732 12.443 0.379 0.620
2.732 3.000 13.261 0.368 0.601

Note. — Column 3 gives the volume of the redshift slice
for fsky = 0.25. In all redshift slices, errors on D/rs and Hrs
are correlated with correlation coefficient r = 0.409.
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For BAO we divide the observed volume into bins of equal width in ln(1 + z), assumed to be
uncorrelated, and compute the Fisher matrix

FBAO
ij =

∑

µ,ν,α

∂rµ(zα)

∂pi
[CBAO

µν (zα)]−1 ∂rν(zα)

∂pj
, (165)

where the measurement vector r(zα) ≡ {D(zα)/rs,H(zα)rs}, the sum is over µ, ν = 1, 2 and
α = 1, ...Nbin, and rs is the sound horizon at recombination (see §2.3), for which we use the fitting
formula from Hu (2005),

rs ≈ (144.4Mpc)

(
Ωmh

2

0.14

)−0.252 (
Ωbh

2

0.024

)−0.083

. (166)

We estimate the covariance matrix in each redshift bin using the BAO forecast code by Seo and
Eisenstein (2007), which provides estimates of the fractional error on distance and the Hub-

ble expansion rate at each redshift (relative to rs), σln(D/rs) =
√
CBAO

11 /(D/rs) and σln(Hrs) =√
CBAO

22 /(Hrs), respectively, as well as the cross correlation r = CBAO
12 /

√
CBAO

11 CBAO
22 . For our

default forecasts, we start with the linear theory cosmic variance predictions, corresponding to the
limit of perfect sampling of the density field within the observed volume and no degradation of
the signal due to nonlinear effects. To approximate the effects of finite sampling and nonlinear-
ity, we increase these errors by a factor of 1.8 for our fiducial forecasts, which leads to parameter
constraints comparable to what would be expected with sampling nP = 2 and reconstruction that
halves the effects of nonlinear evolution. In Table 6 we list the volume for fsky = 0.25 and fiducial
BAO covariance matrix elements for 20 redshift slices from 0 ≤ z ≤ 3. The results we obtain are
only weakly dependent on the number of redshift bins chosen to divide up the total volume.

The WL Fisher matrix is based on the methodology described by Albrecht et al. (2009), where
the explicit formulas are given. It includes both power spectrum tomography and cross-correlation
cosmography (redshift scaling of the galaxy-galaxy lensing signal), but makes no assumption about
the galaxy bias. The galaxies are sliced into Nz = 14 redshift bins and we consider power spectra
in Nℓ = 18 bins logarithmically spaced over 10 < ℓ < 104. We consider all power spectra and
cross-spectra of the galaxies gi and the E-mode shear γE

i . This leads to 2Nz scalar fields on the
sky, and hence N2pt = 2Nz(2Nz +1)/2×Nℓ bins in the power spectrum matrix.75 The length N2pt

vector C of power spectra incorporates all 2-point information.
Our task is now to construct a model both for C and for its covariance matrix Σ, and then to

construct the Fisher matrix for parameters p:

Fij =
∂CT

∂pi
Σ−1 ∂C

∂pj
, (167)

where T denotes a matrix transpose. Systematic errors may be incorporated as either nuisance
parameters p (marginalized over some prior) or as additional contributions to Σ:

Σij → Σij + σ2
̟

∂Ci

∂̟

∂Cj

∂̟
, (168)

where ̟ is the amplitude of some systematic and σ̟ is the amount over which it is marginalized.
We incorporate in Σ the following contributions:

75Since we neglect magnification bias, some of these spectra, e.g. the correlation of high-redshift galaxies with
low-redshift shear, are zero for all cosmological models.
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• The Gaussian covariance matrix.

• The 1-halo contribution to the shear 4-point function, given by Eq. (A9) of Albrecht et al.
(2009).

• Galaxy bias and stochasticity, fully marginalized76 in each bin of ℓ and z.

• The II intrinsic alignment term, obtained by fully marginalizing out the shear auto-correlations
in each redshift slice.

• The GI intrinsic alignment term. It is assumed that Eq. (139) will allow estimation of Peδ(k)
and removal of this term in the linear and weakly nonlinear regimes (taken to be ℓ < 102.5).
At smaller scales, we impose a weak prior that the GI not exceed present upper limits. This
is implemented as

σ[Peδ(k)]

Pδ(k)
= 0.003

√
Nℓ,nonlin(Nz − 1), (169)

where the square root is introduced to prevent many bins from being used to “average down”
this systematic (Albrecht et al., 2009)

The photometric redshift errors (one bias parameter for each bin) and shear calibration errors (also
one bias parameter for each bin) are treated as nuisance parameters in the parameter vector p and
are marginalized out before combining with other cosmological probes.

The forecasts for the main SN, BAO, and WL probes are supplemented by the expected con-
straints from upcoming CMB measurements provided by the Planck satellite. We adopt the Fisher
matrix FCMB constructed by the FoMSWG, which includes cosmological constraints from the 70,
100, and 143 GHz channels of Planck with fsky = 0.7, assuming that data collected at other fre-
quencies will be used for foreground removal. The noise level and beam size for each channel comes
from the Planck Blue Book (Planck Collaboration, 2006). Information from secondary anisotropies
of the CMB is not included in this Fisher matrix; in particular, constraints from the ISW effect
(§7.8) are removed by requiring the angular diameter distance to the CMB to be matched exactly,
as described in Albrecht et al. (2009). Additionally, the large-scale (ℓ < 30) polarization angular
power spectrum and temperature-polarization cross power spectrum, which mainly contribute to
constraints on the optical depth to reionization τ , are excluded from the forecast and replaced by
a Gaussian prior with width στ = 0.01. This prior accounts for uncertainty in τ due to limited
knowledge of the redshift dependence of reionization, which is not included in the simplest models
of the CMB anisotropies. Although τ does not appear in the parameter set for the Fisher matrices,
marginalization over τ in the CMB constraints contributes to the uncertainty on the primordial
power spectrum amplitude As, which in turn affects predictions for the growth of large-scale struc-
ture.

Combined constraints on cosmological parameters are obtained simply by adding the Fisher
matrices of the individual probes, i.e. F = FSN + FBAO + FWL + FCMB. Then the forecast for the
parameter covariance is C = F−1, and in particular the uncertainty on a given parameter pi after
marginalizing over the error on all other parameters is

√
[F−1]ii .

Computing the Fisher matrix in the FoMSWG parameter space with a large number of inde-
pendent bins for w(z) gives us the flexibility to project these forecasts onto a number of simpler
parameterizations, including the w0–wa model for the purposes of computing the FoM. To change

76i.e. with sufficiently wide prior that no significant information remains.
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from the original parameter set p to some new set q, we compute

F̃kl =
∑

i,j

∂pi

∂qk
Fij

∂pj

∂ql
, (170)

which gives the Fisher matrix F̃ for the new parameterization. In particular, projection from bins
wi to w0 and wa involves the derivatives ∂wi/∂w0 = 1 and ∂wi/∂wa = z/(1 + z). We also compute
the pivot redshift zp and the uncertainty in the equation of state at that redshift, wp. Given the
2 × 2 covariance matrix Cij for w0 and wa (marginalized over the other parameters), the pivot
values are computed as (Albrecht et al., 2009)

zp = − C12

C12 + C22
, (171)

σwp = C11 −
C2

12

C22
,

where the first index corresponds to w0 and the second to wa.
One drawback to the w0–wa parameterization is that constraints on w(z) at high redshift are

coupled to those at low redshift by the form of the model; for example, if observations determine
the value of the equation of state perfectly at z = 0 and at z = 0.1, then it is completely determined
at high redshift even in the absence of high redshift data. To specifically address questions related
to the ability of dark energy probes to constrain dark energy at low redshift vs. high redshift, we
define an alternative but equally simple parameterization in which w(z) takes constant, independent
values in each of two bins at z ≤ 1 and z > 1. The projection onto this parameterization using
equation (170) requires the derivatives ∂wi/∂w(z ≤ 1) = Θ(1−zi) and ∂wi/∂w(z > 1) = 1−Θ(1−
zi), where Θ(x) is the Heaviside step function equal to 0 for x < 0 and 1 for x ≥ 0.

Principal components (PCs) of the dark energy equation of state provide another way to deter-
mine which features of the equation of state evolution are best constrained by a given combination
of experiments (Huterer and Starkman, 2003; Hu, 2002a; Huterer and Cooray, 2005; Wang and
Tegmark, 2005; Dick et al., 2006; Simpson and Bridle, 2006; de Putter and Linder, 2008; Tang
et al., 2011; Crittenden et al., 2009; Mortonson et al., 2009b; Kitching and Amara, 2009; Maturi
and Mignone, 2009). We compute the PCs for each forecast case by taking the total Fisher matrix
for the original parameter set (eq. 162) and marginalizing over all parameters other than the 36
binned values of wi. If we call the Fisher matrix for the wi parameters Fw, then the PCs are found
by diagonalizing Fw:

Fw = QΛQT , (172)

where Q is an orthogonal matrix whose columns are eigenvectors of Fw and Λ is a diagonal
matrix containing the corresponding eigenvalues of Fw. Up to an arbitary normalization factor,
the eigenvectors are equal to the PC functions ei = (ei(z1), ei(z2), ...) which describe how the
binned values of w(z) are weighted with redshift. Here we adopt the normalization of Albrecht
et al. (2009),

36∑

k=1

ei(zk)ej(zk) =

36∑

k=1

ek(zi)ek(zj) = (∆a)−1δij , (173)

where ∆a = 0.025 is the bin width; for i = j this condition approximately corresponds to∫ 1
0.1 da[ei(a)]

2 = 1. With this convention, the columns of Q are (∆a)1/2 ei . The PCs rotate
the original set of parameters to a set of PC amplitudes QT (1 + w) with elements

βi = (∆a)1/2
36∑

j=1

ei(zj)(1 + wj) . (174)
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Table 7. Key to forecast variations

Any × 4 Quadruple fiducial errors (divide Fisher matrix by 16).
Any × 2 Double fiducial errors (divide Fisher matrix by 4).
Any/2 Halve fiducial errors (multiply Fisher matrix by 4).

SN-III Stage III-like SN: total magnitude error of 0.02 per ∆z = 0.2 bin
over 0.2 ≤ z ≤ 0.8 and in local sample at z = 0.05.

SNzmax Increase max. redshift to zmax = 1.6 (7 bins with ∆z = 0.2 and 0.01 mag. error).
SN−local Omit local sample at z = 0.05.
SNcx Correlated errors: σm,u = σm,c = 0.007, ∆zc = 0.2, with x bins over 0.2 ≤ z ≤ 0.8.

BAO-III Stage III-like BAO, approximating forecasts for BOSS LRGs+HETDEX:
(D/rs,Hrs) errors of (1.0%, 1.8%) at z = 0.35, (1.0%, 1.7%) at z = 0.6,
and (0.8%, 0.8%) at z = 2.4. These are “BAO only” forecasts for BOSS
and “full power spectrum” forecasts for HETDEX.

BAOzmax Reduce maximum redshift to zmax = 2 (20 bins), retaining fsky = 0.25.

WL-opt “Optimistic” Stage IV case (total error= 2× statistical).
WL-III Stage III-like WL, approximating forecasts for DES: 5000 deg2 and neff = 9arcmin−2.

CMB-W9 Fisher matrix forecast for 9-year WMAP data.

Combining equations (173) and (174), we can construct w(z) in each redshift bin from a given set
of PC amplitudes as

wi = −1 +
36∑

j=1

αjej(zi) , (175)

where αi ≡ (∆a)1/2βi . The accuracy with which the αi can be determined from the data is given
by the eigenvalues of Fw, σi ≡ σαi = (∆a/Λii)

1/2, and the PCs are numbered in order of increasing
variance (i.e. σi+1 > σi).

For constraints that are marginalized over the wi parameters, we impose a weak prior on wi as
suggested by Albrecht et al. (2009) to reduce the dependence of forecasts for ∆γ on the poorly-
constrained high redshift wi values, since arbitrarily large fluctuations in w(z) can alter the high
redshift growth rate. We include a weak Gaussian prior with width σwi = ∆w/

√
∆a by adding to

the total Fisher matrix

F prior
ij =

{
σ−2

wi
δij , i ≤ 36 ,
0 , i > 36 ,

(176)

assuming that the parameters are ordered as in equation (162) with p1 = w1, p2 = w2, etc. For most
forecasts, we use a default prior width of ∆w = 10 (σwi ≈ 63), which approximately corresponds
to requiring that the average value of |1 + w| in all bins does not exceed 10. In the next section
we also consider how constraints on certain parameters change with a narrower prior of ∆w = 1.
For priors wider than the default choice, the Fisher matrix computations are subject to numerical
effects arising from the use of a finite number of wi bins to approximate continuous variations in
w(z), so we do not present results with weaker priors than ∆w = 10. Note that the construction
of PCs of w(z) as described above does not include such a prior on wi.
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Table 8. Forecast Uncertainties for Variations of the Fiducial Program

Forecast case zp σwp FoM σw(z>1) 103 σΩk
102 σh σ∆γ σln G9

1 [SN,BAO,WL,CMB] 0.46 0.014 664 0.051 0.55 0.51 0.034 0.015
2 [SN,BAO,WL-opt,CMB] 0.39 0.013 789 0.049 0.64 0.42 0.026 0.016

3 [BAO,WL,CMB] 0.63 0.017 321 0.054 0.56 0.99 0.034 0.015
4 [SN-III,BAO,WL,CMB] 0.57 0.016 433 0.053 0.56 0.75 0.034 0.015
5 [SN×4,BAO,WL,CMB] 0.61 0.017 353 0.054 0.56 0.91 0.034 0.015
6 [SN×2,BAO,WL,CMB] 0.57 0.016 433 0.053 0.56 0.75 0.034 0.015
7 [SN/2,BAO,WL,CMB] 0.32 0.010 1197 0.049 0.55 0.32 0.034 0.015
8 [SNzmax,BAO,WL,CMB] 0.42 0.011 841 0.050 0.55 0.40 0.034 0.015
9 [SN−local,BAO,WL,CMB] 0.59 0.016 376 0.053 0.56 0.85 0.034 0.015

10 [SNc3,BAO,WL,CMB] 0.46 0.014 652 0.051 0.55 0.51 0.034 0.015
11 [SNc6,BAO,WL,CMB] 0.46 0.014 663 0.051 0.55 0.51 0.034 0.015
12 [SNc12,BAO,WL,CMB] 0.46 0.014 667 0.051 0.55 0.50 0.034 0.015

13 [SN,WL,CMB] 0.26 0.022 152 0.321 2.13 0.72 0.038 0.022
14 [SN,BAO-III,WL,CMB] 0.32 0.019 299 0.120 1.19 0.57 0.035 0.017
15 [SN,BAO×4,WL,CMB] 0.30 0.020 245 0.145 1.16 0.65 0.036 0.018
16 [SN,BAO×2,WL,CMB] 0.36 0.018 380 0.087 0.76 0.58 0.035 0.016
17 [SN,BAO/2,WL,CMB] 0.50 0.010 1222 0.033 0.47 0.39 0.034 0.014
18 [SN,BAOzmax,WL,CMB] 0.42 0.014 547 0.071 0.66 0.52 0.034 0.015

19 [SN,BAO,CMB] 0.41 0.016 539 0.059 0.78 0.53 — —
20 [SN,BAO,WL-III,CMB] 0.41 0.016 543 0.058 0.77 0.52 0.145 0.048
21 [SN,BAO,WL×4,CMB] 0.42 0.016 553 0.057 0.75 0.53 0.126 0.031
22 [SN,BAO,WL×2,CMB] 0.43 0.015 587 0.055 0.68 0.52 0.065 0.020
23 [SN,BAO,WL/2,CMB] 0.48 0.012 815 0.047 0.45 0.47 0.018 0.012
24 [SN,BAO,WL-opt×4,CMB] 0.41 0.016 556 0.058 0.76 0.52 0.085 0.022
25 [SN,BAO,WL-opt×2,CMB] 0.41 0.015 606 0.055 0.73 0.49 0.045 0.018
26 [SN,BAO,WL-opt/2,CMB] 0.37 0.009 1397 0.040 0.52 0.30 0.017 0.013

27 [SN,BAO,WL] 0.31 0.020 368 0.075 7.82 1.48 0.037 6.697
28 [SN,BAO,WL,CMB-W9] 0.43 0.015 592 0.055 1.07 0.53 0.036 0.019

Note. — Forecasts in this table vary the assumptions about a single probe at a time from the
fiducial program. With the exception of w(z > 1), a w0–wa model for the dark energy equation of
state is assumed for all parameter uncertainties here and in Tables 9 and 10. All forecasts allow for
deviations from GR parameterized by ∆γ and G9.
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Table 9. Forecast Uncertainties for Variations of the Fiducial Program (Continued)

Forecast case zp σwp FoM σw(z>1) 103 σΩk
102 σh σ∆γ σln G9

1 [SN,BAO,WL,CMB] 0.46 0.014 664 0.051 0.55 0.51 0.034 0.015

2 [SN-III,BAO-III,WL-III,CMB] 0.42 0.032 131 0.137 1.36 0.96 0.147 0.051
3 [SN-III,BAO-III,WL-III,CMB-W9] 0.33 0.039 92 0.174 2.41 1.01 0.148 0.064
4 [SN×4,BAO×4,WL×4,CMB] 0.51 0.048 52 0.179 1.32 1.98 0.128 0.033
5 [SN×2,BAO×2,WL×2,CMB] 0.49 0.026 188 0.095 0.85 1.00 0.065 0.021
6 [SN/2,BAO/2,WL/2,CMB] 0.43 0.007 2439 0.027 0.34 0.26 0.018 0.011
7 [SN/2,BAO/2,WL-opt,CMB] 0.34 0.008 1832 0.035 0.55 0.26 0.023 0.014

8 [SN-III,BAO-III,WL,CMB] 0.44 0.026 169 0.126 1.20 0.89 0.035 0.017
9 [SN×4,BAO×4,WL,CMB] 0.50 0.034 85 0.157 1.18 1.49 0.037 0.019

10 [SN×4,BAO×2,WL,CMB] 0.57 0.026 153 0.093 0.77 1.28 0.035 0.016
11 [SN×4,BAO/2,WL,CMB] 0.57 0.011 891 0.033 0.47 0.53 0.034 0.014
12 [SN×2,BAO×4,WL,CMB] 0.41 0.029 132 0.151 1.17 1.01 0.037 0.018
13 [SN×2,BAO×2,WL,CMB] 0.49 0.023 218 0.090 0.76 0.92 0.035 0.016
14 [SN×2,BAO/2,WL,CMB] 0.55 0.011 966 0.033 0.47 0.49 0.034 0.014
15 [SN/2,BAO×4,WL,CMB] 0.25 0.012 499 0.142 1.15 0.47 0.036 0.017
16 [SN/2,BAO×2,WL,CMB] 0.27 0.011 735 0.084 0.76 0.39 0.035 0.016
17 [SN/2,BAO/2,WL,CMB] 0.38 0.008 1921 0.032 0.47 0.27 0.034 0.014
18 [SNzmax,BAOzmax,WL,CMB] 0.40 0.012 694 0.069 0.66 0.42 0.034 0.015

Note. — Same as Table 8, but varying two or three probes at a time from the fiducial specifications.
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Table 10. Forecast Uncertainties for Variations of the Fiducial Program (Continued)

Forecast case zp σwp FoM σw(z>1) 103 σΩk
102 σh σ∆γ σln G9

1 [SN,BAO,WL,CMB] 0.46 0.014 664 0.051 0.55 0.51 0.034 0.015

2 [SN,BAO-III,WL-III,CMB] 0.29 0.022 239 0.129 1.35 0.59 0.147 0.051
3 [SN,BAO×4,WL×4,CMB] 0.28 0.022 185 0.165 1.30 0.77 0.128 0.033
4 [SN,BAO×4,WL×2,CMB] 0.28 0.021 200 0.159 1.26 0.73 0.067 0.023
5 [SN,BAO×4,WL/2,CMB] 0.35 0.016 373 0.115 0.98 0.54 0.020 0.014
6 [SN,BAO×4,WL-opt,CMB] 0.29 0.015 361 0.102 1.21 0.57 0.042 0.020
7 [SN,BAO×2,WL×4,CMB] 0.34 0.019 328 0.092 0.90 0.62 0.127 0.031
8 [SN,BAO×2,WL×2,CMB] 0.35 0.019 340 0.090 0.85 0.61 0.065 0.021
9 [SN,BAO×2,WL/2,CMB] 0.40 0.015 502 0.078 0.67 0.51 0.019 0.013

10 [SN,BAO×2,WL-opt,CMB] 0.33 0.014 506 0.072 0.83 0.49 0.033 0.017
11 [SN,BAO/2,WL×4,CMB] 0.43 0.012 926 0.041 0.65 0.40 0.126 0.031
12 [SN,BAO/2,WL×2,CMB] 0.45 0.011 1010 0.038 0.59 0.40 0.064 0.020
13 [SN,BAO/2,WL/2,CMB] 0.54 0.008 1585 0.028 0.34 0.38 0.018 0.012
14 [SN,BAO/2,WL-opt,CMB] 0.43 0.010 1251 0.035 0.55 0.35 0.023 0.015

15 [SN-III,BAO,WL-III,CMB] 0.54 0.019 346 0.060 0.77 0.79 0.146 0.048
16 [SN×4,BAO,WL×4,CMB] 0.60 0.020 277 0.060 0.75 0.99 0.126 0.031
17 [SN×4,BAO,WL×2,CMB] 0.60 0.019 298 0.058 0.68 0.97 0.065 0.020
18 [SN×4,BAO,WL/2,CMB] 0.59 0.014 486 0.049 0.45 0.75 0.018 0.012
19 [SN×4,BAO,WL-opt,CMB] 0.47 0.014 568 0.049 0.64 0.56 0.026 0.016
20 [SN×2,BAO,WL×4,CMB] 0.54 0.019 351 0.059 0.75 0.79 0.126 0.031
21 [SN×2,BAO,WL×2,CMB] 0.55 0.018 375 0.057 0.68 0.78 0.065 0.020
22 [SN×2,BAO,WL/2,CMB] 0.56 0.013 567 0.048 0.45 0.65 0.018 0.012
23 [SN×2,BAO,WL-opt,CMB] 0.45 0.014 619 0.049 0.64 0.52 0.026 0.016
24 [SN/2,BAO,WL×4,CMB] 0.28 0.011 998 0.056 0.74 0.33 0.126 0.031
25 [SN/2,BAO,WL×2,CMB] 0.30 0.011 1061 0.053 0.67 0.33 0.065 0.020
26 [SN/2,BAO,WL/2,CMB] 0.35 0.009 1430 0.045 0.44 0.30 0.018 0.012
27 [SN/2,BAO,WL-opt,CMB] 0.30 0.010 1242 0.049 0.64 0.30 0.026 0.015

Note. — Continuation of Table 9.
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8.3. Results: Forecasts for the Fiducial Program and Variations

8.3.1. Constraints in simple w(z) models

We begin with forecasts for which the 36 w(z) bins are projected onto the simpler w0–wa

parameter space. Tables 7–10 give the forecast 1σ uncertainties for the fiducial program and
numerous variations. Each forecast case is labeled by a list of the Fisher matrices that are added
together, and the basic variations we consider are simple rescalings of the total errors for each probe;
for example, [SN/2,BAO×4,WL-opt,CMB] includes the fiducial SN data with the total error halved
(i.e. the Fisher matrix multiplied by 4), 4 times the fiducial BAO errors, the optimistic version of the
WL forecast, and the fiducial Planck CMB Fisher matrix. Note that /2 denotes a more powerful
program and ×2 denotes a less powerful program. The key in Table 7 describes other types of
variations of the fiducial probes. In some cases we omit a probe entirely, e.g. [SN,BAO,WL] sums
the fiducial Fisher matrices of the three main probes but does not include the Planck CMB priors.
Note that even though we assume a specific systematic error component in computing certain Fisher
matrices (in particular, FWL), the cases with rescaled errors simply multiply each Fisher matrix
by a constant factor and thus do not distinguish between statistical and systematic contributions
to the total error.

Constraints on the equation of state are given in Tables 8–10 by the DETF FoM and the error on
wp. The rule of thumb that σwa ≡ (FoM×σwp)

−1 ≈ 10σwp holds at the ∼ 30% level for most of the
forecast variations we consider — i.e., at the best-constrained redshift, the value of w is typically
determined a factor of ten better than the value of its derivative. The forecast tables also list the
uncertainty in the high redshift equation of state w(z > 1) for the alternative parameterization
where w(z) takes independent, constant values at z ≤ 1 and z > 1. Note that all of these w(z)
constraints are marginalized over uncertainties in G9 and ∆γ, so they do not assume that structure
growth follows the GR prediction.

For the fiducial program outlined in §8.1, the DETF FoM is projected to be around 600–800,
depending on whether the WL forecast uses the default systematic error model or the optimistic
model. This is roughly an order of magnitude larger than the FoM forecast for a combination
of Stage III experiments (e.g. see Table 9, rows 2–3) and nearly two orders of magnitude larger
than current, “Stage II” FoM values (∼ 10). The equation of state in the w0–wa parameterization
is best measured by the fiducial set of Stage IV experiments at a redshift zp ≈ 0.5 with a 1σ
precision of σwp ≈ 0.014, and the time variation of w(z) is determined to within σwa ≈ 0.11. The
fiducial program also yields impressive constraints of 5.5 × 10−4 on Ωk and 0.51 km s−1 Mpc−1 on
H0. Forecast 1σ errors for the modified gravity parameters are 0.034 on ∆γ and 0.015 on lnG9.
We caution, however, that the Ωk, H0, and G9 errors (but not the ∆γ error) are sensitive to our
assumption of the w0–wa parameterization (see Figures 36–40 below). CMB constraints make a
critical contribution — the FoM drops from 664 to 368 if they are omitted entirely (Table 8, line
27) — but the difference between Planck precision and anticipated WMAP9 precision is modest
(line 28) except for Ωk, where it is a factor of two.

Figure 33 illustrates the key results of our forecasting investigation, highlighting many aspects
of the interplay among the three observational probes. In the upper left panel, the solid curve
shows how the FoM changes as the total SN errors vary from four times fiducial to half fiducial,
keeping the other probes (BAO, WL, and CMB) fixed at their fiducial levels. Other curves show
the effect of doubling WL or BAO errors or switching to the optimistic WL forecast. The lower
panels show analogous results from varying the BAO or WL errors, while the upper right panel
shows the effect of changing the maximum redshift of the SN program. Over the range of variations
plotted in Figure 33, the FoM varies from just over 100 to almost 1400.

The scaling of the FoM with the forecast errors is not uniform among the three main probes.
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Figure 33 The DETF FoM, (σwpσwa)
−1, for the fiducial program and simple variants. In each

panel, the open circle marks the FoM of the fiducial program. In the upper left panel, the other
points along the solid curve show the effect of scaling the error on the SN measurements by factors
of 2 or 4 while keeping errors for other probes fixed at their fiducial values. Dotted, short-dashed,
and long-dashed curves show the effect of, respectively, doubling the BAO errors, doubling the WL
errors, or adopting the optimistic WL forecasts in which systematic errors are simply twice the
statistical errors. Other panels show analogous results, but instead of scaling the total SN error
they scale the total BAO error (lower left), the total WL error (lower right), or the maximum
redshift of the SN constraints (upper right). In each panel, the dashed gray line marks the forecast
performance of Stage III probes (including Planck) with FoM=131.

190



Starting from the fiducial program, the effect of doubling or halving errors is greater for BAO
than for SN, and greater for SN than for WL. This scaling implies that BAO data provide the
greatest leverage in these forecasts. However, the hierarchy of the three probes is sensitive to the
assumptions about each experiment; in particular, assuming the optimistic version of WL errors
promotes WL from having the least leverage on the FoM to having the most leverage. More
generally, the fact that varying the errors of any individual probe changes the FoM noticeably
demonstrates the complementarity of the methods.

Unlike many previous FoM forecasts, we marginalize over the structure growth parameters
∆γ and lnG9, which tends to increase the uncertainties on w0 and wa. In most cases, the dif-
ference between the marginalized constraints and ones obtained under the assumption of GR
(∆γ = lnG9 = 0) is small, but the difference is greater if WL contributes significantly to ex-
pansion history constraints; for example, for the fiducial program, the change in the FoM due to
assuming GR is only 664 → 771, whereas with the WL-opt forecast the change is 789 → 1119.

The local calibrator sample plays an important role in the SN constraints. Omitting the mea-
surement at z = 0.05 reduces the FoM from 664 → 376 (Table 8, line 9). Even replacing it with a
measurement over a broad low-redshift bin 0 < z < 0.2, still with an error of 0.01 mag, reduces the
FoM from 664 → 533 because it increases degeneracy between the supernova absolute magnitude
scale and dark energy parameters. Reducing the redshift of the calibrator sample below 0.05 makes
little further difference, and at lower redshifts peculiar velocity uncertainties may become too large
to remove with high precision. It is also interesting to ask whether it is better to go after SNe at
high redshifts or to focus on reducing the errors on SN data at low redshifts. Comparing the upper
panels of Figure 33, we find that the benefit from reducing errors is typically greater than that from
obtaining SNe beyond z ∼ 1, at least for the FoM. For example, reducing the error per redshift bin
from 0.01 mag (the fiducial value) to 0.005 mag raises the FoM by a factor of 1.80, but increasing
the maximum redshift from 0.8 to 1.6 raises the FoM by only 1.27 (see Table 8). If BAO errors
are doubled, the FoM drops substantially, but SN errors still have much greater leverage than SN
maximum redshift.

The weak dependence of w(z) constraints on the maximum SN redshift extends to other pa-
rameters as well. Figure 34 compares the effect on 1σ errors of varying the maximum SN redshift
to that of varying the maximum BAO redshift. For the w0–wa model, the errors on all parameters
are relatively insensitive to changes in the maximum SN redshift at z & 1, but the errors on wa

and Ωk decrease by a factor of a few as the maximum BAO redshift increases from z = 1 to z = 3.
Likewise, the high redshift equation of state w(z > 1) can be determined much more precisely as
BAO data extend to higher redshifts, but it depends little on the maximum SN redshift. For the
fiducial Stage IV forecasts, only the Hubble constant error depends significantly on the depth of SN
observations (assuming a w0–wa model). More pessimistic assumptions about the achievable BAO
errors enhance the importance of high redshift SNe for determining wp (dotted line in Figure 34),
but the dependence of other parameters on zmax for the SN data remains weak.

In practice, the impact of the maximum SN redshift on dark energy constraints will depend
crucially on the behavior of systematic errors. We have assumed in our forecasts here that the
error per redshift bin stays constant as the maximum SN redshift increases, but in reality higher
redshift SNe are likely to have larger systematic errors associated with them, which would diminish
the gains from high redshift SNe even more than indicated by the flattening of curves in Figure 33.
However, once the systematic errors at z < 0.8 are saturated, then pushing to higher redshift may
be the only way to continue improving the SN constraints. The gain from the higher redshift
SNe then depends on whether their systematics are uncorrelated with those at lower redshift, so
that they indeed provide new information. While there has been considerable recent progress in
understanding and accounting of systematic errors in SN cosmology, there has been little exploration
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to date of the correlation of systematics across redshift bins. The correlation of systematics may
vary with details of experimental design (e.g., flux calibration), and it also depends on aspects of
the Type Ia supernova population that are, as yet, poorly understood (e.g., whether there is a mix
of single-degenerate and double-degenerate progenitors that changes with redshift). To optimize a
specific experiment, one must assess both the expected behavior of systematics and the observing
time required to discover SNe at different redshifts and to measure them with adequate photometric
and spectroscopic precision. The SDT report for WFIRST (Green et al., 2012) provides a worked
example: with a two-tier strategy (shallow wide fields and narrow deep fields), the CMB+SN FoM
increases steadily as the maximum redshift is increased from 0.8 to 1.7 at (roughly) fixed observing
time, assuming systematics that are uncorrelated among redshift bins. However, reducing the
systematics by a factor of two (from ≈ 0.02 mag per ∆z = 0.1 bin to ≈ 0.01 mag) has a larger
impact than raising zmax from 0.8 to 1.7. The contrast is less stark than in our Figure 33 because
the reduction in total error is less than a factor of two; with the smaller systematic errors, the
WFIRST DRM1 SN survey would be mainly statistics limited.

The behavior in Figure 33 can be approximately understood in terms of the aggregate mea-
surement precision, a notion we discuss at greater length in §8.6 below. The local (z = 0.05) SN
bin serves mainly to calibrate the SN absolute magnitude, so in our fiducial program there are
three ∆z = 0.2 redshift bins with cosmological information. Increasing zmax to 1.6 changes the
number of non-local bins from three to seven, improving aggregate precision by ∼

√
7/3, and the

impact on the FoM is roughly half the impact of reducing errors by a factor of two while retaining
zmax = 0.8. If we increase zmax to 1.6 but simultaneously inflate the errors of the non-local bins
by
√

7/3, thus keeping the aggregate precision of the z > 0.1 measurements fixed, then the FoM
rises to 749, a 13% improvement over the fiducial case, vs. a 26% improvement if we increase zmax

to 1.6 at constant per-bin error. In this sense, roughly half of the improvement when extending
the redshift limit comes from tightening the aggregate statistical precision by adding new bins, and
half the improvement comes from the greater leverage afforded by a wider redshift range. A similar
calculation for zmax = 1.2 (where the corresponding FoM improvements over the fiducial case are
9% and 17%) leads to the same conclusion. Ultimately, however, the trade between extending the
redshift range of a SN survey vs. improving the observations at lower redshift depends on aspects
of observational and evolutionary systematics that are still poorly understood. This remains an
important issue for near-term investigation with the much more comprehensive data sets that are
now becoming available.

8.3.2. Constraints on structure growth parameters

While the DETF FoM is a useful metric for studying the impact of variations in each of the dark
energy probes, it does not tell the whole story. Deviations from the standard model might show up
in other sectors of the parameter space; for example, a detection of non-GR values for the growth
parameters ∆γ and G9 could point to a modified gravity explanation for cosmic acceleration that
would not be evident from measurements of w(z) alone. Thus, even the less optimistic version of the
WL experiment, which adds relatively little to the w(z) constraints obtained by the combination
of fiducial SN, BAO, and CMB forecasts, is a critical component of a program to study cosmic
acceleration because of its unique role in determining the growth parameters ∆γ and G9.

The impact of various experiments on the structure growth parameters is more evident if we
extend the DETF FoM to include ∆γ in addition to w0 and wa. As shown in Figure 35, the scaling
of this new FoM with respect to WL errors (and, to a lesser extent, BAO errors) is much steeper
than it is for the usual FoM (Figure 33). We do not show the scaling with SN errors or zmax, since
those assumptions do not affect the expected uncertainties for ∆γ and G9 (see Table 8, lines 3–12).
One could also consider versions of the FoM that include uncertainties in G9 and that account for
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Figure 34 Variation of 1σ parameter errors with the maximum redshift for BAO at fixed fsky (left)
or for SN with fixed error per ∆z = 0.2 redshift bin (right). For the solid curves, fiducial Stage IV
forecasts are assumed for all other probes. The dotted curve in the right panel shows the scaling
of σ(wp) with SN zmax assuming 4 times larger BAO errors (BAO×4). The plotted errors assume
a w0–wa parameterization (except for w(z > 1)).

the correlations between the structure growth parameters and the dark energy equation of state.
The complementarity between the SN, BAO, and WL techniques is further demonstrated in

Figures 36–38, which show the forecast 68% confidence level contours in the w0.5–wa and ∆γ–lnG9

planes after marginalizing over other parameters. Instead of w0 we plot w0.5, the equation-of-state
parameter at z = 0.5, because it is much less correlated with wa for most of the forecast scenarios.
In every panel, the blue ellipse shows the error contour of the fiducial forecast while other ellipses
show the effect of varying the errors of the indicated method. The opposite orientation of ellipses
in Figures 36 and 37 demonstrates the complementary sensitivity of SN and BAO to w(z): the SN
data are mainly sensitive to the equation of state at low redshift, whereas BAO data measure the
equation of state at higher redshift. However, the sensitivity to the beyond-GR growth parameters
comes entirely from WL data, which provide the only direct measurements of growth, and the
strength of the ∆γ and G9 constraints depends directly on the WL errors, as shown in Figure 38.
Conversely, these constraints are very weakly sensitive to the SN or BAO errors (Figs. 36 and 37),
showing that the uncertainties are dominated by the growth measurements themselves rather than
residual uncertainty in the expansion history. Inspection of Table 8 shows that the ∆γ constraints
are essentially linear in the WL errors, while the lnG9 constraints scale more slowly.

Although the w0–wa parameterization is flexible enough to describe a wide variety of expansion
histories, it is too simple to account for all possibilities; in particular, w(z) is restricted to functions
that are smooth and monotonic over the entire history of the universe. Because many cosmolog-
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Figure 35 FoM scaling with BAO errors (left) and WL errors (right) including changes in the error
on ∆γ, normalized to the forecast uncertainty for the fiducial program, σfid

∆γ = 0.034. The fiducial

Stage IV forecast is marked by an open circle. For the Stage III forecast, FoM×(σfid
∆γ/σ∆γ) = 30.

Figure 36 Forecast constraints (68% confidence levels) for dark energy and growth parameters,
varying errors on SN data: fiducial×4 (red), ×2 (green), ×1 (blue), and /2 (black). In all cases, the
fiducial forecasts are used for the other probes (BAO, WL, CMB). Contours in the left panel use
the value of the equation of state at z = 0.5 (close to the typical pivot redshift), w0.5 = w0 +wa/3.
Dashed contours in the right panel show the errors on growth parameters for the binned w(z)
parameterization, with the default priors corresponding to deviations of . 10 in the average value
of w. Solid contours assume a w0–wa parameterization. In both cases, the G9 and ∆γ constraints
are essentially independent of the SN errors.

ical parameters are partially degenerate with the dark energy evolution, assumptions about the
functional form of w(z) can strongly affect the precision of constraints on other parameters. As
an example of this model dependence, the right panels of Figures 36–38 show how the constraints
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Figure 37 Same as Fig. 36, but varying BAO errors from fiducial×4 (red) to fiducial/2 (black).

Figure 38 Same as Fig. 36, but varying WL errors from fiducial×4 (red) to fiducial/2 (black). Lower
panels assume the optimistic WL forecasts.

on the growth parameters weaken (dashed curves) if one allows the 36 binned wi values to vary
independently instead of assuming that they conform to the w0–wa model. While ∆γ forecasts are
only mildly affected by the choice of dark energy modeling, constraints on the z = 9 normalization
parameter G9 depend strongly on the form of w(z). This dependence follows from the absence of
data probing redshifts 3 . z < 9 in the fiducial Stage IV program. In the w0–wa model, dark
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energy evolution is well determined even at high redshifts, since the two parameters of the model
can be measured from data at z < 3, and thus the growth function at z = 9 is closely tied to the
low redshift growth of structure measured by WL. However, allowing w(z) to vary independently at
high redshift where it is unconstrained by data decouples the low and high redshift growth histories,
and therefore G9 can no longer be determined precisely. In fact, the constraints on G9 in that case
depend greatly on the chosen prior on wi (taken to be the default prior of σwi = 10/

√
∆a in Fig-

ures 36–38). One important consequence of this dependence on the w(z) model is that an apparent
breakdown of GR via G9 6= 1 might instead be a sign that the chosen dark energy parameterization
is too restrictive.

8.3.3. Dependence on w(z) model and binning of data

Other parameters are also affected to varying degrees by the choice of w(z) model and the
priors on the model parameters. Figure 39 shows how errors on Ωk and h are affected by relaxing
assumptions about dark energy evolution. For the fiducial program and minor variants, Ωk is very
weakly correlated with w0 and wa, resulting in similar errors on curvature for the w0–wa and ΛCDM
models. However, generalizing the dark energy parameterization to include independent variations
in 36 redshift bins can degrade the precision of Ωk measurements by an order of magnitude or
more. In that case, the error on Ωk is very sensitive to the chosen prior on the value of wi in each
bin, and it improves little as the BAO errors decrease. This dependence on priors reflects the fact
that curvature is most correlated with the highest redshift wi values, which are poorly constrained
by the fiducial combination of data. Relative to curvature, constraints on the Hubble constant are
affected more by the choice of dark energy parameterization but less by priors on wi in the binned
w(z) model.

Figure 39 Dependence of σΩk
(left) and σh (right) on BAO errors for various dark energy param-

eterizations and priors. For the wi curves, the equation of state varies independently in 36 bins
with Gaussian priors of width σwi = ∆w/

√
∆a. The fiducial versions of the Stage IV SN, WL, and

CMB data are included in all cases.

Figure 40 shows the dependence of σh on the precision of SN data for various dark energy
parameterizations (σΩk

is nearly independent of the SN errors for this range of variations around
the fiducial forecast; see Table 8). If we assume a w0–wa model for dark energy, Hubble constant
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Figure 40 Dependence of σh on SN errors for various dark energy parameterizations and priors,
including the fiducial BAO, WL, and CMB forecasts.

errors strongly depend on the precision of SN data. However, Fig. 40 shows that either decreasing or
increasing the number of dark energy parameters can almost completely eliminate the dependence
of σh on the SN data. In the case of the simpler ΛCDM model, the combination of the fiducial
BAO, WL, and CMB forecasts is sufficient to precisely determine all of the model parameters, and
adding information from SN data has a negligible effect on the parameter errors. Adding w0 and wa

to the model introduces degeneracies between these dark energy parameters and other parameters,
including h. Since constraints from SN data help to break these degeneracies, reducing SN errors
can significantly improve measurement of the Hubble constant in the w0–wa model.

As one continues to add more dark energy parameters to the model, the degeneracies between
these parameters and h increase, but another effect arises that diminishes the impact of SN data
on σh. Measurement of the Hubble constant requires relating observed quantities at z > 0 (e.g.
SN distances) to the expansion rate at z = 0. In the case of ΛCDM or the w0–wa model, the
assumed dark energy evolution is simple enough that this relation between z = 0 and low-redshift
observations is largely set by the model. However, when we specify w(z) by a large number of
independent bins in redshift, this relation must instead be determined by the data. Since SN data
are only sensitive to relative changes in distances, the lowest-redshift wi value (centered at z ≈ 0.01)
is strongly degenerate with h (Mortonson et al., 2009a). This degeneracy is partially broken by the
local SN sample at z = 0.05: removing it from the forecasts increases the error on h from 0.44 to
0.48 in the binned w(z) parameterization, and from 0.0051 to 0.0085 in the w0–wa model. SNe at
even lower redshifts are more sensitive to the Hubble constant, but they also have larger systematic
uncertainties due to peculiar velocities.

For BAO data, the choice of redshift bin width affects forecasts for models with general equation-
of-state variations. Measurements of H(z) and D(z) in narrower bins are better able to constrain
rapid changes in w(z). They can also reduce uncertainty in the Hubble constant by about a factor
of two, and in other parameters such as ΩK , lnG9, and ∆γ by a smaller amount, relative to
measurements in wide bins. However, in practice one cannot reduce the bin size indefinitely, since
each bin must contain enough objects to be able to robustly identify and locate the BAO peak; for
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example, requiring that the bin be at least wide enough to contain pairs of objects separated by
∼ 100h−1 Mpc along the line of sight sets a lower limit of ∆z/(1 + z) & 0.03. We do not attempt
to optimize the choice of bins for the simplified forecasts in this section, but we note that binning
schemes in analyses of BAO data aimed at constraining general w(z) variations should be chosen
with care to avoid losing information about dark energy evolution and other parameters. Similar
concerns are likely to apply for WL data as well.

8.3.4. Constraints on w(z) in the general model

So far, in the context of general dark energy evolution we have only considered the forecast errors
on parameters such as h and ΩK that are partially degenerate with w(z). But how accurately can
w(z) itself be measured when we do not restrict it to specific functional forms? Since the errors
on wi values in different bins are typically strongly correlated with each other, it is not very useful
to simply give the expected wi errors, marginalized over all other parameters. Instead, we can
consider combinations of the wi that are independent of one another and ask how well each of these
combinations can be measured by the fiducial program of observations.

As mentioned in §2.2, many methods for combining w(z) bins into independent (or nearly
independent) components have been proposed. Here we adopt the principal component (PC) de-
composition of the dark energy equation of state. Starting from the Fisher matrix for the combined
acceleration probes, the PCs are computed by first marginalizing the Fisher matrix over everything
except for the wi parameters and then diagonalizing the remaining matrix, as described above in
§8.2. The shapes of the three best-measured PCs for the fiducial program (with both fiducial and
optimistic WL assumptions) and some simple variations are plotted in Figure 41. In general, the
structure of the PCs is similar in all cases; for example, the combination of wi that is most tightly
constrained is typically a single, broad peak at z < 1, while the next best-determined combination
is the difference between w(z ∼ 0.1) and w(z ∼ 1). However, variations in the forecast assumptions
slightly alter the shape of each PC and, in particular, shift the redshifts at which features in the
PC shapes appear. Changes in the location of the peak in the first PC mirror the dependence of
the pivot redshift zp for the w0–wa model in Tables 8–10, with improved SN data decreasing the
peak redshift and improved BAO data increasing it. The direction and magnitude of these shifts
reflects the redshift range that a particular probe is most sensitive to and the degree to which that
probe contributes to the total constraints on w(z). Note that so far we have only considered the
impact of forecast assumptions on the functional form of PCs, and not on the precision with which
each PC can be measured. In general, altering the forecast model changes both the PC shapes and
PC errors, which complicates the comparison among expected PC constraints from different sets
of forecasts.

Comparing the top and bottom rows of panels in Figure 41, we see again the contrast between
the fiducial WL forecast and the “WL-opt” forecast with reduced systematic errors. In the former
case, decreasing WL errors by a factor of two has a negligible effect on the PC shapes relative to
similar reductions in SN or BAO errors. However, when we take WL-opt as the baseline forecast
the PCs depend more on the precision of WL measurements and less on that of the SN or BAO
data.

The full set of PCs for the fiducial program is shown in Figure 42, and the forecast errors on the
PC amplitudes are listed in Table 11. The best-measured, lowest-variance PCs vary smoothly with
redshift, corresponding to averaging w(z) over fairly broad ranges in z. There is a clear trend of
increasingly high frequency oscillations for higher PCs. Visual inspection of Figure 42 shows that
the sum of the number of peaks and the number of troughs in the PC is equal to the index of the
PC, a pattern that continues at least up to PC 13. Higher PCs often change sign between adjacent z
bins. High frequency oscillations in w(z) are poorly measured by any combination of cosmological
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Table 11. Errors on PC Amplitudes for the Fiducial Program

i σfid
i σopt

i i σfid
i σopt

i i σfid
i σopt

i i σfid
i σopt

i

1 0.011 0.009 10 0.135 0.102 19 0.442 0.378 28 1.652 1.810
2 0.017 0.014 11 0.143 0.116 20 0.779 0.413 29 2.285 2.217
3 0.026 0.019 12 0.168 0.137 21 0.824 0.436 30 3.243 2.973
4 0.038 0.026 13 0.180 0.150 22 0.939 0.531 31 6.540 6.785
5 0.052 0.036 14 0.185 0.160 23 0.978 0.609 32 12.43 19.20
6 0.067 0.047 15 0.216 0.179 24 1.212 0.725 33 16.59 24.78
7 0.083 0.062 16 0.252 0.240 25 1.307 0.892 34 25.17 46.41
8 0.099 0.074 17 0.310 0.244 26 1.457 1.036 35 59.32 94.09
9 0.115 0.089 18 0.323 0.308 27 1.587 1.561 36 74.12 118.0

Note. — σfid
i refers to errors for the fiducial Stage IV pro-

gram (CMB+SN+BAO+WL) and σopt
i to the optimistic WL case

(CMB+SN+BAO+WL-opt).

Table 12. Comparison of Figures of Merit for Selected Forecasts

Forecast case log10

∏36
i=1

(
1 + σ−2

i

)1/2
(
∑36

i=1 σ
−2
i )1/2 [σ(wp)σ(wa)]

−1

[SN,BAO,WL,CMB] 20.2 124 664
[SN/2,BAO,WL,CMB] 20.8 176 1197
[SN,BAO/2,WL,CMB] 26.0 186 1222
[SN,BAO,WL/2,CMB] 21.6 140 816
[SN,BAO,WL-opt,CMB] 23.0 157 789
[SN/2,BAO,WL-opt,CMB] 23.4 199 1242
[SN,BAO/2,WL-opt,CMB] 27.9 205 1251
[SN,BAO,WL-opt/2,CMB] 26.0 240 1397
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Figure 41 The three best-measured PCs for the fiducial program (solid curves) and from programs
with SN, BAO, or WL errors halved (as labeled). The top row uses the fiducial version of the WL
forecast, while the bottom row uses the optimistic WL forecast with reduced systematic errors.
Although not indicated in the plot legends, all forecasts here include the default Planck CMB
Fisher matrix. For all PCs shown here, ei(z) is nearly zero for 3 < z < 9.

data because the evolution of the dark energy density, which determines H(z), depends on an
integral of w(z) (eq. 22), and D(z) and G(z) depend (approximately) on integrals of H(z). Rapid
oscillations in w(z) tend to cancel out in these integrals. Many of the most poorly-measured PCs
depend on the chosen BAO binning scheme, since narrower BAO bins can better sample rapid
changes in w(z). As an example, we show how the PCs of the fiducial program are affected by
doubling the number of BAO bins in Figure 42.

The maximum redshift probed by SN, BAO, and WL data, primarily set by the highest-redshift
BAO constraint at z = 3 in our forecasts, imprints a clear signature in the set of PCs in Figure 42.
At high redshift, specifically z > 3 (a < 0.25), the first 29 PCs have almost no weight. Conversely,
PCs 30 and 32-36 only vary significantly at high redshift and are nearly flat for z < 3; additionally,
the errors on these PCs are many times larger than those of the first 29 PCs.77 Thus, w(z) variations
above and below z = 3 are almost completely decoupled from each other in the fiducial forecasts,
and the high-redshift variations are effectively unconstrained. CMB data limit the equation of state
at z > 3 to some extent, for example, through comparison of the measured distance to the last
scattering surface with the distance to z = 3 measured in BAO data. However, such constraints
are very weak when split among several independent w(z) bins at high redshift. Furthermore,

77Note that our wi parameterization has exactly (0.25 − 0.1)/0.025 = 6 bins at 3 < z < 9 and 30 bins at z < 3.
PC 31 parameterizes variations in the lowest redshift bin w1, which is poorly constrained as discussed in §8.3.3.
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Figure 42 PCs for the fiducial program (solid blue curves). Dotted red curves double the number
of bins used for BAO data from the default choice of 20 to 40.
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since the dark energy density typically falls rapidly with increasing redshift, variations in w(z) at
high redshift are intrinsically less able to affect observable quantities than low-redshift variations,
resulting in reduced sensitivity to the high-redshift equation of state even in the presence of strong
constraints at earlier epochs. Likewise, variations in w(z) at even higher redshifts of z > 9, where
we assume that w is fixed to −1, are unlikely to significantly affect constraints on w(z) at low
redshift.78

Figure 43 shows how the inverse variance σ−2
i of the 10 best-measured w(z) PCs increases

relative to the fiducial program if we halve the errors on the SN, BAO, or WL data. Following
Albrecht et al. (2009), when computing these ratios σ−2

(2)i/σ
−2
(1)i (where 1 denotes the fiducial program

and 2 the improved program), we first limit PC variances to unity by making the substitution
σ−2

i → 1+σ−2
i , so that uninteresting improvements in the most poorly-measured PCs do not count

in favor of a particular forecast. We caution that, as noted earlier, the PC shapes themselves are
changing as we change the errors assumed in the forecast, so σ2

(2)i and σ2
(1)i are not variances of

identical w(z) components. However, as shown in Figure 41, these changes are not drastic if we
consider factor-of-two variations about our fiducial program.

The differences in σ−2
i ratios among improvements in SN, BAO, and WL errors is striking.

Relative to the fiducial program, reduced SN errors mainly contribute to knowledge of the first few
PCs. For the fiducial WL systematics, reducing WL errors helps to better measure several of the
highest-variance PCs in the plot (i > 10), but it makes little difference to the well measured PCs.
Reducing BAO errors tightens constraints on nearly all of the PCs, with the greatest impact in
the intermediate range between the SN and WL contributions. Assuming the optimistic WL errors
gives much greater weight to WL improvements, which now produce the largest improvement in
the first five PCs (right panel of Figure 43). The trends for reducing SN or BAO errors are similar
to before, but the magnitude of their effect is smaller because they are competing with tighter WL
constraints. The behavior of the σ−2

i ratios of the best-measured PCs mirrors that shown for the
DETF FoM in Figure 33. With the fiducial WL systematics, BAO measurements have the greatest
leverage, followed by SN, and the impact of reducing WL errors is small. With the optimistic WL
systematics, on the other hand, reducing WL errors makes the largest difference, followed by BAO,
followed by SN.

Dotted curves in the left hand panel show the σ−2
i ratios when we fix the PCs to be those of the

fiducial program. In this case, the PC errors for the improved programs are no longer uncorrelated,
but the correlation coefficient of errors among any pair of PCs is less than 0.5 in nearly all cases.
Results are similar to before except for the first component (first two components for BAO). These,
of course, show less improvement when they are fixed to be those of the fiducial program rather
than shifting to be the components best determined by the improved data. Figure 44 shows the
expected improvements in σ−2

i between our fiducial Stage III and Stage IV programs. Consistent
with the DETF FoM plots in Figure 33, the expected improvements are dramatic, and considerably
more so with the optimistic WL assumptions.

The DETF FoM compresses constraints in the w0−wa model to a single number. Similar figures
of merit for PC constraints have been defined in the literature, in various forms, each of which may
be useful for different purposes. These include the determinant of Fw, which characterizes the
total volume of parameter space allowed by a particular combination of experiments in analogy to

78This partly depends on the choice of fiducial model at which the Fisher matrix used to construct the PCs is
computed. Taking a fiducial model with a larger dark energy density at high redshift than in ΛCDM makes the
low-redshift PC shapes more sensitive to assumptions about the high-redshift equation of state (e.g., de Putter and
Linder 2008).
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Figure 43 Ratios of inverse variances of PC amplitudes for variants of the fiducial program to the
fiducial inverse variances (points and solid curves). Each variant divides SN, BAO, or WL errors
by a factor of 2 while keeping other probes fixed at the fiducial errors. The left panel assumes the
default WL forecast and the right panel assumes the optimistic version. Dotted curves in the left
panel use σ̂i instead of σi, which describes how well the amplitudes of the fiducial set of PCs are
expected to be measured by some variant of the fiducial forecast.

Figure 44 Ratios of inverse variances of PC amplitudes of Stage IV to those of Stage III, assuming
either the fiducial or optimistic versions of the Stage IV WL forecast.

the DETF FoM for the w0–wa parameter space, and the sum of the inverse variances of the PCs,
which is typically less sensitive than the determinant to changes in the errors of the most weakly
constrained PCs (Huterer and Turner, 2001; Bassett, 2005; Albrecht et al., 2006; Albrecht and
Bernstein, 2007; Wang, 2008; Barnard et al., 2008; Albrecht et al., 2009; Crittenden et al., 2009;
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Amara and Kitching, 2011; Mortonson et al., 2010; Shapiro et al., 2010; Trotta et al., 2011; March
et al., 2011).

Examples of these FoMs for the fiducial program and the variants considered in Figure 43 are
listed in Table 12. Here we allow the PC basis to change with the forecast assumptions, so Fw is
diagonal and detFw =

∏36
i=1 σ

−2
i . As with the ratios of PC variances in Figure 43, we restrict the

variances to be less than unity by replacing σ−2
i → 1 + σ−2

i . The other FoM, computed as the sum
of inverse variances, requires no such prior because PCs with large variances contribute negligibly
to the sum. Note that the choice of PC FoM definition can affect decisions about whether one
experiment or another is optimal; for example, halving WL errors (assuming fiducial systematics)
relative to the fiducial model increases the detFw FoM more than halving SN errors, but the
opposite is true for the sum of inverse variances, which favors improvements in the best-measured
PCs and more closely tracks the DETF FoM. In this case, at least, we regard the latter measure
as a better diagnostic, since the improvements for PCs that are poorly measured in any case seem
unlikely to reveal departures from a cosmological constant or other simple dark energy models.
Another virtue of

∑
σ−2

i (the square of the quantity tabulated in Table 12) is its sensible scaling
with measurement precision. If the error of all the individual cosmological measurements (e.g., DL

values and WL power spectrum amplitude) is dropped by a factor of two, as expected if experiments
are statistically limited and data volume is increased by a factor of four, then each σi will drop by
a factor of two and

∑
σ−2

i will go up by a factor of four, scaling with data volume just like the
DETF FoM. For detFw, on the other hand, the FoM will go up by ≈ 2N , where N is the number
of PCs that have σi significantly below one, so there is no obvious scaling with data volume.

The disagreement between different PC FoMs in Table 12 highlights one of the difficulties with
using PCs or related methods for evaluating the potential impact of future experiments. Forecasts
for PCs provide a wealth of information in both the redshift-dependent shapes of the PCs and
the expected errors on their amplitudes, but it is often difficult to interpret what this information
implies about cosmic acceleration. Given a set of forecasts for PCs, one can easily compute the
expected constraints on any specific model for w(z) by expressing the model in terms of the PC
amplitudes (eq. 174); this is a potentially useful application, but it makes very limited use of the
available information.

More generally, we can use the forecast PC shapes and errors to try to visualize what types of
w(z) variations are allowed by a certain combination of experiments. One approach is to generate
several random w(z) curves that would be consistent with the forecast measurements. This method
is easily implemented with the PCs because the errors on different PC amplitudes are uncorrelated.
One can generate a random realization of w(z) by simply drawing an amplitude αi from a Gaussian
distribution with mean zero and width σi, then using equation (175) to compute w(z) corresponding
to the randomly-drawn αi values.

In the upper left panel of Figure 45, we use this method to plot several w(z) models using the
fiducial program PC shapes and errors from Figure 42 and Table 11, respectively. We cut off the
plot at z = 3, since w(z) variations at higher redshifts are essentially unconstrained by the fiducial
experiments. Even at lower redshifts, though, the allowed w(z) variations are enormous, with wi

values often changing by 10 or more from one bin to the next. (Recall that our prior corresponds
to a Gaussian of width σwi ≈ 63 per bin, eq. 172.) Compared to the ∼ 1.5% constraints on wp in
the w0–wa model, this forecast looks rather depressing. The consequence of allowing the equation
of state to be a free function of redshift is that it is nearly impossible to say with any certainty
what the value of w is at any specific redshift, because rapid oscillations in w(z) have tiny effects
on observables. The allowed range of variations would be even larger if we considered a model with
finer ∆a bins.

The large variations of w(z) in Figure 45 are driven by the poorly constrained PCs, which have
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Figure 45 Reconstruction of w(z) from PC constraints. Left: 20 randomly-generated models that
would be indistinguishable from a cosmological constant using the fiducial program of experiments.
Three of the 20 models are highlighted (in red, green, and blue) to more clearly show examples
of the evolution with redshift. The lower panel shows the average of 1 + w(z) in bins of width
∆z = 0.4 for the same models as in the upper panel. Points along the w(z) = −1 line in the upper
panel mark the centers of the bins in which w(z) is allowed to vary in our forecasts. Right: w(z)
reconstruction including a prior of the form in equation (178). The upper panel shows a random
selection of models consistent with this prior, but without including any data, and the lower panel
shows examples of models that are allowed by both the prior and the data assumed in the fiducial
program.

many oscillations in w(z), peak-to-peak amplitudes |∆w| ∼ 4, and normalization uncertainties
σi ∼ 0.1 − 2.3 (see Figure 42 and Table 11). The lower left panel of Figure 45 shows these w(z)
realizations averaged over bins of width ∆z = 0.4, which vastly reduces the range of variations,
especially at z ∼ 1. However, the dispersion of w(z) in the bins centered at z = 0.6 and z = 1 is
still about 0.3. Adding a precise, independent measurement of H0 reduces the uncertainty in w(z)
in the lowest-redshift bin, but it has little effect at higher redshifts (see §8.5.1).

Instead of averaging w(z) over wide redshift bins, one can impose a theoretical prejudice for
models with smoothly-varying equations of state by adding an off-diagonal prior to the Fisher
matrix, imposing correlations among the wi that are closely separated in redshift. Here we follow
Crittenden et al. (2009), but we modify their method to use scale factor rather than redshift as the
independent variable (see also Crittenden et al. 2012), adopting a correlation function

ξ(|ai − aj|) =
(∆w)2

π∆ac

[
1 +

(
ai − aj

∆ac

)2
]−1

, (177)

where ∆w sets the amplitude of allowed w(z) variations and ∆ac is the correlation length. Following
the calculation in Crittenden et al. (2009), the covariance matrix for the wi bins, which is the inverse
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of the prior Fisher matrix for those parameters, is

[F prior
ij ]−1

(i,j≤36) =
(∆w)2∆ac

π∆a2


x+ tan−1 x+ + x− tan−1 x− − 2x̄ tan−1 x̄+ ln


 1 + x̄2

√
(1 + x2

+)(1 + x2
−)




 ,

(178)
where x̄ = |i − j|∆a/∆ac, x+ = (|i − j| + 1)∆a/∆ac, and x− = (|i − j| − 1)∆a/∆ac. In the
limit ∆ac → 0, this reduces to our default diagonal prior on the wi parameters with width σwi =
∆w/

√
∆a.

The upper right panel of Figure 45 shows models randomly drawn from this prior with ∆w/
√

∆a =
1 and ∆ac = 0.2. The influence of the correlation function is clearly evident in the smoother, lower-
amplitude variations of w(z) in these models, and yet the range of possible models is still much
greater than for simpler parameterizations like w0–wa. Combining this prior with the assumed
data set of the fiducial Stage IV program, we obtain the w(z) realizations plotted in the lower right
panel of Figure 45. Even more so than averaging w(z) in wide redshift bins, including this type of
prior significantly narrows the constraints on w(z). While the particular smoothness prior of (177)
is certainly not unique, this approach of combining PC constraints dictated by the data sets with
theoretically motivated priors on the behavior of w(z) — perhaps based on an underlying model
for the potential V (φ) — may be the most valuable application of the PC approach.

Our constraints on general w(z) models account for the possibility of modified gravity by
marginalizing over the structure growth parameters ∆γ and lnG9. If we instead restrict our anal-
ysis to GR by fixing ∆γ = lnG9 = 0, the main effect is that the dark energy equation of state at
high redshifts, w(3 < z < 9), is better constrained because the CMB measurement of the power
spectrum amplitude at z ∼ 1000 can be more directly related to WL measurements of growth at
lower redshifts. Because of the additional CMB constraint on the distance to the last scattering
surface, w(3 < z < 9) is strongly correlated with Ωk, and therefore assuming GR considerably im-
proves the determination of spatial curvature in the binned w(z) parameterization. For our fiducial
forecasts, assuming ∆γ = lnG9 = 0 lowers σΩk

by a factor of ∼ 3 (0.0075 → 0.0023); note that
this is still several times larger than the error in Ωk for the simpler ΛCDM or w0–wa forecasts.

8.4. Forecasts for Clusters

We have concentrated so far on the constraints expected for combinations of CMB, SN, BAO,
and WL data, as all of these methods are well studied and are likely to play a central role in Stage III
and Stage IV studies of cosmic acceleration. For other methods we adopt a simplified approach, first
asking how well our fiducial CMB+SN+BAO+WL programs should predict the basic observables
of these methods, then showing how different levels of precision on these observables would affect
constraints on equation-of-state and growth parameters. We describe our methodology more fully
in the next section (§8.5), but we begin with a discussion of clusters, where our analysis of stacked
weak lensing calibration (§6.3.3) gives a clear quantitative target for measurement precision.

Figure 46a shows the predicted fractional error (1σ) in σ8(z) for the fiducial Stage III and Stage
IV experimental programs discussed in §8.3, and for the Stage IV program with optimistic WL
errors. All curves assume a w0 − wa dark energy parameterization, and for each case the lower,
thinner curve shows the forecast assuming GR to be correct while the upper, bolder curve allows GR
deviations parameterized by G9 and ∆γ. Roughly speaking, we would expect a measurement with
precision better than that shown by the upper curve to significantly improve tests for GR deviations
and a measurement with precision better than that shown by the lower curve to significantly improve
w0 − wa constraints when assuming GR to be correct. For Stage IV programs we predict σ8(z)
constraints at the 0.75 − 1% level over the full redshift range 0 < z < 3, with little difference
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between the fiducial and optimistic WL assumptions. In fact, the “optimistic” WL assumptions
lead to slightly larger errors in σ8(z) than the fiducial assumptions because for this quantity doubling
the statistical errors has a larger impact than adding 2× 10−3 shear calibration and photo-z errors
(see §8.1). For Stage III, the predicted σ8(z) errors are about 1.2% assuming GR, but they are much
larger if we allow GR deviations, especially at z > 0.8. Even for Stage IV, the good constraints at
high z rely on the assumption of a w0 −wa equation of state, which allows precise low redshift WL
measurements to be extrapolated to high redshift. The direct measurements of z > 1 clustering
amplitude are considerably weaker.

Figure 46b plots σ11,abs(z) errors, which are tighter than the σ8(z) errors by ∼ 30−50% because
uncertainty in h contributes noticeably to the latter. In §6.6 we estimated the errors on σ11,abs(z)
achievable with a 104 deg2 cluster survey with weak lensing mass calibration, assuming Stage III
(10 arcmin−2) or Stage IV (30 arcmin−2) effective source densities and survey depths. For a mass
threshold of 2 × 1014M⊙ the σ11,abs(z) errors at z ≈ 0.5 are ∼ 1% and ∼ 0.5%, respectively, below
the corresponding Stage III and Stage IV errors shown in Figure 46b. Furthermore, these cluster
errors are per ∆z = 0.1 redshift bin, so constraints on the clustering amplitude in a smoothly
evolving model can be substantially better if the cluster errors are not correlated across redshifts.
(The statistical errors should be uncorrelated, but some forms of weak lensing systematics could
affect many redshift bins in the same direction.)

The cluster errors shown earlier in Figure 30 were derived assuming perfect knowledge of Ωm,
with σ11,abs(z) as the single parameter controlling the cluster abundance at each redshift. In prac-
tice, cluster abundances constrain a parameter combination that is approximately σ11,abs(z)Ω

0.4
m , as

discussed in §6. The fractional errors in Ωm from our fiducial CMB+SN+BAO+WL programs are
2.7% (Stage III), 1.4% (Stage IV), and 1.2% (Stage IV with WL-opt), making Ω0.4

m uncertainties
comparable to the fractional errors in σ11,abs(z). Figure 46c shows the predicted fractional errors
in σ11,abs(z)Ω

0.4
m , which in some ranges are significantly larger than those for σ11,abs(z). Finally,

Figure 46d shows our forecast errors on σ11,abs(z)Ω
0.4
m from a 104 deg2 cluster survey in which errors

are limited by weak lensing mass calibration statistics. Here we have simply set the fractional errors
from clusters on σ11,abs(z)Ω

0.4
m equal to the ones we derived earlier on σ11,abs(z), which should be

a good but not perfect approximation. Comparing Figures 46c and 46d shows that cluster errors
are competitive with those expected from the CMB+SN+BAO+WL combination for cluster mass
thresholds of ∼ 4 − 8 × 1014M⊙ at Stage III or 1 − 4 × 1014M⊙ at Stage IV.

Figure 47 shows the potential improvement in equation-of-state and growth parameter determi-
nations from including the cluster constraints on σ11,abs(z)Ω

0.4
m . We assume that these constraints

have independent errors in each ∆z = 0.1 bin. Upper panels show the effect of adding Stage III
cluster constraints (dotted curves in Fig. 46d) to the Stage III CMB+SN+BAO+WL Fisher ma-
trix. Even adding clusters with an 8 × 1014M⊙ mass threshold substantially improves the errors
on G9 and ∆γ, and reducing the mass threshold to 1 − 2 × 1014M⊙ produces substantial further
gains. Somewhat surprisingly, the cluster constraints also lead to significantly smaller errors on
the equation-of-state parameter w0.5 and slightly smaller errors on wa. This improvement largely
reflects the additional information about Ωm, which allows the distance and H(z) constraints from
other probes to translate more directly into w(z) constraints. We have checked that fixing Ωm

exactly would produce a still greater improvement in (w0.5, wa) than the gain we have forecast from
clusters, while making little difference to the (G9,∆γ) errors.

For Stage IV (middle and bottom panels), where we now assume the Stage IV cluster mass
constraints, an 8×1014M⊙ cluster sample produces little improvement over CMB+SN+BAO+WL
in G9 and ∆γ, but it still leads to noticeable improvement in w0.5. A 1 − 2 × 1014M⊙ cluster
sample produces substantial gains in both the equation-of-state and growth parameters. As in the
Stage III case, much of the improvement in the equation of state comes from the Ωm information

207



Figure 46 (a) Predicted fractional errors (1σ) on σ8(z) from our fiducial Stage III (dotted) and
Stage IV (solid) CMB+SN+BAO+WL programs, and from the Stage IV program with optimistic
WL systematic assumptions (dashed). All curves assume a w0 −wa dark energy parameterization.
For each case, the lower, thin curve shows the forecast assuming GR is correct and the upper, thick
curve shows the forecast allowing GR deviations parameterized by G9 and ∆γ. (b) Like (a), but
for σ11,abs(z), the rms matter fluctuation in spheres of radius 11Mpc (instead of 8h−1 Mpc). (c)
Like (b), but for the parameter combination σ11,abs(z)Ω

0.4
m that approximates the quantity best

constrained by cluster abundances. (d) Predicted fractional errors in σ11,abs(z)Ω
0.4
m from cluster

abundances in a 104 deg2 survey calibrated by stacked weak lensing mass estimates with Stage III
(neff = 10arcmin−2) and Stage IV (neff = 30arcmin−2) source surface densities and survey depths
(dotted and solid curves, respectively). From top to bottom, curves correspond to cluster mass
thresholds of 8, 4, 2, and 1 × 1014M⊙.

provided by clusters. However, the cluster constraints reduce the w0.5 error even if Ωm is held
fixed, so some of this improvement arises from another source, probably by allowing some WL
information to be effectively transferred from growth to distance. Adding our Stage IV, 1014M⊙
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Figure 47 Predicted constraints (1σ) on the equation-of-state parameters w0.5 = w(z = 0.5)
and wa (left panels) and the growth parameters G9 and ∆γ (right panels) from our fiducial
CMB+SN+BAO+WL programs combined with cluster abundance measurements of σ11,abs(z)Ω

0.4
m

with the precision shown in Fig. 46d. Top panels show Stage III clusters with Stage III
CMB+SN+BAO+WL, while middle and bottom panels show Stage IV clusters combined with
the fiducial and WL-opt Stage IV programs, respectively. Note the change in axis scale between
the top and middle/lower panels. In each panel, the outermost contour shows the constraints with-
out clusters, and the remaining contours show the constraints for cluster mass thresholds of 8, 4,
2, and 1 × 1014M⊙ (outer to inner).
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cluster constraint to the fiducial Stage IV program increases the DETF FoM from 664 to 1258, and
it increases the modified FoM [σ(wp)σ(wa)]

−1 × [0.034/σ(∆γ)] (Figure 35) from 664 to 1955. For
the WL-opt program, the improvements are 789 → 1363 and 1037 → 2380, respectively. For Stage
III CMB+SN+BAO+WL, adding Stage III clusters leads to improvements of 131 → 183 (FoM)
and 30 → 137 (modified FoM).

Our treatment here is simplified because we have ignored the impact of volume-element changes
on the cluster abundance and have set the scaling index of σ11,abs(z)Ω

q
m to a constant value q = 0.4

instead of including its redshift and mass dependence. More importantly, we have assumed that
errors in the cluster abundance will be dominated by the statistical errors in the weak lensing
calibration of the mean mass scale, not increased by marginalizing over uncertainties in mass-
observable scatter, incompleteness, contamination, or theoretical predictions. The effective mass
calibration uncertanties we are assuming are those in Figure 28. These are probably pessimistic
at z & 1, where the weak lensing calibration error exceeds 10% but one could likely use other
calibration methods (including direct comparison to theory) to do better; thus, we are underplaying
the potential contribution of high-redshift clusters. Our approximate calculations confirm the
conclusions of Oguri and Takada (2011) that clusters calibrated with stacked weak lensing can
make an important contribution to testing cosmic acceleration models, even in the era of Stage
IV dark energy experiments. Figure 46 also provides a target for other methods of measuring the
matter clustering amplitude, such as the Lyα forest (§7.6).

8.5. Forecasts for Alternative Methods

We now turn to some of the alternative probes discussed previously in §7. For each technique,
we first focus on the question of complementarity with the primary methods by asking how well
the observable quantity measured by a particular technique is already known given the fiducial
combination of SN, BAO, WL, and CMB data. These predictions provide benchmarks that any
additional measurement must reach in order to contribute significantly to constraints on dark energy
or modified gravity parameters. In many cases, the precision of the predictions depends strongly
on the chosen parameterization of deviations from the standard paradigm of ΛCDM and GR. We
will generally assume a w0–wa model for the results in this section, but we note that if one adopts
a more general parameterization of dark energy then the predictions are normally weaker, and thus
the value of alternative probes is potentially greater.

The covariance matrix for a set of observables X measured by a particular alternative probe can
be computed straightforwardly using the covariance matrix of the cosmological parameters given
by the inverse of the total Fisher matrix for SN, BAO, WL, and CMB data,

CX

ij =
∑

k,l

∂Xi

∂pk
F−1

kl

∂Xj

∂pl
, (179)

where p is either the full set of parameters in eq. (162) or the reduced set with w0 and wa replacing
the 36 wi bins; in the latter case, F is the Fisher matrix for the w0–wa parameterization computed
using eq. (170). We compute the full covariance matrices for the alternative methods, but the plots

in the following sections only show the predicted uncertainties σXi =
√
CX

ii and do not reflect the

fact that errors on the observables may be correlated.
In addition to computing how well the fiducial SN, BAO, WL, and CMB constraints predict

each observable that would be measured by the alternative techniques, we provide several examples
to show the improvement in the FoM and other parameters that would result from a specific
measurement of that observable. For these tests, we only consider the impact of measurement of a
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single quantity X at a time, so the total Fisher matrix is modified simply by adding the term

F alt
ij = σ−2

X

∂X

∂pi

∂X

∂pj
, (180)

where σX is the assumed uncertainty in the measurement of X.

8.5.1. The Hubble constant

For the Hubble constant, the predicted uncertainty from the fiducial probes is simply the value
of σh that comes out of the Fisher matrix forecasts of the previous section. Assuming a w0–wa dark
energy model, the expected precision on H0 is 0.7% for the fiducial Stage IV forecasts and small
variations of those forecasts, and 1.3% for Stage III (see Tables 8–10). These are challenging, but
probably attainable, targets for future efforts to independently measure H0.

Figure 48 Dependence of the DETF FoM on the accuracy of additional measurements of the Hubble
constant for Stage III and IV forecasts from §8.3. The fiducial Stage IV program with FoM= 664
is marked by an open circle.

In Figure 48, we show the effect on the DETF FoM of adding a prior on H0 to the fiducial Stage
III and IV forecasts. In all cases, adding a prior with precision that matches the uncertainty one
would have in the absence of the prior increases the FoM by ∼ 40%. The uncertainties in other
cosmological parameters are affected little by the inclusion of an independent H0 measurement, as
discussed in §7.1.

For a more general dark energy parameterization such as the binned wi values, predictions
for σh can be orders of magnitude weaker than they are for w0–wa or ΛCDM (see Figs. 39–40).
In this case an independent, local measurement of H0 is vital for accurate determination of the
Hubble constant. However, H0 priors do not significantly improve dark energy constraints in this
case; an H0 constraint limits the range of w(z) in the lowest-redshift bin, but since w(z = 0) is
only weakly correlated with the equation of state at higher redshifts by SN, BAO, WL, and CMB
data, the impact of an additional H0 measurement on the equation of state at z > 0 is small.
The improvement in the DETF FoM in Fig. 48 is largely a consequence of the restrictions that
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Figure 49 Left: Predicted fractional error (1σ) of the AP parameter H(z)DA(z) from our fiducial
Stage III and Stage IV CMB+SN+BAO+WL programs, assuming a w0–wa dark energy parame-
terization. Right: Dependence of the DETF FoM on additional measurements of H(z)DA(z) at a
single redshift. For each forecast, the three curves from top to bottom assume AP measurements
at z = 0.5, z = 1, and z = 2, respectively.

the w0–wa parameterization places on the evolution of w(z) between z = 0 and higher redshifts.
Of course, a discrepancy between directly measured H0 and a w0 − wa prediction would already
provide the crucial insight that w0 −wa is inadequate; it just wouldn’t give further direction about
the evolution of w(z).

8.5.2. The Alcock-Paczynski Test

For the AP test (§7.3), we consider the observableH(z)DA(z). Since Stage IV BAO data provide
tight constraints on both H(z) and DA(z), which are further strengthened by the SN, WL, and
CMB measurements, it is not surprising that the product H(z)DA(z) is predicted very precisely in
the combined forecasts. The left panel of Figure 49 shows that the uncertainty in the AP observable
is ∼ 0.2% at 0 < z < 3 for Stage IV data, and it is still predicted to sub-percent accuracy with Stage
III data. Independent measurements of the AP observable that are significantly less precise than
these predictions would contribute little to cosmological constraints. Note that these results are for
a w0–wa dark energy model. If we instead use independently-varying w(z) bins, the uncertainty in
the AP observable for the Stage IV forecasts increases to ∼ 1% at 1 < z < 3 and becomes much
larger at both lower and higher redshifts, although the exact precision of the predictions in this
case depends strongly on the detailed forecast assumptions such as the prior on wi in each bin or
the number of bins used for BAO data.

In the right panel of Fig. 49, we show the improvement in the DETF FoM (assuming the w0–
wa parameterization) when various measurements of the AP observable are added to the fiducial
Stage III and IV forecasts. Since the predictions for H(z)DA(z) are weakest at z . 0.5, a direct
measurement of the AP observable at those redshifts has a greater impact on the FoM than mea-
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Figure 50 Left: Predicted fractional error (1σ) of the RSD observable σ8(z)f(z) from our fiducial
Stage III and Stage IV CMB+SN+BAO+WL programs, assuming a w0–wa dark energy parameter-
ization. The lower, thin curves for each forecast additionally assume GR by fixing ∆γ = lnG9 = 0.
Right: Improvement in the 1σ uncertainty on ∆γ from an additional RSD measurement at a single
redshift. For each forecast, the lower and upper curves assume RSD measurements at z = 0.2 and
z = 1, respectively.

surements at higher redshifts.79 A 1% measurement of H(z)DA(z) at z = 0.5 increases the Stage
III FoM by about 13%; a similar improvement in the Stage IV FoM requires an accuracy of 0.5%
at the same redshift. While the demands suggested by Figure 49 appear stiff, large redshift surveys
in principle have the information to achieve very high precision on H(z)DA(z). The challenge is
lowering systematics to the level needed to achieve this precision.

8.5.3. Redshift-space Distortions

For redshift-space distortions (RSD; §7.2), the relevant observable is σ8(z)f(z). WL data pro-
vide some limits on this observable by constraining the structure growth parameters ∆γ and (in
combination with the CMB) G9, and through their constraints on the expansion history all of the
acceleration probes contribute indirectly to the predicted growth history. The resulting predictions
for Stage III and IV programs are plotted in the left panel of Figure 50. We show predictions
both for the general case where we marginalize over the structure growth parameters and for GR
(∆γ = lnG9 = 0).

With the assumption of GR, the RSD observable is predicted to 1–2% accuracy for Stage III
and 0.5–1% accuracy for Stage IV. If we allow modifications to GR through ∆γ and G9, however,
the uncertainty at z < 1 increases dramatically. This change is mainly tied to the freedom to alter
the growth rate f(z) at low redshift by varying ∆γ. Note that the effect of ∆γ vanishes at high
redshift because Ωm(z) approaches unity and therefore f(z) → fGR(z) (see equation 44). At z & 2,

79Note, however, that either decreased SN errors or increased BAO errors for any of these forecasts would reduce
the difference between the predictions at z < 1 and at z > 1.
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uncertainty in G9 significantly weakens Stage III predictions of the RSD observable, but the effect
on Stage IV predictions is much smaller.

The DETF FoM can be improved by the addition of precise RSD measurements if we assume
GR; for example, the fiducial Stage IV (Stage III) FoM increases by ∼ 10–15% with a 1% (2%) RSD
constraint at z = 1. Without assuming GR, the additional information from an RSD measurement
at a single redshift goes mainly into constraining the structure growth parameters (and thus testing

GR). In this case, the FoM improvement from percent-level RSD constraints is . 10%. However,
percent-level measurements in several redshift bins can still have an important impact on the FoM.

Low-redshift measurements of the RSD observable can contribute significantly to constraints
on ∆γ, as shown in the right panel of Fig. 50. For Stage III forecasts, 1–2% RSD measurements
at z = 0.2 reduce the error in ∆γ by nearly an order of magnitude, reaching an uncertainty
comparable to that expected from the Stage IV probes. Likewise, the Stage IV constraint on ∆γ
can be improved by a factor of a few by the addition of percent-level RSD measurements. At
higher redshifts, the impact of RSD observations on the ∆γ uncertainty is greatly reduced due to
the diminishing effect of ∆γ on the growth rate at high z. This reduced sensitivity at high z is in
some sense an artifact of the ∆γ parameterization; the error on ∆γ is larger than the error on ln f
by a factor |(d ln f/d∆γ)−1| = |[ln Ωm(z)]−1|, which for the fiducial cosmological model of Table 7
is 1.02 at z = 0.2 [where Ωm(z) = 0.373] and 3.23 at z = 1 [where Ωm(z) = 0.734].

We have computed but not plotted the impact of RSD measurements on the growth normaliza-
tion parameter G9. For Stage IV, the uncertainty in G9 is little affected by adding RSD measure-
ments at any redshift. For Stage III, 1–2% measurements of σ8(z)f(z) can reduce the fractional
error in G9 by up to a factor of two. As discussed in §7.7, some modified gravity theories pre-
dict a mismatch between measures of structure using non-relativistic tracers, which respond to the
Newtonian potential Ψ (eq. 159), and measures based on weak lensing, which responds to Ψ + Φ,
the sum of the Newtonian potential and space curvature. Consistency between RSD and WL, or
cluster masses calibrated by weak lensing, tests for deviations of this sort, in addition to the G9

and ∆γ constraints obtained by combining the measurements assuming Ψ = Φ.

8.5.4. Distances

As a target for alternative distance indicator methods (§7.4) and standard sirens (§7.5), Fig-
ure 51 plots the predicted fractional error on the angular diameter distance from our fiducial Stage
III and Stage IV CMB+SN+BAO+WL programs. If we assume a w0 − wa model then the con-
straints are tight, better than ≈ 0.25% for Stage IV and ≈ 0.5% for Stage III at all z > 0.5.
However, the highest redshift distance measurements included in our forecasts (other than CMB)
are BAO measurements at z = 3, so when we change to our general w(z) model the distance errors
at z > 4 become dramatically worse, ≈ 2% for Stage IV and ≈ 8% for Stage III. Furthermore,
our Stage III forecast assumes a 0.8% distance measurement from HETDEX at z = 2.4, which
we consider somewhat optimistic because it assumes that the full power spectrum shape can be
used rather than the BAO scale alone. At z < 2 the Stage III curve has a jagged structure that
depends to some degree on the specific choices we have made in binning and in assigning BAO/WL
measurements to particular redshifts.

The message to take away is that Stage III distance errors for the general w(z) model should
be in the 1 − 2% range at z < 1, the 3 − 5% range at 1 < z < 2, and the 6 − 8% range at z > 4,
with the errors at 2 < z < 4 depending on the strength of BAO measurements from Lyα emission
line galaxies (HETDEX) or the Lyα forest (BOSS). On the Stage III timescale, alternative distance
measurements at z > 1 with few percent precision could reveal otherwise hidden departures from
the w0−wa model. For Stage IV, where we assume powerful BAO experiments extending to z = 3,
the demands on alternative distance indicators are much stiffer. Even for the general w(z) model,
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Figure 51 Predicted fractional error (1σ) on the distance DA(z) from our fiducial Stage III and
Stage IV CMB+SN+BAO+WL programs and the Stage IV program with optimistic weak lensing
assumptions. For each case, the lower, thin curve assumes a w0−wa dark energy parameterization,
while the upper, thick curve represents our binned w(z) model.

alternative measures at z > 4 must reach 2% precision to be competitive. The Stage IV distance
errors in this model become large at z < 0.25, similar to the several percent errors in H0 seen
in Figure 40. As already discussed in §8.5.1, precise low redshift distance measurements have the
potential to reveal late-time departures from smooth w(z) evolution.

8.6. Observables and Aggregate Precision

We have characterized the performance of the fiducial program and its variants in terms of
their ability to constrain parameterized models, from the specific (w0-wa + GR) to the general
(w(zi), G9, ∆γ). An alternative, more model-agnostic approach to characterizing the power of an
experiment is via the aggregate precision with which it measures its basic observable. We have
already introduced this idea at a few points, most notably in our discussion of BAO. By “aggregate
precision” we mean the fractional (1σ) error on an overall factor that multiplies the observable in
all redshift bins (and, if applicable, angular or mass bins). For the simple case of an observable
O with independent fractional measurement errors ∆ lnO(zi) in N redshift bins, the aggregate
precision follows from the quadrature combination of the individual errors:

∆ lnOagg =

(
N∑

i=1

[∆ lnO(zi)]
−2

)−1/2

. (181)

One important virtue of forecasting an experiment’s aggregate precision is that it focuses one’s
attention on the required control of systematics, especially systematics that are correlated across
redshift bins.

Figure 52 plots the errors on the observables in our fiducial SN, BAO, and WL programs. For SN
(upper right), we adopt independent errors of 0.01 mag in each of four redshift bins, corresponding to
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Figure 52 Forecast errors for fiducial Stage IV SN, BAO, and WL programs, compared to model
deviations from fiducial ΛCDM. The top panels show the forecast fractional errors in angular
diameter distance from BAO (left) and luminosity distance from SNe (right), in absolute (Mpc)
and relative (h−1 Mpc) units, respectively. The lower left panel shows the H(z) error from BAO.
The errors are uncorrelated from bin to bin, though the DA(z) and H(z) errors in each bin are
correlated with each other. Curves show the fractional changes in the predicted relations relative to
the fiducial cosmology for CMB-normalized models with 1+w = ±0.02 or Ωk = ±0.001, as labeled.
Marginalization over M and H0 allows arbitrary vertical offsets to the model curves in the SN panel
without changing other cosmological parameters. The lower right panel shows forecast statistical
errors (no systematics) in the cosmic shear power spectrum for three of the 14 source photometric
redshift bins, in bins of ∆ log l = 0.2 dex. Statistical errors are approximately uncorrelated for
different l-bins at a given z, but errors in different z-bins are correlated. Curves show the fractional
change in the predicted spectrum in models with 1 + w = ±0.02 or ∆γ = ±0.05.
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fractional errors in luminosity distance of 0.46%. The aggregate measurement precision is therefore
∆ lnDL,agg = 0.23%. This is equal to the aggregate precision forecast for the SN component of the
WFIRST design reference mission (DRM1) forecast by Green et al. (2012)) for their “optimistic”
assumption about SN systematics.80 However, the measurement in the z = 0.05 bin goes mainly to
constraining the nuisance parameter M, the SN absolute magnitude scale, so it is arguably better
to characterize our fiducial program’s aggregate precision as 0.46%/

√
3 = 0.27%, which is closer

to that of the “conservative” WFIRST forecast (0.32%). More generally, we note that large local
calibrator samples are likely to achieve high statistical precision, and the systematic uncertainty in
relating this local sample to fainter, redshifted samples will play a crucial role in determining the
cosmological performance of the SN program.

The left panels show the fractional errors predicted on DA(z) and H(z) for the fiducial BAO
program, as tabulated in Table 6. These error bars decrease with increasing redshift because of the
greater comoving volume per ∆ ln(1+z) bin at high redshift. Comparison of the DL and DA panels
nicely illustrates the complementarity of SN and BAO as low and high redshift probes, respectively,
though recall that they provide distinct information even at the same redshift because of relative
vs. absolute calibration. The aggregate precision of the BAO measurement is ∆ lnDA,agg = 0.13%,
tighter than that from SNe because of the larger number of bins. Statistical errors in H(z) are
larger by a factor of 1.6 in each redshift bin, so the aggregate precision of the H(z) measurement
is lower by the same factor, ∆ lnHagg = 0.21%. The DA and H(z) errors are correlated, with a
correlation coefficient of ≈ 0.41 in each redshift bin.

Achieving the goals of our fiducial BAO program — sampling the equivalent of fsky = 0.25 with
nP ≈ 2 out to z = 3 — will require multiple experiments probing different redshifts and regions
of sky. While BigBOSS, Euclid, and WFIRST all plan to measure BAO in the range 1 < z < 2,
it is not clear that they can achieve fsky = 0.25 with nP ≈ 2 even collectively. Euclid plans to
survey ≈ 14, 000 deg2 over the range 0.7 < z < 2 in its 6.25-year primary mission, but the forecasts
in Green et al. (2012), which are based on the Euclid instrument sensitivity of Laureijs et al.
(2011) and the Hα luminosity function and galaxy bias measurements of Sobral et al. (2013) and
Geach et al. (2012), imply that Euclid will reach nP < 0.5 at z > 1.2. BigBOSS plans to survey
14, 000 deg2 in the northern hemisphere, and a southern hemisphere equivalent could increase the
area to 24, 000 deg2 (limited in the end by Galactic extinction). Sampling density forecasts are
more uncertain for BigBOSS than for Euclid; Schlegel et al. (2011) predict nP > 2 out to z ≈ 1.05
and nP > 0.5 out to z ≈ 1.35, falling to nP = 0.35 by z = 1.65.81 The WFIRST DRM1 of Green
et al. (2012), with 2.4 years devoted to high-latitude imaging and spectroscopy, is projected to
achieve nP & 1 from 1.3 < z < 2.0, declining to nP ≈ 0.5 at z = 2.7. However, the survey area is
only 3, 400 deg2, so a substantially extended mission would be required to reach 104 deg2, and the
depth is still nP < 2. An implementation of WFIRST using one of the NRO 2.4-m telescopes could
plausibly survey 104 deg2 with nP = 1− 2, depending on the instrument field of view and the time
allocated to the spectroscopic survey (Dressler et al., 2012). In concert with ground-based surveys
covering z . 1.2 and z > 2, this offers the best current prospect of achieving something close to
our fiducial BAO program on the Stage IV timescale. Breakthroughs in 21cm intensity mapping
(see §4.4.5) could also lead to major progress on this timescale.

80Specifically, that forecast assumes uncorrelated systematic errors of 0.01(1 + z)/1.8 mag in 16 ∆z = 0.1 redshift
bins out to z = 1.7. The total errors have roughly comparable statistical and systematic contributions.

81Schlegel et al. (2011) use a different convention, quoting nP for the redshift-space power spectrum at k =
0.14 h Mpc−1 and µ = 0.6 instead of the real-space power spectrum at k = 0.2 h Mpc−1. We have quoted the
numbers from their Table 2.3 as is, with no conversion to our nP convention and no independent assessment of the
sampling density the instrument is likely to achieve.
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As a context for assessing these projected measurement errors, curves in these panels show the
impact of changing w or Ωk in “CMB-normalized” models, as described in §2.4. These curves are
similar to those in Figure 2, but here we have adopted much smaller parameter changes, 1 + w =
±0.02 or Ωk = ±0.001, in line with the tight constraints expected for Stage IV experiments.82 Note
that a model that skirts the top of the 1σ error bars in Nbin redshift bins would be ruled out at the

N
1/2
bin -σ level. However, while one can see the partial tradeoff between curvature and w, these plots

do not capture the impact of degeneracy with other parameters such as Ωm and wa. The behavior
of the curves is explained in §2.4 so we will not repeat it here, but one can see the complementarity
of SN and BAO distance measurements in constraining w and curvature, respectively, and the
roughly constant sensitivity of BAO H(z) measurements at 1 < z < 3 to a change in the equation
of state. Some caution is required in interpreting the SN panel because marginalizing over H0 and
M allows the model curves to be offset vertically with no change in other parameters, so the direct
information about w and Ωk resides in the slopes of the curves relative to the data points.

Analogous to the SN and BAO panels of Figure 52, the lower right panel shows the projected
1σ statistical errors of the WL power spectrum in logarithmic bins ∆ log l = 0.2 dex, for three of
the 14 tomographic bins of source photometric redshift. Several caveats are in order. First, while
the statistical errors in different l bins at fixed redshift are independent, errors among redshift bins
are correlated because structure at redshift zl contributes to the lensing of all background shells
at zs > zl. Second, systematics in shape measurement or photometric redshift calibration will
typically produce errors that are correlated across both redshift and angle; here we have plotted
only statistical errors. Third, in addition to the 11 auto-correlation power spectra not shown here,
our fiducial program includes 14 × 13 shear cross-power spectra, and cross-spectra between shear
fields and galaxy density fields. All of these provide cosmological information, albeit with correlated
errors and some loss of constraining power through marginalization over galaxy bias and intrinsic
alignments. Finally, the shear power spectrum depends on both geometry and structure growth:
for sources at zs lensed by matter at zl, the expected shear depends on DA(zl), DA(zs), and σ8(zl).

Correlated errors, the multitude of auto- and cross-correlations, and the linked parameter de-
pendences mean one cannot characterize the information content of WL measurements as simply
as that of SN or BAO measurements. We can nonetheless define an aggregate precision as the frac-
tional error on the matter fluctuation amplitude σ8 with all other parameters — and thus DA(z),
H(z), and G(z) — held fixed. From equation (92) one can see that the fractional error on an
overall scaling of DA(z) with fixed matter clustering would be similar to this fractional error on
σ8 with fixed geometry. For our fiducial Stage IV WL program we find an aggregate precision on
σ8 of 0.33%, where our calculation includes marginalization over the assumed 2 × 10−3 systematic
uncertainties in shear calibration and photometric redshift offsets (and over parameters describing
intrinsic alignments). The uncertainty in this case is dominated by these systematics, and the ag-
gregate error is close to the quadrature sum (0.28%) of these two fractional contributions. For the
optimistic WL case, with total errors double the statistical errors (and thus double those plotted in
Fig. 52), the aggregate precision on σ8 is 0.14%. If we assumed purely statistical errors, as plotted
in Figure 52, then the aggregate precision would of course be a factor of two higher. As already
discussed in §8.1, it is likely that LSST, Euclid, and WFIRST will collectively, and perhaps even
individually, exceed the performance of our fiducial Stage IV program as far as statistical errors
are concerned. The key question is whether they will achieve the tight level of systematics control

82These models have h = 0.7030 (w = −0.98), h = 0.7171 (w = −1.02), h = 0.7157 (Ωk = 0.001) and h = 0.7045
(Ωk = −0.001). Other parameters can be computed from the conditions Ωbh

2 = 0.02268, Ωch
2 = 0.1119, and

Ωφ = 1 − Ωc − Ωb − Ωk.
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Figure 53 Forecast errors for fiducial Stage IV cluster (left) and RSD (right) programs, with the
assumptions described in the text. Curves show the predicted deviations from our fiducial ΛCDM
model for CMB-normalized models with 1 + w = ±0.02 and ∆γ = ±0.05.

that we assume. In principle these experiments could collectively achieve an aggregate precision
several times better than that of even our optimistic WL forecast, with cross-checks between them
testing for any experiment-specific systematics.

For a given photo-z bin, the statistical errors per ∆ log l = 0.2 dex bin shown in Figure 52
shrink slowly with increasing l because of decreased cosmic variance, then grow slowly as shape
noise errors become dominant (see §5.4.1). Errors are smaller for the higher photo-z bins because
of the larger numbers of source galaxies the larger foreground volume. Orange and green curves
show the impact of 1+w = ±0.02 variations, which is comparable to the 1σ error per ∆ ln l bin for
zp = 0.88 and zp = 1.40. Red and blue curves show the impact of setting the growth index parameter
to ∆γ = ±0.05, with all other cosmological parameters fixed. Because the logarithmic growth rate
is f(z) ≈ [Ωm(z)]γ+∆γ , a negative ∆γ corresponds to faster growth and thus higher Cl. These ∆γ
and 1 + w changes have effects of similar magnitude but with different redshift dependence, so in
principle WL measurements can break the degeneracy between them. In practice, the strongest
degeneracy breaking will likely come from combining WL data with SN and BAO constraints, which
are independent of ∆γ.

Figure 53 presents error forecasts for two other probes of structure growth, clusters and redshift-
space distortions. The cluster errors are based on Figure 30, assuming stacked weak lensing mass
calibration of M > 2 × 1014M⊙ clusters over 104 deg2 with a WL source density of 30 arcmin−2.
While Figure 30 is couched in terms of errors on σ11,abs(z) with other parameters held fixed, here we
assume (as in §8.4) that the constrained quantity is Ω0.4

m σ11,abs(z), with the same fractional error;
we caution that this is only an approximate characterization of the constraints from clusters. If the
errors are dominated by WL shape noise and random cluster orientations, as assumed here, then
they should be essentially uncorrelated among redshift bins. The aggregate precision for the cluster
program is 0.20%, and since this is comparable to that of our other fiducial programs, it is not
surprising that clusters have a significant impact on the expected uncertainties in equation-of-state
and growth parameters (§8.4). Achieving this high aggregate precision would demand tight control
of the systematics discussed in §6.4, including the effects of contamination, incompleteness, and
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mis-centering, the impact of mass-observable scatter, and the prediction of the mass function and
stacked WL profiles in the presence of baryonic effects.

The RSD error bars in Figure 53 are those shown previously by the lower solid curve in Figure 31,
computed with the forecasting code of White et al. (2009). They assume a galaxy sample like that
of our fiducial BAO program out to z = 2 and full use of information up to comoving k = kmax =
0.2h Mpc−1 at each redshift. The sharp change in errors at z = 0.9 is due to the assumed drop
in bias factor as surveys transition from absorption-line galaxies to emission-line galaxies. The
aggregate precision on f(z)σ8(z) is 0.22%, again comparable to that of our other fiducial programs.
The ranges z > 1.4 and z < 1.4 make equal contributions to this precision. As discussed in §7.2,
we expect the dominant systematic uncertainty for RSD to lie in theoretical prediction of the RSD
signal in the presence of non-linear gravitational evolution and galaxy bias, not the measurements
themselves. To realize the full statistical power of Stage IV galaxy redshift surveys, these theoretical
uncertainties must be controlled at the 0.2%-level. The White et al. (2009) forecasts, which assume
that kmax scales with the non-linear wavelength knl(z) of the matter power spectrum, yield smaller
errors at high redshift and an aggregate precision of 0.10%.

Curves in Figure 53 again show the effect of isolated parameter changes with 1+w = ±0.02 and
∆γ = ±0.05. In isolation, either of these changes would be strongly ruled out by either the fiducial
cluster program or the fiducial RSD program with the assumptions adopted here. For clusters,
the impact of the w changes is comparable to the 1σ error bar per ∆z = 0.1 redshift bin over the
range 0.2 < z < 0.8. The impact of ∆γ changes exceeds the 1σ error at all z < 0.8. For RSD,
the ∆γ = ±0.05 impact exceeds the 1σ per-bin error at all z < 1.7. In these CMB-normalized
models, where changes to w and Ωm have counteracting effects on f(z), the sensitivity of RSD to
a constant-w change is greatest at high redshifts. The impact of ∆w = ±0.02 exceeds the per-bin
1σ error for z ≥ 0.9.

Quantities like the DETF FoM and errors on ∆γ or lnG9 are useful for optimizing choices in
a well defined experimental program, e.g., area vs. depth or the value of different target classes in
a spectroscopic survey. However, since we have little idea where deviations from GR+Λ are likely
to show up (if they are there at all), we think that aggregate precision, including the effects of
systematics, is a comparably useful tool for providing seat-of-the-pants guidance in a more general
situation. For a given level of aggregate precision, a measurement at low redshift will typically
have more direct sensitivity to dark energy, a measurement at high redshift will typically have
more direct sensitivity to curvature, and measurements over a range of redshifts are needed to
constrain dark energy evolution. However, given the degeneracies among parameters (especially
w, Ωm, and Ωk) and the powerful impact of CMB constraints, it is difficult to identify a specific
redshift range as the optimal one to probe. For a given method and a given facility, it makes sense
to start where the pickings are easy, in terms of gaining precision relative to existing knowledge,
and move to more difficult terrain when required. This assessment must also include consideration
of where one can most readily control systematics, which is often but not always at low redshift.
Extending the redshift range of a method increases leverage for breaking degeneracies and con-
straining dark energy evolution, but the more important impact is often to improve the method’s
aggregate precision by bringing in measurements with decorrelated errors. As we have emphasized
repeatedly, a full program should employ multiple methods to take advantage of their complemen-
tary information content and redshift sensitivity and to cross-check for unrecognized systematics.
Fortunately, Figures 52 and 53 show that several methods have the potential to achieve 0.1− 0.3%
aggregate precision in Stage IV experiments, a dramatic improvement on the ∼ 1 − 5% precision
that represents the current state of the art for these methods.
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8.7. Prospects with Many Probes

Section 8.3 demonstrates the power of a combined CMB+SN+BAO+WL experimental program,
while §§8.4-8.6 show that other probes could add substantial further sensitivity to dark energy or
modified gravity. Drawing these results together, we show in Figure 54 the result of combining our
fiducial CMB+SN+BAO+WL programs with representative performance estimates for clusters,
redshift-space distortions, and direct H0 measurement. (While the AP test could also play an
important role, we consider current understanding of its systematic uncertainty too limited to
allow even representative performance estimates.) Top, middle, and bottom panels show inverse
errors on wp, wa, and ∆γ, respectively, assuming a w0 −wa model with G9 and ∆γ as beyond-GR
growth parameters. Black bars show the results of combining all of these probes, while colored bars
show the cumulative impact of successively omitting individual probes (see further explanation
below).

For Stage IV we assume our fiducial CMB, SN, BAO, and WL constraints, the cluster and RSD
constraints described in §8.6 (Fig. 53), and an H0 constraint with precision of 1%. For Stage III
we adopt the CMB+SN+BAO+WL errors summarized in Table 7. (Note, in particular, that our
assumed Stage III SN errors are 0.02 mag per ∆z = 0.2 bin and our Stage IV errors are 0.01 mag
per bin, with the same error for the local calibrator sample at z = 0.05. For these plots, though
not for others in the paper, we also include the Union2 SN constraints when computing Stage III
and Stage IV.) For Stage III clusters we assume 5000 deg2 and a source density of 10 arcmin−2 for
mass calibration (both appropriate to DES), while keeping the mass threshold at 2× 1014M⊙. For
H0 we assume 2% errors, and for RSD we take the White et al. (2009) forecasts for BOSS. Finally,
for current data we take WMAP CMB errors, Union2 SN errors, and the BAO data and errors
described in §4.2. We adopt the RSD errors reported by Blake et al. (2011a) from WiggleZ (see
§7.2). We also include a 3% error on H0, and a 4% error on σ8Ω

0.4
m to represent clusters and weak

lensing (see §6.2).
Beginning with the black bars representing the full combinations, we see that these projections

predict improvements of more than an order-of-magnitude for each of the three parameters — wp,
wa, and ∆γ — between current knowledge and Stage IV results. These combinations yield 1σ
errors of approximately 0.005 on wp, 0.1 on wa, and 0.01 on ∆γ, testing the ΛCDM model far more
stringently than it has been tested to date. Stage III projections are roughly the geometric mean
of current and Stage IV constraints in all cases.

It is interesting to ask what the different methods contribute to this performance, but there is
no unique way to decompose a constraint into a sum of individual contributions, and the apparent
relative importance of different components depends on how the decomposition is done. We have
attempted one form of “even-handed” decomposition by dropping individual probes in succession,
beginning with the probe whose omission causes the largest increase in the parameter error, then
the probe that causes the largest increase after the first probe has already been dropped, and so
forth. However, when we “drop” a probe we do not omit it entirely; rather, we set the error for
that probe in the Stage IV forecast equal to the value we previously assumed for the Stage III
forecast, or we set the error in the Stage III forecast equal to the value adopted for current data.
Thus, for example, the dark green bar in the upper right shows the impact on σ(wp) of replacing
the Stage IV BAO constraints with the Stage III BAO constraints. The light green bar next to
it shows the impact of also setting the RSD constraint to the Stage III value, the dark blue bar
the impact of also setting the WL constraint to the Stage III value, and so forth. To give one
more example, the light blue bar in the middle of the bottom panel shows the error on ∆γ using
Stage III WL+SN+BAO+H0 but current constraints for RSD and clusters. If the Stage III WL
improvement is also dropped (dark blue bar) then there is no improvement over current knowledge
of ∆γ because none of the remaining probes (SN, BAO, H0) directly measures structure growth.
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Figure 54 Forecasts for inverse 1σ errors (left axis; errors themselves on the right axis) on wp, wa,
and ∆γ from combining our fiducial CMB+SN+BAO+WL programs with additional constraints
from redshift-space distortions (RSD), clusters (CL), and direct H0 measurements. See text for
a description of the errors assumed for Current (left), Stage III (middle), and Stage IV (right)
forecasts. Black bars show the results of combining all of these probes. Colored bars show the
cumulative impact of dropping probes in succession (“−BAO” should be read as “minus BAO,”
for example). When a Stage IV probe is “dropped” it is set to its Stage III precision, and when a
Stage III probe is “dropped” it is set to its current precision. CMB constraints are always retained.

We always include CMB constraints, with WMAP9 errors for current and Planck errors for Stage
III and Stage IV. By construction, the rightmost colored bar for a given stage matches the black
bar of the previous stage, since we have then set all probes back to their value in the previous stage.

We caution against reading too much into the ordering of probes in Figure 54 because it depends
in detail on our assumptions about the expected errors of the individual components; furthermore, a
probe only gains in this plot based on its differential improvement between current performance and
Stage III or between Stage III and Stage IV. The detailed examination of CMB+SN+BAO+WL
in Tables 8-10 and the associated figures provides much more nuanced information. These caveats
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notwithstanding, Figure 54 demonstrates several interesting points. In present data, BAO make
the largest contribution to wp constraints and SNe to wa constraints,83 though it is really the
combination of the two with CMB data that is required to achieve interesting constraints in a
model space that allows wp, wa, and Ωk to vary simultaneously. BAO become more powerful in our
fiducial Stage III and Stage IV programs, making the largest contribution to both the wp and wa

constraints. Current constraints on ∆γ rely entirely on RSD, as the cluster constraint on σ8Ω
0.4
m is

degenerate with G9. With our adopted error forecast, RSD remains the most powerful contributor
to ∆γ constraints at Stage III and Stage IV, outweighing both WL and clusters. Indeed, with
these errors Stage IV RSD also makes an important contribution to the wp measurement. WL and
clusters make significant contributions to ∆γ constraints but have limited impact on wp and wa.

Figure 55 shows two variants on the fiducial Stage IV case. In the middle column we consider a
combined program with SN errors improved by a factor of two and the optimistic WL systematics.
The forecast errors on wp, wa, and ∆γ shrink by 6%, 21%, and 8%, respectively. WL and SN
now leapfrog RSD as contributors to the wp error, though they still contribute less than BAO.
The improvement in wa is driven by the supernova improvement, though BAO remains the largest
contributor. The right column shows the effect of, additionally, doubling the errors on BAO and
RSD, since our fiducial assumptions for these programs are perhaps overoptimistic compared to
the capabilities of planned Stage IV experiments. The forecast errors are larger than they are for
the fiducial case but by moderate amounts, 20% (wp), 14% (wa), and 28% (∆γ). WL leapfrogs
BAO to become the strongest contributor to wp precision, while SN and WL both leapfrog BAO for
wa. With doubled measurement errors, RSD makes only a modest contribution to the parameter
constraints, even for ∆γ.

Perhaps the most important message to take from Figures 54 and 55 is that these six probes
together with CMB measurements provide a tight web of constraints on cosmic acceleration models,
and that even if one or two methods prove disappointing, there are others (including ones not
shown in this plot) to take up slack. We have focused much of our review on the stiff challenges of
controlling systematic errors at the level demanded by future dark energy experiments. However,
given the ingenuity of the community in devising and refining analysis methods, we are optimistic
that the powerful data sets provided by these experiments will ultimately lead to constraints at the
high end of our forecasts.

83Interestingly, the roles of BAO and SNe in the current wp constraint are reversed relative to the original arXiv
posting of our article because of the inclusion of the new SDSS DR7 and BOSS measurements, both published in
2012.
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Figure 55 Like Figure 54, but showing variations on the Stage IV fiducial program. The middle
column shows forecasts with the optimistic WL systematics and SN errors reduced by a factor of
two. The right column shows the effect of, additionally, doubling the errors on RSD and BAO. The
left column repeats the fiducial case from Fig. 54 for reference.

9. Conclusions

The first evidence for dark matter emerged from studies of galaxy clusters in the 1930s (Zwicky,
1933), and the dark matter problem assumed a central position in cosmology after technological
advances allowed dynamical measurements in the outer regions of individual galaxies (Rubin and
Ford 1970; Rogstad and Shostak 1972; see review by Faber and Gallagher 1979). Because it clusters
on small scales, dark matter has a rich phenomenology, and detailed studies of galaxies, galaxy
clusters, large scale structure, the Lyα forest, and the CMB have largely pinned down its properties
even though we have yet to identify the dark matter particle or particles. The implications of the
dark matter problem have proven even more profound than might have been imagined in the 1930s,
pointing the way to an entirely new form of matter whose cosmic mean density exceeds that of all
baryonic material by a ratio of 6:1. There are now several plausible ideas of what dark matter might
be — ideas that are rooted in well motivated extensions of the standard model of particle physics
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and that (at least in some cases) naturally explain the observed density of dark matter (Bertone
et al., 2005). With experimental methods advancing on many fronts, there are good reasons to hope
that dark matter will soon be identified in particle accelerators, detected directly in underground
experiments, or detected indirectly via its annihilation into γ-rays, neutrinos, or cosmic rays.

Evidence for cosmic acceleration began to emerge in the early 1990s, and it rapidly evolved into
a near-airtight case following the supernova discoveries of the late 1990s (see §1.1). Whether the
cause is a new energy component or a breakdown of GR, the implications of cosmic acceleration
are dramatic, even more so than those of dark matter. Cosmic acceleration may ultimately provide
clues to the nature of quantum gravity, or to the structure of the universe on scales beyond the
Hubble volume, or to its history over times longer than the Hubble time. There are already many
theories of cosmic acceleration, but none of them offers a convincing explanation of the observed
magnitude of the effect, and nearly all of them were introduced to explain the observed acceleration,
rather than emerging naturally out of fundamental physics models. In contrast to dark matter, most
models of dark energy predict that it is phenomenologically poor, affecting the overall expansion
history of the universe but little else. That impression could yet prove incorrect: other signatures of
“cosmic acceleration physics” might appear in small-scale gravitational experiments, in the behavior
of gravity in different large scale environments, or in non-gravitational interactions.

While the solution to the cosmic acceleration problem could come from a suprising direction,
including theory, there is a clear experimental path forward through increasingly precise measure-
ments of expansion history and growth of structure. Relative to current knowledge, Stage IV
experiments can improve the measurement of basic cosmological observables — H(z), D(z), and
G(z) — by one to two orders of magnitude. Correspondingly, they can achieve a 1 − 2 order-of-
magnitude improvement in constraints on w, 2− 3 orders-of-magnitude improvement in the DETF
figure-of-merit, and still greater gains in higher dimensional parameterizations, including tests of
GR violations. Any robust deviation from a cosmological constant model would have profound
implications, and the greater the precision and detail with which such a deviation is characterized,
the greater the direction for understanding its cause.

We have reviewed in considerable detail the four leading methods — supernovae, BAO, weak
lensing, and clusters — and we have briefly discussed some of the emerging new methods, whose
capabilities and limitations are as yet less thoroughly explored. We have also investigated the
complementarity of these methods for constraining theories of cosmic acceleration. We have spent
little time on the CMB as it has little direct constraining power on these theories, but it does
provide crucial constraints on other cosmological parameters that are essential to precision tests.
We now conclude our article with an editorial recap of our main takeaway points.

Type Ia supernovae have unbeatable precision for measuring distances at z . 0.5. Future sur-
veys can readily achieve statistical errors of 0.01 mag or less (0.5% in distance) averaged over bins
of ∆z = 0.2. The challenge is getting systematic uncertainties at or below the level of such statis-
tical errors. In our view, the key systematics for SN studies are imperfect photometric calibration,
evolution in the population of SNe represented at different redshifts, and the effects of dust extinc-
tion. The first can be addressed by careful technical design, of the instruments used for SN surveys
and of the observing and calibration procedures. The second can be addressed by obtaining high
quality observations of the SNe and their host galaxies that allow one to match the properties of
high and low redshift systems. The third is best addressed by working in the rest-frame near-IR,
where extinction is low. Rest-frame IR observations may also mitigate evolution systematics and
improve statistical errors, since current observations indicate that the scatter in SN luminosities is
smaller in the near-IR than in the optical.

The BAO method complements the SN method in several ways. SN measure distance ratios
relative to local calibrators (i.e., distances in h−1 Mpc), while BAO measure absolute distances
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(in Mpc) assuming a calibration of the sound horizon. SN and BAO measurements at the same
redshift therefore provide complementary information, effectively constraining H0, which is itself
sensitive to acceleration when combined with CMB data. Spectroscopic BAO measurements that
sample a constant fraction of the sky become more precise at high redshift because they cover
a greater comoving volume and because they measure H(z) directly in addition to DA(z). (Of
course, they also require a larger number of tracers to probe these larger volumes, and the tracers
themselves are fainter at higher redshifts.) Cosmic variance limited BAO surveys have roughly
constant sensitivity to dark energy over the range 1 < z < 3 because the decreasing dynamical
impact of dark energy at higher redshifts is balanced by the greater BAO measurement precision.
Furthermore, the BAO method is the only one that we expect to be statistics-limited even with
Stage IV surveys. Non-linear matter clustering and non-linear galaxy bias may shift the BAO
peak by more than the statistical errors of Stage IV experiments, but the shifts can be computed
using theoretical models that are constrained by the smaller scale clustering data, and moderate
fractional accuracy in these corrections is enough to keep any uncertainty in the corrections well
below the statistical errors. Thus, we see the main challenge for the BAO method as finding ways
to efficiently map the available structure. There are several promising ideas, both ground-based
and space-based, and Stage IV BAO constraints will likely come from a union of several approaches
covering different redshift ranges.

Weak lensing measurements provide sensitivity to both the distance-redshift relation and the
growth of structure. The statistical precision achievable with future facilities is very high, so the
challenge is reducing systematic uncertainties to a level that does not overwhelm these statistical
errors. The most important problem is reducing multiplicative shape measurement biases to the
level of ∼ 10−3 or below, which requires (among other things) determining the PSF that affects
the galaxy images to very high accuracy. This is an area of highly active research, and it is not yet
clear what approach will prove most successful; we have advocated pursuit of a Fourier method that
becomes exact in the limit of high S/N ratio. Since most shape measurement systematics depend
inversely on the ratio r50/rPSF of galaxy size to PSF radius, one can mitigate these systematics by
restricting the analysis to larger galaxies, but this gives up statistical precision by reducing the sur-
face density of usable sources. The second major challenge for WL studies is the measurement and
calibration of photometric redshift distributions, characterizing both their means and their outlier
fractions at the ∼ 10−3 level or below. Meeting this challenge requires optical and near-IR imaging
for robust identification of spectral breaks, and large spectroscopic calibration data sets. The third
systematics challenge for WL is intrinsic alignment of galaxies. With continuing theoretical work
and good photometric redshifts, we believe that this systematic can be kept subdominant, but it
remains a challenging problem. WL measurements are rich with observables, including higher or-
der statistics and varied combinations of galaxy-galaxy lensing, galaxy clustering, and tomography.
Despite the field’s formidable technical obstacles, we think it quite possible that constraints from
WL surveys will eventually exceed current forecasts because these additional observables provide
cosmological sensitivity and/or allow systematic uncertainties to be calibrated away.

Cluster abundance measurements provide an alternative route to measuring the growth of struc-
ture and thus testing the consistency of GR growth predictions. In addition, by reducing uncertainty
in Ωm and breaking other degeneracies, cluster abundance measurements can sharpen the equation-
of-state constraints from SN, BAO, and WL distance measurements. The key challenge for cluster
cosmology is achieving unbiased and precise calibration of the cluster mass scale. Realizing the
statistical power of future surveys requires absolute mass calibration accurate at the 0.5−1% level.
In our view, this is only achievable with weak lensing, because the baryonic physics associated with
other observables is too uncertain to predict them this accurately from first principles. We thus
see cluster studies as a natural byproduct of WL surveys and in some sense as a specialized branch
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of WL, one that takes advantage of the strong additional information afforded by knowing the
locations of peaks in the optical galaxy density, X-ray flux, or SZ decrement. If WL provides the
fundamental mass calibration, then the shape measurement and photometric redshift uncertainties
that affect WL also affect cluster methods.

While all of these methods can be pursued at ambitious levels from the ground, all would
benefit from the capabilities of a space mission, especially from the capability of wide-field near-IR
imaging and spectroscopy, which is possible at the necessary depth only from space. For SN, a
space platform provides the greater stability and sharp PSF needed for highly accurate photometric
calibration, and it allows observations in the rest-frame near-IR, which is crucial for minimizing
extinction systematics and may be valuable for reducing evolution systematics. For BAO, near-IR
spectroscopy allows emission-line galaxy surveys over the huge comoving volume from 1.2 . z . 2,
which is difficult to probe with ground-based optical or IR observations. (Intensity-mapping radio
methods may be able to probe this redshift range from the ground, but this approach still has
significant technological hurdles to overcome.) For WL, space observations allow the deep near-IR
photometry that is essential for robust and accurate photometric redshifts, and they provide stable
imaging with a sharp PSF that enables accurate shape measurements for a high surface-density
source population. The above considerations motivated both WFIRST and the IR capabilities
of Euclid. Space-based optical imaging, the other major element of Euclid, allows a significantly
sharper PSF and thus potentially more powerful WL measurements, if the systematic errors are
sufficiently well controlled. More generally, space-based WL measurements can employ a higher
galaxy surface density than ground-based surveys to the same photometric depth, both because the
PSF itself is smaller and because greater stability and the absence of atmospheric effects should
allow accurate measurements down to a smaller ratio of r50/rPSF.

The current generation of “Stage III” experiments such as BOSS, PS1, DES, HSC, and HET-
DEX are collectively pursuing all of these methods, and they should achieve dark enery constraints
substantially better than those that exist today. It is crucial that the next generation, Stage IV
experiments maintain, collectively, a balanced program that includes SN, BAO, and WL, as well
as other methods (clusters, Alcock-Paczynski, redshift-space distortions) that can be applied to
the same data sets. There is much more to be gained, and much lower risk, from doing a good
job on all three methods than from doing a maximal job on one at the expense of the others. A
balanced program takes advantage of the methods’ complementary information content and areas
of sensitivity, and it allows the best cross-checks for systematic errors. It is becoming standard
practice to trade systematic uncertainties for statistical errors by parameterizing their impact and
marginalizing — e.g., over an uncertain shear calibration multiplier or photometric redshift offset.
While this is a powerful strategy for removing biases due to “known unknowns,” it does not protect
against “unknown unknowns.” Any conclusion about cosmic acceleration will be more compelling
if it is demonstrated by independent methods, and the more interesting the conclusion, the more
crucial this independent confirmation will be.

In §8 we have provided quantitative forecasts for a fiducial Stage IV program and for many
variants upon it. Our fiducial SN program assumes 0.01 mag mean errors for a local calibrator
sample at z = 0.05 and in three bins of ∆z = 0.2 at 0.2 < z < 0.8, uncorrelated from bin to bin.
Our fiducial BAO program assumes mapping 1/4 of the sky to z = 3, with errors that are 1.8×
the linear theory sample variance errors over this volume. Different combinations of redshift range
and sky coverage that have the same comoving volume yield nearly the same results. Our fiducial
WL program assumes statistical errors of a ∼ 109-galaxy imaging survey (more precisely, 104 deg2

with 23 galaxies/arcmin2), and systematic errors of 2 × 10−3 in shear calibration and photometric
redshift calibration. We also consider an optimistic case in which the total (systematic + statistical)
errors are simply double the statistical errors, which effectively corresponds to total errors ∼ 2− 3
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times smaller than those of the fiducial case. Our fiducial program corresponds fairly closely to
the one recommended by the Astro2010 Cosmology and Fundamental Physics panel, and it is a
reasonable, probably conservative forecast of what could be achieved by a combination of LSST,
Euclid/WFIRST, and ground-based BAO and SN surveys.

To quantify the expected performance of this program and its variants, we considered two dark
energy models, one with wa = w0 + wa(1 − a) = wp + wp(ap − a), where ap = (1 + zp)

−1 is the
expansion factor at which w is best constrained, and a second with w(a) allowed to vary freely
in each of 36 bins of ∆a = 0.025, reaching to z = 9. In both cases we allowed deviations from
GR-predicted growth rates characterized by an overall multiplicative offset G9 in G(z) and by a
shift ∆γ in the logarithmic growth rate d lnG/d ln a ∝ [Ωm(a)]γ+∆γ . We focused principally on the
expected errors in wp, wa, ∆γ, and G9, including the DETF FoM defined as (σwpσwa)

−1. While
principal components (PCs) of the general w(a) model allow a much richer characterization of the
dark energy history (and its uncertainties), we regard the combination of the DETF FoM and the
∆γ error to be as good as any alternative for characterizing the strength of a combined program.

The primary results of our forecasting investigation appear in Tables 8–10 and, in distilled form,
in Figures 33 and 38. The FoM of our fiducial program is 664, more than five times better than our
Stage III forecast and a roughly 50-fold improvement on current knowledge. Within the adopted
parameterization, 1σ errors on individual parameters are 0.014 on wp, 0.11 on wa, 0.034 on ∆γ,
0.015 on lnG9, 5.5 × 10−4 on Ωk, and 5.1 × 10−3 on h. All three methods contribute significantly
to these constraints. For our fiducial assumptions, BAO have the greatest leverage on the DETF
FoM, in the sense that halving the BAO errors produces the greatest increase in the FoM while
doubling the BAO errors produces the greatest decrease. WL has the least leverage, which implies
that the fiducial BAO and SN measurements constrain the expansion history well enough that
the WL measurements add relatively little constraining power. However, the error on ∆γ scales
nearly linearly with the WL errors, since all of the information on growth comes from the WL
measurements. (Note that we scale the total WL errors, equivalent to multiplying systematic and
statistical errors by the same factor.) Conversely, changing the SN or BAO errors has almost no
impact on the ∆γ constraint.

Changing to our optimistic assumptions about WL systematics (total errors equal to twice the
statistical errors), while retaining the fiducial SN and BAO assumptions, raises the FoM from 664
to 789 and lowers the ∆γ error from 0.034 to 0.026. For the optimistic systematics model, WL
measurements have the greatest leverage on the DETF FoM instead of the least, and the ∆γ errors
continue to scale approximately linearly with the WL errors. Thus, our conclusions about the power
of WL relative to BAO and SN depend significantly on the assumed importance of WL systematics,
which is difficult to predict at present.

When we move from the w0 − wa model to the general w(z) model, the forecast errors on ∆γ
barely change, since it is constrained by differential measurements of matter clustering over the
redshift range of our fiducial data sets. The errors on G9, on the other hand, expand dramatically,
because even within GR the overall amplitude of structure can be shifted by the behavior of w(z)
outside of our constrained redshift range (i.e., at z > 3). If the amplitude of matter clustering
proved inconsistent with that of a w0 − wa, G9 = 1 model, it would definitely indicate something
interesting, but this measurement alone would not show whether the unusual behavior arises from
a violation of GR or from unexpected behavior of w(z) at high redshift.

For variations around our fiducial program, the impact of reducing the errors of SN measure-
ments is greater than the impact of increasing the redshift range of these measurements. For
example, reducing the error per redshift bin from 0.01 mag to 0.005 mag increases the FoM from
664 to 1197, while increasing the maximum redshift from 0.8 to 1.6 only raises the FoM to 841.
These scalings imply that the highest priority for SN studies is to minimize statistical and system-
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atic errors at z < 1, and that pushing to higher redshifts is a lower priority until the reduction in
z < 1 systematics has been saturated. At fixed fsky, BAO constraints have a stronger dependence
on maximum redshift, because at higher z the BAO measurements become more precise and the
importance of the direct H(z) measurements grows.

We have not incorporated cluster abundances into our primary forecasts, but we have investi-
gated how precisely our fiducial Stage III and Stage IV programs (CMB+SN+BAO+WL) predict
the parameter combination σ11,abs(z)Ω

0.4
m that is best constrained by cluster abundances. For a

w0 − wa dark energy model, the forecast precision is ∼ 1.5% for Stage III and ∼ 0.75% for Stage
IV if we assume GR is correct. If we allow GR deviations parameterized by G9 and ∆γ, then the
forecast precision degrades significantly, especially for Stage III at z > 0.5. Our analysis in §6.3.3
indicates that clusters calibrated by stacked weak lensing should be able to achieve higher precision
on σ11,abs(z)Ω

0.4
m . When we add the anticipated cluster constraints for a 104 deg2 survey with a

1014M⊙ mass threshold, assuming that calibration errors are limited by weak lensing statistics, we
find that the DETF FoM grows by a factor of 1.4 at Stage III and 1.9 at Stage IV relative to the
fiducial CMB+SN+BAO+WL program. The error on ∆γ decreases by a factor of 3.2 for Stage III
and by 1.6 for Stage IV. Cluster studies will be enabled automatically by large WL surveys, which
can be used to identify clusters as optical galaxy concentrations and to provide mass calibration
for clusters identified by any method (X-ray, SZ, optical). If they can achieve the limits imposed
by weak lensing statistics, they can add considerable leverage to tests of dark energy models and
deviations from GR.

We have adopted a similar strategy for some of the alternative probes discussed in §7. For a
w0−wa dark energy model, the forecast precision on H0 is 0.7% from our fiducial Stage IV program,
1.3% for Stage III. A direct measurement of H0 with 1% precision would improve the DETF FoM
of the fiducial Stage IV program by 20%; a 2% measurement would improve the Stage III FoM by
15%. The forecast constraint on H0 degrades, dramatically, to ∼ 60% in our general w(z) model,
since large changes in w at low redshift can affect H0 significantly while having minimal impact on
probes at higher redshift. Thus, a discrepancy between direct measurements and H0 constraints
from CMB+SN+BAO+WL data could be a diagnostic for unusual low-z evolution of dark energy.

The Alcock-Pacyznski parameter H(z)DA(z) is constrained to ∼ 0.2 − 0.3% by our fiducial
Stage IV program over the redshift range 0.2 < z < 3, setting a demanding target for AP tests.
The corresponding precision forecast for Stage III is ∼ 0.5%. Redshift-space distortions and galaxy
clustering can measure the parameter combination σ8(z)f(z), which is constrained by our Stage IV
fiducial program to about 5% at z ≈ 0.1, 2.5% at z = 0.5, and ∼ 1% beyond z = 1, numbers that
improve only slightly for the optimistic weak lensing systematics. For Stage III, the constraints
at a given redshift are considerably weaker. In all cases the constraints are tighter if we assume
GR (∆γ = 0, G9 = 1), but the main purpose of redshift-space distortion analyses would be
to test GR growth, so we regard the looser constraints as the more relevant targets for such
analyses. This level of precision appears within reach of large galaxy redshift surveys if theoretical
systematics can be adequately controlled, making redshift-space distortions a potentially powerful
addition to the arsenal of cosmic acceleration probes. While WL and redshift-space distortions
both probe structure growth, they have different dependences on the two distinct potentials that
enter the GR spacetime metric (see §7.7), so a discrepancy between them could reveal a GR-
deviation that might not be captured by ∆γ alone. Galaxy redshift surveys designed for BAO
measurements should allow redshift-space distortion analyses (and AP tests) as an automatic by-
product, which may greatly increase their science return. Precise measurements of the shape of
the galaxy power spectrum could also reveal signs of scale-dependent growth, another possible
consequence of modified gravity models, though these may be difficult to distinguish from other
factors that affect the power spectrum shape (see §7.7).
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The aggregate precision of our fiducial Stage IV program measurements, in the sense described
in §8.6, is 0.23% in DL (from SN), 0.13% in DA (from BAO), 0.21% in H (also from BAO), and
0.33% in σ8 for fixed geometry (for fiducial WL; optimistic WL yields 0.14%). For the fiducial
Stage IV cluster program with weak lensing mass calibration we forecast 0.20% aggregate preci-
sion on σ8(z)Ω

0.4
m , while our fiducial Stage IV RSD forecast yields 0.22% aggregate precision on

f(z)σ8(z). The ultimate limits on H0 and Alcock-Paczynski measurements are still difficult to
predict, but sub-percent precision appears well within reach on the Stage IV timescale. These
forecasts represent a dramatic advance over the current state of the art, which is roughly 1-5% for
distance measurements (SN, BAO, H0) and ∼ 5% for structure growth measurements (σ8, f(z)).
The cosmological measurements of the past two decades have established a “standard model” of
cosmology based on inflation, cold dark matter, a cosmological constant, and a flat universe. The
measurements of the next two decades will test that model far more stringently than it has been
tested to date.

The future of cosmic acceleration studies depends partly on the facilities built to enable them,
partly on the ingenuity of experimenters and theorists in controlling systematic errors and fully
exploiting their data sets, and partly on the kindness of nature. The next generation of experiments
could merely tighten the noose around w = −1, ruling out many specific theories but leaving us
no more enlightened than we are today about the origin of cosmic acceleration. However, barely a
decade after the first supernova measurements of an accelerating universe, it seems unwise to bet
that we have uncovered the last “surprise” in cosmology. Equally important, the powerful data sets
required to study cosmic acceleration support a broad range of astronomical investigations. These
observational efforts are natural next steps in a long-standing astronomical tradition: mapping the
universe with increasing precision over ever larger scales, from the solar system to the Galaxy to
large scale structure to the CMB. These ever growing maps have taught us extraordinary things —
that gravity is a universal phenomenon, that we live in a galaxy populated by 100 billion stars, that
our galaxy is one of 100 billion within our Hubble volume, that our entire observable universe has
expanded from a hot big bang 14 billion years in the past, that the dominant form of matter in the
universe is non-baryonic, and that the early universe was seeded by Gaussian (or nearly Gaussian)
fluctuations that have grown by gravity into all of the structure that we observe today. We hope
that the continuation of this tradition will lead to new insights that are equally profound.
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Appendix A. Glossary of Acronyms and Facilities

Note that we have not repeated the acronyms of X-ray surveys listed in Table 4.

ACS: Advanced Camera for Surveys (on Hubble Space Telescope)
ACT: Atacama Cosmology Telescope
ADEPT: Advanced Dark Energy Physics Telescope
AP: Alcock-Paczynski
BAO: Baryon Acoustic Oscillations
BOSS: Baryon Oscillation Spectroscopic Survey
BigBOSS: Big Baryon Oscillation Spectroscopic Survey
CCD: Charge Coupled Device
CDM: Cold Dark Matter
CFHT: Canada-France-Hawaii Telescope
CFHTLS: Canada-France-Hawaii Telescope Legacy Survey
Chandra: Chandra X-ray Observatory (NASA)
CHIME: Canadian Hydrogen Intensity Mapping Experiment
CMB: Cosmic Microwave Background
COBE: Cosmic Background Explorer
COSMOS: Cosmic Evolution Survey (from Hubble Space Telescope)
CSP: Carnegie Supernova Project
DES: Dark Energy Survey
DEspec: Dark Energy Spectrograph
DESTINY: Dark Energy Space Telescope
DETF: Dark Energy Task Force
DUNE: Dark Universe Explorer
EE50: Encircled Energy 50%
eROSITA: extended Roentgen Survey with an Imaging Telescope Array
ESA: European Space Agency
ESSENCE: Equation of State: SupErNovae trace Cosmic Expansion
Euclid: Euclid dark energy space mission (ESA)
FKP: Feldman-Kaiser-Peacock (1994) P (k) estimation method
FFT: Fast Fourier Transform
FIRST: Faint Images of the Radio Sky at Twenty-Centimeters (from the VLA)
FWHM: Full Width at Half Maximum
Gaia: Gaia astrometry mission (ESA)
GR: General Relativity
HEAO: High-Energy Astrophysics Observatory (NASA)
HETDEX: Hobby-Eberly Telescope Dark Energy Experiment
HOD: Halo Occupation Distribution
HSC: Hyper-Suprime Camera (for Subaru Telescope)
HST: Hubble Space Telescope
IGM: Intergalactic Medium
IRAC: Infrared Array Camera (on Spitzer Space Telescope)
ISCS: IRAC Shallow Cluster Survey
JDEM: Joint Dark Energy Mission
JEDI: Joint Efficient Dark-energy Investigation
JPAS: Javalambre Physics of the Accelerating Universe Astrophysical Survey
JWST: James Webb Space Telescope
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KIDS: Kilo-Degree Survey
LCS: Light Curve Shape
LIGO: Laser Interferometer Gravitational Wave Observatory
LOSS: Lick Observatory Supernova Survey
LRG: Luminous Red Galaxy
LSST: Large Synoptic Survey Telescope
NASA: National Aeronautics and Space Administration
NOAO: National Optical Astronomy Observatories
NVSS: NRAO VLA Sky Survey
Pan-STARRS: Panoramic Survey Telescope and Rapid Response System
PAU: Physics of the Accelerating Universe
PCA: Principal Component Analysis
Planck: Planck CMB satellite (ESA)
PS1: Pan-STARRS 1
PSF: Point Spread Function
PTF: Palomar Transient Factory
RASS: ROSAT All Sky Survey
RCS: Red-Sequence Cluster Survey
ROSAT: Roentgen Satellite
SDSS: Sloan Digital Sky Survey
SED: Spectral Energy Distribution
SFR: Star Formation Rate
SKA: Square Kilometer Array
SN: Supernovae
SNAP: Supernova Acceleration Probe
SNLS: Supernova Legacy Survey (part of CFHTLS)
SNR: Signal-to-Noise Ratio
SPT: South Pole Telescope
STEP: Satellite Test of Equivalence Principle
SuMIRe: Subaru Measurement of Images and Redshifts
2SLAQ: 2dF and SDSS Large Area Quasar survey
VHS: VISTA Hemisphere Survey
VLBI: Very Long Baseline Interferometry
VIKING: VISTA Kilo-Degree Infrared Galaxy Survey
VIRGO: VIRGO gravity wave observatory
VVDS: VIMOS-VLT Deep Survey
UKIDSS: UKIRT Infrared Deep Sky Survey
WFC3: Wide-Field Camera 3 (on Hubble Space Telescope)
WFPC2: Wide-Field and Planetary Camera 2 (on Hubble Space Telescope)
WFIRST: Wide Field Infrared Survey Telescope
WiggleZ: WiggleZ galaxy redshift survey
WISE: Wide-field Infrared Survey Explorer
WL: Weak Lensing
WMAP: Wilkinson Microwave Anisotropy Probe (NASA)
XMM-Newton: X-ray Multi-Mirror Mission
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Bean, R., Doré, O., Apr. 2004. Probing dark energy perturbations: The dark energy equation of
state and speed of sound as measured by WMAP. Phys. Rev. D69 (8), 083503.

Bean, R., Tangmatitham, M., 2010. Current constraints on the cosmic growth history. Phys. Rev.
D81, 083534.

Becker, M. R., Kravtsov, A. V., Oct. 2011. On the Accuracy of Weak-lensing Cluster Mass Recon-
structions. ApJ 740, 25.

Belenkiy, A., Oct. 2012. Alexander Friedmann and the origins of modern cosmology. Physics Today
65, 38–43.

Benedict, G. F., et al., 2007. Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic
Cepheid Variable Stars: Period-Luminosity Relations. AJ 133, 1810–1827.
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Rhodes, J., Jun. 2010. Cosmic shear requirements on the wavelength dependence of telescope
point spread functions. MNRAS 405, 494–502.
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A., Jun. 2012. Cross-correlation of spectroscopic and photometric galaxy surveys: cosmology from
lensing and redshift distortions. MNRAS 422, 2904–2930.

Geach, J. E., Sobral, D., Hickox, R. C., Wake, D. A., Smail, I., Best, P. N., Baugh, C. M., Stott,
J. P., Oct. 2012. The clustering of Hα emitters at z=2.23 from HiZELS. MNRAS 426, 679–689.

248



George, M. R., Leauthaud, A., Bundy, K., Finoguenov, A., Ma, C.-P., Rykoff, E. S., Tinker, J. L.,
Wechsler, R. H., Massey, R., Mei, S., Sep. 2012. Galaxies in X-Ray Groups. II. A Weak Lensing
Study of Halo Centering. ApJ 757, 2.

Gerke, B. F., Newman, J. A., Davis, M., Marinoni, C., Yan, R., Coil, A. L., et al., May 2005. The
DEEP2 Galaxy Redshift Survey: First Results on Galaxy Groups. ApJ 625, 6–22.

Gettings, D. P., Gonzalez, A. H., Stanford, S. A., Eisenhardt, P. R. M., Brodwin, M., Mancone,
C., et al., Nov. 2012. The Massive Distant Clusters of WISE Survey: The First Distant Galaxy
Cluster Discovered by WISE. ApJ Lett 759, L23.

Ghirlanda, G., Ghisellini, G., Firmani, C., 2006. Gamma Ray Bursts as standard candles to con-
strain the cosmological parameters. New J. Phys. 8, 123.

Giannantonio, T., Scranton, R., Crittenden, R. G., Nichol, R. C., Boughn, S. P., Myers, A. D.,
Richards, G. T., Jun. 2008. Combined analysis of the integrated Sachs-Wolfe effect and cosmo-
logical implications. Phys. Rev. D77 (12), 123520.

Giodini, S., Pierini, D., Finoguenov, A., Pratt, G. W., Boehringer, H., Leauthaud, A., et al., Sep.
2009. Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1. ApJ
703, 982–993.

Gladders, M. D., Yee, H. K. C., Mar. 2005. The Red-Sequence Cluster Survey. I. The Survey and
Cluster Catalogs for Patches RCS 0926+37 and RCS 1327+29. ApJS 157, 1–29.

Gladders, M. D., Yee, H. K. C., Majumdar, S., Barrientos, L. F., Hoekstra, H., Hall, P. B., Infante,
L., Jan. 2007. Cosmological Constraints from the Red-Sequence Cluster Survey. ApJ 655, 128–
134.

Glazebrook, K., Baldry, I., Moos, W., Kruk, J., McCandliss, S., Nov. 2005. Monster redshift surveys
through dispersive slitless imaging: The Baryon Oscillation Probe. NewAR 49, 374–378.

Glazebrook, K., Blake, C., Sep. 2005. Measuring the Cosmic Evolution of Dark Energy with Bary-
onic Oscillations in the Galaxy Power Spectrum. ApJ 631, 1–20.

Goldberg, D. M., Bacon, D. J., 2005. Galaxy-Galaxy Flexion: Weak Lensing to Second Order. ApJ
619, 741–748.

Goldberg, D. M., Strauss, M. A., Mar. 1998. Determination of the Baryon Density from Large-Scale
Galaxy Redshift Surveys. ApJ 495, 29–+.

Gonzalez, A. H., Zaritsky, D., Dalcanton, J. J., Nelson, A., Nov. 2001. The Las Campanas Distant
Cluster Survey: The Catalog. ApJS 137, 117–138.

Gott, J. R., Slepian, Z., Sep. 2011. Dark energy as double N-flation - observational predictions.
MNRAS 416, 907–916.

Gott, III, J. R., Jan. 1982. Creation of open universes from de Sitter space. Nature 295, 304–306.

Gott, III, J. R., Schramm, D. N., Tinsley, B. M., Gunn, J. E., Dec. 1974. An unbound universe.
ApJ 194, 543–553.

249



Green, J., Schechter, P., Baltay, C., Bean, R., Bennett, D., Brown, R., et al., Aug. 2012.
Wide-Field InfraRed Survey Telescope (WFIRST): Final Report of Science Definition Team.
arXiv:1208.4012.

Green, S. R., Wald, R. M., Apr. 2011. New framework for analyzing the effects of small scale
inhomogeneities in cosmology. Phys. Rev. D83 (8), 084020.

Greenhill, L., Humphreys, E., Hu, W., Macri, L., Murphy, D., Masters, K., Hagiwara, Y.,
Kobayashi, H., Murata, Y., 2009. Estimation of the Hubble Constant and Constraint on De-
scriptions of Dark Energy. Astro2010 White Paper, arXiv:0902.4255.

Griest, K., 2002. Toward a possible solution to the cosmic coincidence problem. Phys. Rev. D66,
123501.

Gross, M. A. K., Somerville, R. S., Primack, J. R., Holtzman, J., Klypin, A., Nov. 1998. Cold dark
matter variant cosmological models - I. Simulations and preliminary comparisons. MNRAS 301,
81–94.

Grossi, M., Verde, L., Carbone, C., Dolag, K., Branchini, E., Iannuzzi, F., Matarrese, S., Moscar-
dini, L., Sep. 2009. Large-scale non-Gaussian mass function and halo bias: tests on N-body
simulations. MNRAS 398, 321–332.

Guenther, D. B., Krauss, L. M., Demarque, P., May 1998. Testing the Constancy of the Gravita-
tional Constant Using Helioseismology. ApJ 498, 871–+.

Gull, S. F., Northover, K. J. E., Oct. 1976. Detection of hot gas in clusters of galaxies by observation
of the microwave background radiation. Nature 263, 572–+.

Gunn, J. E., Dec. 1967. On the Propagation of Light in Inhomogeneous Cosmologies. I. Mean
Effects. ApJ 150, 737.

Gunn, J. E., Gott, III, J. R., 1972. On the infall of matter into cluster of galaxies and some effects
on their evolution. ApJ 176, 1–19.

Gunn, J. E., Peterson, B. A., 1965. On the Density of Neutral Hydrogen in Intergalactic Space.
ApJ 142, 1633.

Guth, A. H., 1981. The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems. Phys. Rev. D23, 347–356.

Guth, A. H., Nomura, Y., Jul. 2012. What can the observation of nonzero curvature tell us? Phys.
Rev. D86 (2), 023534.

Guy, J., Astier, P., Baumont, S., Hardin, D., Pain, R., Regnault, N., et al., Apr. 2007. SALT2:
using distant supernovae to improve the use of type Ia supernovae as distance indicators. A&A
466, 11–21.

Guy, J., Astier, P., Nobili, S., Regnault, N., Pain, R., Dec. 2005. SALT: a spectral adaptive light
curve template for type Ia supernovae. A&A 443, 781–791.

Guzik, J., Bernstein, G., Smith, R. E., Mar. 2007. Systematic effects in the sound horizon scale
measurements. MNRAS 375, 1329–1337.

250



Guzzo, L., Pierleoni, M., Meneux, B., Branchini, E., Le Fèvre, O., Marinoni, C., et al., Jan. 2008.
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S., Dec. 2010. The Large-scale Bias of Dark Matter Halos: Numerical Calibration and Model
Tests. ApJ 724, 878–886.

Tinker, J. L., Sheldon, E. S., Wechsler, R. H., Becker, M. R., Rozo, E., Zu, Y., et al., Jan.
2012. Cosmological Constraints from Galaxy Clustering and the Mass-to-number Ratio of Galaxy
Clusters. ApJ 745, 16.

Tinker, J. L., Weinberg, D. H., Zheng, Z., 2006. Redshift-Space Distortions with the Halo Occupa-
tion Distribution I: Numerical Simulations. MNRAS 368, 85–108.

Tonry, J. L., Schmidt, B. P., Barris, B., Candia, P., Challis, P., Clocchiatti, A., et al., Sep. 2003.
Cosmological Results from High-z Supernovae. ApJ 594, 1–24.

Tripp, R., Mar. 1998. A two-parameter luminosity correction for Type IA supernovae. A&A 331,
815–820.

Trotta, R., Kunz, M., Liddle, A. R., Jul. 2011. Designing decisive detections. MNRAS 414, 2337–
2344.

Tseliakhovich, D., Hirata, C., Oct. 2010. Relative velocity of dark matter and baryonic fluids and
the formation of the first structures. Phys. Rev. D82 (8), 083520.

283



Tully, R. B., Fisher, J. R., Feb. 1977. A new method of determining distances to galaxies. A&A
54, 661–673.

Tyson, J. A., Valdes, F., Jarvis, J. F., Mills, Jr., A. P., Jun. 1984. Galaxy mass distribution from
gravitational light deflection. ApJ Lett 281, L59–L62.

Valageas, P., Clerc, N., Pacaud, F., Pierre, M., Dec. 2011. Covariance matrices for halo number
counts and correlation functions. A&A 536, A95.

Valdes, F., Jarvis, J. F., Tyson, J. A., Aug. 1983. Alignment of faint galaxy images - Cosmological
distortion and rotation. ApJ 271, 431–441.

van Daalen, M. P., Schaye, J., Booth, C. M., Vecchia, C. D., 2011. The effects of galaxy formation
on the matter power spectrum: A challenge for precision cosmology. MNRAS 415, 3649–3665.

van den Bergh, S., Aug. 2011. The Curious Case of Lemâıtre’s Equation No. 24. JRASC 105, 151.
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